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Abstract. A model for an age-sex-structured nonlimited population dynamics with the harmonic
mean type mating law and females’ pregnancy is presented. The existence and uniqueness theo-
rem for the general case of vital rates is proved, the extinction and growth of the population are
considered, and a class of the product (separable) solutions is obtained.
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1. Introduction

In the recent paper (Skakauskas, 1996), we proved the existence and uniqueness theorem
for an age-sex-structured limited population dynamics model, which takes into account
mating of sexes and females’ pregnancy. In that model, the population is divided into
three components: one male and three female, the latter three being single (nonfertilized)
female, fertilized female, and female from sterility period following delivery. Each sex
has three age grades: pre-reproductive, reproductive, and post-reproductive. It is assumed
that for each sex the commencement of each grade as well as the duration of gestation
and sterility periods are independent of individuals or time. That model includes the direc-
tional derivatives Dlul/\/i DQUQ/\/E, D3U3/\/§, D4U4/\/§, and the mating function
f = pujua/ fal u1d7y (see notation in Section 2).

In the present paper, for a nonlimited population, we modify the model mentioned
above replacing the function f by f= pulug/(fg1 wy drm + f023(0) ug d72) and deriva-

tives Dy, Do, D3, D4 by operators lA?l, lA?g, 133, 134 (see notation in Section 2), prove
the existence and uniqueness theorem for this new model, and obtain a class of product
(separable) solutions.

The paper is organized as follows. In Section 3, we present the model. Section 4 lists
main hypotheses and results. The proof of existence and uniqueness theorem, a majorant
for density of single females, and a class of product solutions are given in Section 5.
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2. Notation

We use the following notation:

Ty, T2, T3, — ages of male, female, and embryo, respectively;

T4 — time passed after delivery;

u1(t, 71) — the age-density of males at the age 7, and time ¢;

uz(t, 72) — the age-density of single females at the age 7 and time ¢;

us(t, 71, T2, T3) — the age density of fertilized females at the age 2 and time ¢ whose
embryo is at the age 73 and that were fertilized by males at the age 7;;

u4(t, 71, T2, T4) — the age-density of females from the sterility period at the age 7 and
time ¢ for whom time 74 has passed after delivery and that were fertilized by males at the
age 71;

v1(t, 1) (resp. va(t, 72)) — the death rate of males at the age 71 (resp. single females
at the age 72) and time ¢;

v3(t, 71, T2, T3) — the death rate of fertilized females at the age 72 and time ¢ whose
embryo is at the age 75 and that were fertilized by males at the age 7;;

v4(t, 11,72, T4) — the death rate of females from the sterility period at the age 7 and
time ¢ for whom time 74 has passed after delivery and that were fertilized by females at
the age 71;

p(t, 71, 72) — the density of probability to become fertilized at time ¢ for a female from
a male-female pair formed of a male at the age 7; and female at the age 7»;

X(ug) = X (t, 72) — the single female gain density by females at the age 75 and time
t for whom time 754 has passed after delivery;

Y (u1, uz) — the single female loss rate due to conception at the age 7> and time ¢;

o1 = [m1,712], 0 < 711 < T12 < 00 — the male sexual activity interval,
03 = (0,Th3], 0 < Thg < oo — the female gestation interval, 73 = [0, Ta3];
023(73) = [T21 + 73, To2 + 73], 0 < 721 < To2 < 00;
023(0) and 023(Th3) — the female fertilization and delivery intervals;
o4 = (0,T24], 0 < Tog < oo — the female sterility interval after delivery, 5, =

024(74) = [121 + Tog + T4, T2 + Tas + 74l;

b1(t, 71, 72) and ba(t, 71, 72) — the average numbers of male and female offspring
produced by a female at the age 72 and time ¢ who was fertilized by a male at the age 7y;

uw(ﬁ), UQo(TQ), U30(T1, T2, Tg), U40(7'1, T2, T4) — the initial distributions;

TS = 0,7’21 = T21, 7'22 = To1 + T23 + T24, T23 = T22, 7'24 = Too + T23 + T24 (fOI' the
case of multiple deliveries);

Q1 = (0.00), @, = [0,00). @2 = (0, 0) gw},@g — [0.00);

Qg =01 ><0'23<7'3> X o3, QS =01 ><0'23<T3) XE3, Wher€0'23<73> X 03 = '{(7—2,7—3) :
Ty € 093(T3), T3 € 03}

Q4 = 01 x024(T4) X 04, Qy = 01 X024(74) X Ty, Where 04 (74) X 04 := {(72,74) :
Ty € 024(.7'4), Ty € 04} .

[u2(73)] — a jump discontinuity of u at the plane 75 = 73;
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D — a domain not necessarily bounded, D — closure of D;

CO(D) (resp. C°(D)) — a class of bounded continuous functions in D (resp. D);

C1(D) —aclass of functions f(x1, ..., 2,,) such that df /0z; € C°(D),i = 1,m;

C’1 0( ) —aclass of functions f(z1,...,%m) such that 0f /0x: € c%(D D);
6/8t+8/8¢1,D2 8/8t+8/672,D3 D2+8/873, D4fD2+8/8T4,
= /2Dy, Dy = /2Dy, D3 = \/3D3, Dy = v/3Dy;

Dl, i = 1,2, 3,4 —the directional derivative in the positive direction of characteristics

of the operator D..

3. The model

The model to be considered in this paper consists of the following system of integro-
differential equations for w1, ug, us, ug,

6u1/8t+8u1/67'1:—y1u1, t>0, 1 €Qn,
Ouz /Ot + Oua /072 = — (V2 + Y (u1,uz))uz + X (ug), t>0, 72 € Qa,
Ous /0t + Ousg /019 + Qus /013 = —v3u3, t>0, (11,72,73) € Qs,

61@/8154—8’114/67’2-'-6164/87’4:—V4’LL4, t>0, (7'1,7'2,7'4) EQ4, 3.1
0, T2 €0’23(0>,
Y (ui,uz) = [ pua dT{/(fm dri + [ w dTé), T2 € 023(0),
o1 o1 o23(0)
0, To & 024(T04),
X<u4) = { f ’LL4|.,-4:T24 dT{, Ty € 0'24(T24),

which supplemented with the conditions

uk\Tk 0—/(17’1 / bk’LL3|7-3 T23d7'2, k:1,2,

023(T23)
U3|7—3:0 pU1UQ/</U1dT{+ / 7,@(17'5), t>0, (T1,7'2) € 01 XJQg(O),
o1 023(0)
U4|7—4:0 = u3‘T3:T237 (7_177—2) € o1 X 024(0)7 (32)

[/U/Q‘TQZTQS] = 07 s = 17_47

Ugli—o = uko in Q, k=1,4

describes dynamics of the population. In addition to (3.2) we assume that the initial dis-
tributions w19, 20, Usp, w4p satisfy the following compatibility conditions

ko (0 / ar, / bilicotisolroeryy dra,  k=1,2, (3.3)

023(T23)
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u30|73=0 =p|t—ou1ou20/</u1o dm'+ / U20 d7'2/>> (11, T2) €01 X 023(0),
o1 o23(0)

U40|74=0 = U30|rs=Tns, (T1,T2) € 01 X 024(0),

[uso(73)] =0, s=1,4.

As follows from the foregoing, given functions vy, 1o, I3, g, P, b1, ba, w10, U0, U0, 40
and the unknown ones uj, us, us3, u4 must be positive valued, otherwise they have no
biological significance. Because of the mating law model (3.1)—(3.3) is nonlinear.

4. Hypotheses and main results
We use the following hypotheses:

0< iy € Cl([O,oo) xQp), k=14,

0<peC'([0,00) x g1 X 23(0)),

0 < b € CH0([0,00) x 01 X 023(T3)), (H)
0 <uro € CHQ,), k=14,

0 < 7; = const < oo, 1,j=1,2;

0 < Ths = const < 0o, s=3,4.

Theorem 1. Assume that all the hypotheses (H) and conditions (3.3) hold. Then, for any
finite t* > 0, problem (3.1), (3.2) has a unique strictly positive solution wuy,usa,us, U4
such that:

ur € CO[0,°] x Qu) NCH((10,#7] x Q) \ {(t.7) st =71}),
us € C(0,°] x Qo) N CH((10,4] x @) \ {(t,72)
=ttt bt m o o7 L rd ),
ug € (0,7 x Q) N CH((10,#] x Q) \ {(t,71,72.73) :
Ty =t,t—T1;Ts :t,t+¢21,t+T§,t+T§',T§,T§,T§'}),

us € CO[0,7] x Qu) N CH((10,#7] x Qu) \ {(t,71,72.71) :
Ty =t,t —Tog,t — Tog — 71;

T :t,t+7‘21,t—|—7‘22,t—|—7'§’,t+T§,T§,T§',T§}),

/U1d7'1-|— / Us d7o 601([0,t*}).

g1 0’23(0)
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5. Justification of Results
5.1. Proofof Theorem 1

We consider the case of multiply deliveries, i.e., 75 — 73 > T3 + Th4. The apposite case
we can analyze in the similar way.
Define

n(t) :/u1 dm + / ug da, 5.1

o1 0'23(0)
qt,m) = /Pul dry, (5.2)
o1
By(t) = u(t,0), k=1,2. (5.3)

We first obtain the formal integral representations of w1, ug, us, u4. Integrating Eqs. (3.1)
over characteristics together with conditions (3.2), we obtain:

uzo(T1, 72 — t, 73 — 1)
t
XeXp{7fl/3(x,7'1,l’+7'27t,$+7'3*t)dx}, 0<t< s,
0
U3z = 54
° (puruz/n)|(t—ry,71 72 —7s) (54)
73
XeXp{ — [vs(z+t—T13, 1,2+ 72 —Tg,x)dx}, 0<m<t,
0
wao(T1, 72 — t, T4 — 1)
t
xexp{—fu4(x,n,x+rg—t,x+r4—t)dx}, 0<t <,
0
ugo(T1, 72 —t,To3 + 74 — t)
t—T4
xexp{ — [ (@ n,e+mn—tx+Ts+71a—t)dx
0
Uy = i (5.5)
7fl/4($+t77'4,7'1,$+7'2 —1g,x)dap, T4 <t < Tog + 74,
0
(pu1u2/n)‘(tf‘m*Tzs,Tl,Tz*M*Tzs)
To3
xexp{ — f V3($C—|—t—7’4 —Tos, i,z + 70— T4 —T23,$>d56‘
T4 0
—Jw(e+t—T14, 1,2+ 72 774,x)d1'}, t > 74 + Ths,
0
t
u10(T1 —t)exp{ — vz, x4+ 7 —1) dx}, 0<t<m,
uy = 0 (5.6)
Bl(tfﬁ)exp{ — f v (z,x+1 ft)dx}, 0<m <t
t—11
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t
ug0(72 — 1) exp{ — [z, x4+ 12 —1t) dx},
0

0<t <, 7€ 0,7],
t

vy — 5.7)
Bso(t — Tg)exp{ — [ n@zrt+mn—t) dx},
t—TQ
0< 7 <t, 72 €0,73],
Ut) =ua(t,73),  [ua(t, )] =0, >8)
t
ug1 = ugo(T2 — 1) exp{ J (2 + )’(L T4To— t)d }
0
0 < t < T2 — 7-217
v — ) (5.9)
u22=U(7'21+t—T2)eXP{_ / (”2+ )|(wc+m t)d }
721+t—7'2
t> 719 — T21
for 1y € [13, 73],
¢
ug3 = ugo(T2 — 1) exp{ f (V2 + %) ’(a[; T+T2—t) dx}
o ,
+ t
fX Y, y+7'2—t exp{—f(V2+ )‘(merTz t)dx}dy’
0 y
0<t — 73,
¢
Ugq = ugo(T2 — 1) exp{ f (V2 + )’(L T+T2—t) dx}
o ,
t
Uz = + f X<y Yy+72 — t>e {_f (V2+-7qi) ’(m,er'rzft) d.’l?} dy, (5-10)
72+t T2 Y

T — T8 <t< T — T3,

t

s =V t-mew{~ [ (a4 Dy de)

721+t—7'2
t _ t
+ X(y7y+72—t)eXp{—f(u2+ )|(H+ﬁ t)dx}dy,
722+t—7'2 Yy

t272—7'212f

for 1y € [75, 73], T = Toz + Tos,
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t
UQ()(TQ - t) exp{ - fV2($,$ + T2 *t) dIE}
0

t t
+ [ X(y, y+7'2—t)eXp{—fVQ(sr:,x+7'2—t)dsr:}dy,

0 y

0<

t < 7'23,
t
U2(7'23+t*7'2,T§)6Xp{7 S V2($,$+7'2*t)dl’}

7'23+th2

(5.11)

U9 =

¢ ~ t
+ X(yay+72*t)eXp{*fl/g(x,erTgft)dx}dy,
‘r§’+t77'2 Yy
t>1— T35,

[uQ(t,TS’)] =0form €[5, 75],

t
u20(7'2ft)exp{ffl/g(:c,:c+7'27t)d:c}, 0<t<7277'§,
0

= t
Uy = up(7y + 1t — 7—2,7-2>6Xp{ Ik Vg(sr:,sr:—i—Tg—t)dgc}7 (5.12)
72+t—7'2

t>7'2—7'§1,

[ug(t, 7'24)] =0 formy € [, 00).
Now, by (5.1), (5.9) and (5.10), we obtain the following integral equation:

721+t 7'22
n:/u1d7'1+ / ugz dre + / ug1 do
g1 ‘r'; 'r21+t
722+t Tg’
+ / Uog dTo + / Uug3 dTy, Ogtgf,
722 7'22+t
7'22 t+721
n:/uldT1+/U22d7'2+ / U25d7’2
o1 Ty T3
t+7’22 ‘rg
+ /U24d7'2+ /u23d7'2, f<t<73—7'227
t+7y t+73
7'22 t+7'21

n:/uldT1+/U22d7'2+ / U25d7’2
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T2
2 1
+ / ugqdry, T8 — T8 St TS — 1y, (5.13)
t+‘r§
3 5
n:/u1d71+/u22d72+/u25d72, t>7'2377'21
o1 T T2
if7'22 — T21 2 2T, and
t+721 7'22
n:/uld’r1+ / U22d7’2+ / UQldTQ
o1 Ty t+73
t+7’22 ‘rg
2
+/U24d7'2+/u23d7'27 0<t< 7 —13,
7'22 t+7'22
t+7'21 7'22 75’
n = /uldT1+ / U22d7’2+ / UQ1d7'2+/’LL24dT2,
o1 7'21 t+721 722
S_m2<t<T
Tog — Ty XU X 123,
7'22 t+7'21 75’
n = /u1d71+/u22d72+ / U25d7’2+ / UQ4dT2, (514)
o1 Ty 2 t+71
Tos <t<Th—75
23 x bx g 2
72 73
1
n:/u1d71+/u22d72+/u25d72, t>7'2377'2,
o1 Tl T2

2 2

if 799 — 191 < Zf
For the sake of brevity we write this integral equation for n as follows

n:K(n;ta)’?thBQaQ7U)a (515)

where:
X (t,72) is defined by (3.1), provided that us |74 = T54 is known,
By(t) is defined by (5.3), (3.2), provided that ug|,,—7,, is known,
q is defined by (5.2), (5.6) provided that B; is known,
U is defined by (5.8), (5.7) provided that B; is known.
We examine (5.15) going along the ¢ axis by a step of size h = Taz + min(71, 721, T24).
The first step. From (5.4) we find ug for ¢t < 73 (and hence us|,,—7,, for t < Th3).
Then we construct, by (5.3) and (3.2),, By, for ¢t € [0, T3] and find, by (5.6) and (5.7),
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ug for0 < ¢ < 7 + Tog, k =1,2, 71 € (0,00), T2 € (0, 721]. Thus we know u (¢, 7x1)
for 0 <t < Tvs + 71,k = 1, 2. Hence ¢, by (5.2), fol uy d7y, and U, by (5.8), are also
known for ¢ € [0, 711 + Tas] and ¢t € [0, 721 + Ths], respectively. From (5.5) we find uy
for 0 < t < 74 + To3 (and hence uy|,,—1,, for 0 < t < Tos + Tay). This allows us, by
(3.1)g, to construct X. Thus (5.15) is an integral equation for n(t), t € [0, h)].

From (5.13) and (5.14) it is easy to see, by definition of u;,7 = 1,5, that K (n”,-) >
K(n',-), if n” > n/;and 0 < K(f, widm,) < K(n,:) < K(oo,-). This allows
us to solve (5.15) by the iteration method starting with n® = fal u1 d7; and to obtain
the monotonically increasing sequence K (n™,-), which converges, since it is bounded.
Moreover, from (5.13) and (5.14) it follows that

t
nm-‘rl _ ,',L’m’ < KZ/ ‘nm _ nm—l‘ dSL‘, m = 1727. .,
0

where « is a positive constant. Hence

H7nt'fﬂ
nmtl —nm’ < —¢, = sup (K(oo,~) - /uldﬁ), m=1,2,...,
m: t€([0,h]
g1

and the sequence {n™} converges uniformly to a strictly positive function n € C°([0, h])
because of the hypotheses (H). Knowing n, B1, B2, q, U, we find, by (5.9)—(5.12), the
function uy for (t,72) € [0, h] x [14,00).

The second step. From (5.4) we find us for 73 < ¢ < h + 73 (and hence u3|,—1,, for
Tos <t < Tas + h). Then, by (5.3) and (3.2), we construct By, for Tog < t < Tag + h
and, by (5.6) and (5.7), we find uy, for 7, +Tos < t < 7, +Tos+h, k =1,2,71 € (0,00),
79 € (0,721]. Thus, we know u(t, 7%1) for 741 + Tag < t < 71 + Tas + h. Hence g,
by (5.2), fol uy d71, and U, by (5.8), are also known for ¢ € [r11 + T3, 711 + Tos + h]
and t € [1o1 + Tos3, 701 + T3 + h|, respectively. Now from (5.5) we find uy for ¢ €
(7‘4 + Ths3, 74 + Tos + h} (and hence ’LL4|.,-4:T24 fort € (T24 + To3,Tog + Tos + h]))
This allows us to construct X for t € (T4 + Tos, Tos + Tos + h|. Thus we again have an
integral equation for n(t), t € (h,2h]. Using the same method, as above, we construct
its solution n € C°([h, 2h]).

Repeating our argument, we can construct uj, us, us, uq, and (hence By, Ba, q,U)
for any finite ¢* > 0. Direct calculation together with the hypotheses (H) show that
n € C*([0,t*]). This completes the proof of Theorem 1.

5.2. Majorants for uy, us
In this subsection, we consider the case where

va(t,72) 2 v(12) > 0, 0 < b(t,71,72) < b*(12), 0<p(t,m1,72) < p* (1)
v, € C°([0,00)), b* € C%oa3(Th3)), p* € C%023(0)). (5.16)
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It is easy to see that u; and uy constructed in Section 5.1 have the following majorants
uy and us, respectively, where

t
u10(7'1—t)exp{—ful(x,x—l—ﬁ—t)dx}, 0<t<mn,
Uy = 0
1 -
a2(75*71,0)6Xp{ffz/l(ertfﬁ,:c)dx}, 0<m <t

0
and w5 is the unique strictly positive solution of the system

0, 72 & o2(To), t>0, N
J walry=1p, dT1, T2 € 024(T24), 0 <t < T,

a1

p (o —T)at =T, 72 —T), Tos € 024(Tos), t =T,
[ua(t,75)] =0, s=2,4,t>0,

Doy = —v,us +

u2(0,72) = ugo(72), T2 € [0,00),

[ dmeb*(12) [ uslr=m, dm, t < Ths,
o (t,0) = 725 (T2s) i _
’ [ drp*(me — Tas)b* (12)Ua(t — Tos, 72 — Thg), t = Ths,
023(T23)

where ug|rs=7,; for 0 < ¢t < Ths and uy|r,—71,, for0 < ¢ < T= To3 + Ty are defined
by (5.4) and (5.5), respectively. Because of the delay argument ¢ — T, function uy can
be constructed by using the argument similar to that used in 5.1 for construction of us.
Moreover, for t > 75, we have

ag :ag(thQ,O)U(TQ), (517)
0,

dv/dre = —vv + { ~
p

v(0)=1, [v(13)] =0, s=24.

Clearly, v(12) € C°([0,00)). Now we find the upper estimate for wy(,0). Let t >
Too + T23. Then

o (t,0) = / P (@)b* (2 + Taa)iia(t — Tos, 7) dz

023(0)
= / p*(2)b" (v + Tas)uz(t — Toz — x,0)v(z) dz
023(0)
t—b
N / Uz (y, 0)p™ (t — Tos — y)b" (t — y)o(t —y — Ta3) dy,
t—a

b = To3 + 21,0 = To3 + T2
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and hence
t—b
ﬂz(t,0)<£/ﬂ2(y,0)dy, § =supp bv.

T2
t—a

From this inequality we derive, by induction, the following estimate

Us(t,0) < &n(1 + £y,

n:/ﬂg(x,O)dx for a+jb<t<a+(G+1)b, ;5=0,1,...,
0

or
Ua(t,0) < En(1+€0) 7, t>a.

Thus there exists the Laplace transform f(\) of @a(¢,0). Letting p(72) = p*(12 —
T53)b*(12), we obtain

oo

O = / exp{—\t}aa(t, 0) dt =

0

exp{—At}ua(t,0)dt

o — .

o0

b
+ / exp{— A} (t, 0) dt = / exp{— A }iia(t, 0) dt

o min(t,a)
+ /exp{—)\t} ( / p(12)ua(t — 72,0)v(10 — Thg) dma
b b

a

b
+ / p(T2)uz(t — Toz, 2 — To3) de) dt = /exp{—)\t}ﬂQ(t,O) dt
0

min(t,a)

+/exp{f)\t}dt/p(72)ﬂ2(t7T23,72 7T23) dTQ
b t

+/ dTgp(Tg)’U(Tg7T23)/6Xp{7)\t}a2(t77'2,0) dt
b T2

= I(A) + RA)F (V)

where

a

R()\) = /p(TQ)’U(TQ 7T23)€Xp{7)\7'2}d7'2,
b
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b
10) = / exp{— M }iia(t,0) dt

+/exp{f)\t}dt/p(Tg)ﬂg(t7T23,7'2 7T23)d7'2.
b t

Hence

fFO) =IN/{1- RN}

It is well known that equation R(\) = 1 has a unique real rooth A\ and conjugate pairs
of single complex roots A\; = 1,2, ... such that Re\; < Ag. I(A) is an analytic function,
thus, using the method of rectangle contour integral (Bellman, 1963), we can evaluate the
inverse Laplace transform obtaining

Talt,0) ~ T(,0) = wexp{doth, 1 = T0h0)/{—dR/d\} xox,,
and, by (5.17),
Uz (t, 72) ~ Kv(2) exp {Ao(t — 72) }

for large t > 1. If Ag < 0, then solution of problem (3.1)—(3.3) extincts provided that
(5.16) and hypotheses (H) hold.

5.3. A Class of Product Solutions

In this subsection, we consider the case of stationary vital functions by, b, p, v1, V2, V3,
v4 and examine the product solutions of system (3.1), (3.2), , 5 , of the form:

U] = exp {)\(t—7'1)}f1(7'1)u107 f1(0) =1,
Uy = exp {)\(t—Tz)}fz(TQ)uzm f2(0) =1,
uz = exp{ At} fa(11, 72, 73)u20,  falrs=o = pn~ " fifzexp { = A(m +72)},

n = /fl(Tl)eXp{f)\Tl}dTl + / fQ(TQ)exp{f)\Tg}dTQUQO/Ulo, (518)
g1 0’23(0)

Ug = exp{)\t}f4(7'1,7'2, T4)’LL207 f4‘7—4:0 = f3|‘r3:T237

where \, uig > 0, ugg > 0 are constants.
Substituting of (5.18) into (3.1), (3.2), , 5 4 leads to the following equations:

fi=-wnfi, fH0)=1, (5.19)
, 0, T2 ¢0'23(0)
f2:71/2f27f2 fpnilfl(ﬁ)exp{f)\ﬁ}dﬁ, T2 60'23(0)

g1
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0, 7o & o2(T2),
+ ff4’74:T24 exp{Are}dr, 72 € 024(T24), (5.20)
o1

f2(0) =1, [fa(13)] =0, s =1,4,
0f3/0m2 + 0f3/0m3 = —(v3 + A) f3,

(5.21)
f3’73:o =pn~fifrexp{ — A1 +72)},
6f4/67-2 + 6f4/67-4 = —<V4 + )\>f4, f4"r4:0 = f3‘7‘3:T237 (5.22)
1= / dTl / b1f3’T3:T23 dTQUQo/Uu), (523)
o1 023(T23)
1 = / dTl / b2f3’7‘3:T23 dTQ7 (524)
o1 023(T23)
where n is defined by (5.18), and the prime denotes differentiation.
Equations (5.19), (5.21), (5.22) have the following solution
1= exp{ /Vl(f)dx},
0
fs = n"'p(r1, 72 — 73) f1(71) foT2 — 73) eXp{ — A1 + 7o)
T3
—/V3(7'1,.'17+7'2 — T3,T) dsr:}, (5.25)
0
f4 = ’I’L_lp(Tl,'TQ — T4 — T23>f1(7'1>f2(7'2 — T4 — T23) exp{ — )\(7'1 + 7’2)
T4 Tas
_ /V4(Tl,l’+72 — T4,l’) dz — / I/3(7'1,$ +To — T4 — TQg,l’) d:c}
0 0
Thus (5.20) can be written as follows:
, 07 T2 ¢ 023(0)7
fa=-1v2fo=f2q [pn7tfi(m) exp{=An}dm, T2 € 023(0) (5.26)

0, 72 & 0o24(T24),
+fa(re — Tog — Th3) {n—l [ fi(m) exp{=A11}Q(71,72) d71, T2 € 024(T24),

g1

f20)=1, [fa(r)] =0, s=1,4,
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where

Toa

Q(11,m2) = p(11, 72 — Th3 T24)6XP{ - /V4(Tl,$+72 — Ty, x)dx
0
Ta3

- / v3(T1, + 10 — Thg —T24)d33}~
0

Equation (5.26) is linear and can be easily solved. Let f2(72) = F(72, A, n) denote its
solution. Then (5.23), (5.24) and (5.18), can be written as follows:

1 :/dﬁ / bin~'p(r1, 72 — Tos) f1(11) F (12 — Tz, A, n)
o1 o2(T23)

Taog

X exp{ — )\(Tl +T2) — / 1/3(7171’+TQ — TQg,l’) d:c} dTQUgo/Ulo,

1= / dn / bon " (1, 7o — To3) f1(11)F (19 — Taz, A, n)
o1 O’Q(ng)

Tos
X exp{ — A7 +712) — / v3(T1, 2 + 72 — Ta3, x) dx} drs, (5.27)

n = /fl(ﬁ)exp{f)\ﬁ}dﬁ+ / F(TQ,)\,n)eXp{f)\TQ}dTQUQ()/Ulo.
o1 o2(0)

The existence and distribution of roots of system (5.27) in general case is an open prob-
lem, but in special cases their real solution exists. Indeed, in the case where:

(H7) b1, ba, p are positive constants,

(Hg) w1, vo > 0 are continuos,

(Hy) w3 > 0 does not depend on 71, 72 and is continuous,

(H19) w4 > 0 does not depend on 71 and is continuosly differentiable,
from (5.27), 5 we obtain

n = N(A):= (/fl(n)exp{)\Tl}d71>2/</f1(71)exp{)\Tl}dn

—q ! exp{)\ng}), A€ (—o0, AY), (5.28)
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where \* is a unique real root of the equation

/fl(ﬁ)exp{f)\ﬁ}dﬁ — q;l exp{)\ng} = 0,

g1

Taog

Q= b1peXp{ - /1/3(1’) d:c}.
Hence

nfl /fl(ﬁ) exp{f)\ﬁ} dT1

B 0, A— A%,
=1—q" eXp{)\T23}//f1(T1)eXp{—)\Tl} dr — { T pa—

g1

From (5.27), and (5.28) we have
nfl / fl(Tl) exp{f)\ﬁ} dT1
o1

= q2—1 exp{)\T23}/ / F(TQ, )\, N()\)) exp{f)\TQ} dTQ,
0'23(0)

Taog

g2 = bzpeXp{ - /1/3(1’) dx}.
0

The last two equations lead to the following equation for A

0= KW =1 (0 [ FraANO))exp{ - AT+ ) am)

23 (0)

- (ql/h(ﬁ)eXp{ /\(T23+n)}dn>l.

Function K (\), A € (—oo, A*) changes its sign and, hence, has a real solution \g €
(—00,A"), signAg = signK(0). Then n = N(Xo), and from (5.27), , it follows that
ug0/u10 = ba/by. It is evident that hypotheses (H;) — (Hyp) ensure the positivity and
differentiability of f;, i = 1, 4.

Theorem 2. Under the hypotheses (Hz) — (Hio) problem (3.1), (3.2), , 3 , has the prod-
uct solution of type (5.18).
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Populiacijos su harmoninio tipo kryZminimosi désniu ir pateliu
néStumu evoliucijos problema

Vladas SKAKAUSKAS

Pasitlytas nelimituotos populiacijos su harmoninio tipo kryZminimosi désniu ir pateliy néstumu
amZiaus ir ly¢iy strukttiros dinamikos modelis. Bendruoju gyvybiniu greiciu atveju irodyta spren-
dinio egzistencijos ir vienaties teorema, iSnagrinétas populiacijos augimas ir jos iSnykimas ir rasti
separabeliniai sprendiniai.



