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The theory of classical (non stochastic) finite automata over infinite objects was fun-
damented as early as the 60s by such mathematicians as J.R. Büchi, R. McNaughton
and M.O. Rabin (Büchi, 1960a, 1960b; McNaughton, 1966; Rabin, 1969). Their results
gave birth to a theory that is now fundamental to those domains of theoretical computer
science that deal with infinite processes or computations, and constitutes an adequate
starting point for models in diverse domains of human knowledge.

The theory of stochastic automata, also named random automata relies, on the other
hand, on another extension of Mealy’s definition. The length of the input object is finite,
but the evolution of the automaton is not simply non-deterministic, having a probabilis-
tic character. The first definition of such an automaton is as old as 1963 and was put
by J.W. Carlyle (1965). The denomination he used was that of stochastic sequential ma-
chine. During the same year, an article by M.O. Rabin gives a more complete form of the
same object. The romanian mathematicians O. Onicescu and S. Guiaşu define in 1965
the random abstract finite automaton (Farcaş, 1987). Important results are presented in
Paz (1970). A probabilistic Büchi automata, short PBA was defined by Reisz (1997) and
studied in previous articles (Reisz, 1998; Reisz, 1999).

In the present article we will continue to investigate the properties of these automata,
and in particular the possibility to separate their probabilistic and classical behaviour. A
form of the classical Krohn-Rhosed theorem for PBA will be given.

1. Notations and Definitions

During this article, A is a finite set, named alphabet. The elements x, y, . . . ∈ A, are
named letters. We define as follows:
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the empty word is ε and A0 = {ε},

A1 = A,

A2 = AA = {xy|x, y ∈ A},
An = AAn−1.

Let then A∗ =
⋃
n>0

An be the set of finite words. Aω is the set of ω-words (or ω-

sequences) over A. An ω-word over A is by definition a sequence of the following form
α = α(0)α(1)α(2) . . . where α(i) ∈ A. Let A∞ = A∗ ∪ Aω. Finite words will be
denominated by the letters u, v, w, . . . and sets of finite words U, V,W, . . .. Greek letters
α, β, . . . will be ω-words and L,L1, L2, . . . sets of ω-words (also named ω-languages).
Reference to words inA∞ will generally be made using x, y, z, . . .. Segments of ω-words
are denoted as:

α(m,n) = α(m) . . . α(n− 1) where m 6 n and

α(m,ω) = α(m)α(m + 1) . . .

On A∞ words we define an operation called concatenation: ∀α, β ∈ A∞, where
α = α0 . . . αn and β = β0 . . . βn . . ., the concatenation αβ = α0 . . . αnβ0 . . . βn . . .. In
this context ε proves to be neutral element of concatenation.

The usual logical conectors ¬,∧,∨,∀,∃,→ will be used. For the quantifiers “there
exists an infinity of n” respectively “there exists a finite number of n” the notations “∃ωn”
and “∃<ωn” will be used.

The operations defined on sets of finite words will also function forW ⊆ Aω. We will
have as such the usual ∪,∩,¬ as well as the concatenation of sets (L1L2 = {αβ|α ∈
L1, β ∈ L2}. Let also:

pref W = {u ∈ A∗|∃v ∈ Aω , uv ∈W},
Wω = {α ∈ Aω|α = w1w2 . . . with wi ∈W for i > 0,

~W = {α ∈ Aω|∃ωn, α(0, n) ∈W}.

For ~W in the literature we can also find the notations limW and W δ. Finally, for the
ω-sequence σ = σ(0)σ(1) . . . from Sω the infinity set of σ is defined as being

ln(σ) = {s ∈ S|∃ωn, σ(n) = s}.

Büchi automata are non-deterministic finite automata that have a recognition condi-
tion fit to deal with ω-words. As such, an ω-word is accepted by a Büchi automaton if
during the evolution of the automaton by reading the word from left to right the sequence
of states of the automaton passes a certain state from a set of final states, an infinite
number of times. The method is named Büchi acceptance.

Let Q be a finite set, q0 ∈ Q, ∆ ⊆ Q×A×Q and F ⊆ Q, then
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DEFINITION (Thomas, 1990). A Büchi automaton over an alphabetA has the formA =

(Q, q0,∆, F ) where Q will be denoted as the set of states, q0 the inital state, ∆ the
transition relation and F the set of final states.

DEFINITION (Thomas, 1990). A run of the automaton A over an ω-word α =

α(1)α(2) . . . ∈ Aω is by definition a sequence σ = σ(0)σ(1) . . . ∈ Qω so that σ(0) = q0
and (σ(i), α(i), σ(i + 1)) ∈ ∆ for i > 0.

DEFINITION (Thomas, 1990). A word α ∈ Aω is being recognised (or accepted) by A
if ln(σ) ∩ F 6= ∅ that is, if a certain state from F is repeated an infinite number of times
during the run.

DEFINITION (Thomas, 1990). The ω-language recognised by the automaton A is
L(A) = {α ∈ Aω|A acceptes α}.

DEFINITION (Thomas, 1990). Let L ⊆ Aω then if ∃A such that L = L(A) then L is
Büchi recognisable (or simply a Büchi language).

The random automata is a finite automata that reads finite words from an input de-
vice but whose evolution is determined by a probability function that gives to all actions
possible to be made at a certain moment a random character instead of the usually non-
deterministic character.

A simple form of the finite random automaton concentrated on its acceptance function
is the p-model. In this case the output alphabet is formed by only two values, coded 0 and
1 (Thathachar, 1990). A definition equivalent to the p-model will be used in which the
output alphabet is skipped and the languages recognised by the random automata will be
studied. As such, the output produced by the automaton at reading a word will be the
recognition or non-recognition of the respective word, that is the membership or non-
membership of the word in the language recognised by the automaton. In essence we will
deal with a binary response.

LetQ be a finite set, q0 ∈ Q, P a probability function defined P : Q×A×Q→ [0, 1]

and F ⊆ Q, then

DEFINITION (Thathachar, 1990). A simple random automaton over an alphabet A has
the form: ASR = (Q, q0, P, F ) where Q is the set of states, q0 the initial state (or start
state), P the transition probability function and F the set of final states. The function P
has the property:

∀x ∈ A,
∑
q′∈Q

P (q, x, q′) = 1.

The definition above was used in a series of papers and is relatively close to the defi-
nition of the Büchi automaton previously given. It is evident that based on the definition
above we can compute the probability that the state reached at the end of the evolution
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of the random automaton over a given word is in the set of final states F . The language
recognised by the random automaton will as such also have a random character, the mem-
bership of any word to this language being characterised by a probability value. Such a
language is generally named a probabilistic language (by Suppes, Ellis, etc.) as in (Sup-
pes, 1990), and is formed by a pair (L, p) where L ⊆ A∗ and p : L → [0, 1] is a
probability with which an element of L is a member of the language.

DEFINITION (Thathachar, 1990). The probability p(q, q′) with which the automaton
evolves between q ∈ Q and q′ ∈ Q is:

p(q, q′) = max
u0...un∈A∗

max
q1,...qn∈Q

P (q, u0, q1) . . . P (qn, un, q
′).

Given u ∈ A∗, the definition above delimites the functions pu : Q × Q → [0, 1]

having the form

pu(q, q′) = max
q1,...qn∈Q

P (q, u0, q1) . . . P (qn, un, q
′), where u = u0 . . . un.

Properties
The function p : Q×Q→ R has the properties
1. 0 6 p(q, q′) 6 1, ∀q ∈ Q.
2. q = q′ ↔ p(q, q′) = 1.

3. ∃AA, ∃q 6= q′, p(q, q′) = 1.

4. ∃AA, ∃q, q′, p(q, q′) 6= p(q′, q).

DEFINITION. The language recognised by a random automaton is

(A∗, p) where ∀u ∈ A∗, p(u) = max
q∈F

pu(q0, q).

Another definition is (L, p) where L ⊆ A∗ and L contains all words u ∈ A∗ for
which p(u) > 0, p having the same definition as above. Actually one has to consider in
the (L, p) situation, p(u) = 0 for all u 6∈ L even if p(u) = 0 could also be allowed for
certain u ∈ L. The (L, p) form will be used in the present article.

Over the class of such languages of pairs one can easily extend the set operations
∪,∩,¬. Next to these the concatenation of two pairs is defined as follows:

(u, p1)(v, p2) = (uv, p1p2),

where uv is the usual operation of concatenation of words, while p1p2 is the product of
real numbers. The operation is, similar to the classic one, associative, having a neutral
element, without simetry and noncomutative. The operation above can be extended as
usual over sets. Based upon this operation a Kleene-type closure can also be defined.
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2. The Probabilistic Büchi Automaton

A structure combining characteristics of both the above defined automata was defined in
(Reisz, 1997) as follows:

LetQ be a finite set, q0 ∈ Q, P a probability function definedP : Q×A×Q→ [0, 1]

and F ⊆ Q, then

DEFINITION. A probabilistic Büchi automata over an alphabet A has the form PBA =

(Q, q0, P, F ) where Q denotes the set of states, q0 the initial state (or start state), P
the transition probability function and F the set of final states. The function P has the
property:

∀q ∈ Q, ∀x ∈ A,
∑
q′∈Q

P (q, x, q′) = 1.

The recognition condition will be a Büchi type condition. As such an ω-word will be a
member of the language recognised by PBA with a probability depending on the prob-
ability with which states from F are visited infinitely many times during an evolution.
While in the case of finite words the probability that the evolution reaches a final state
is the acceptability criterion, in this case the probability that the evolution visites a final
state infinitely many times is the corresponding criterion.

To define the language, recognised by PBA’s , some more considerations are nece-
sary.

DEFINITION. The probability p(q, q′) with which a PBA evolves from q ∈ Q to q′ ∈ Q
is defined as:

p(q, q′) = max
u=u0...un∈A∗

∑
q1,...qn∈Q

P (q, u0, q1) . . . P (qn, un, q
′).

Observation. The formula is different from the one used for stochastic automata over
finite words. The change from max to sum had to be made in order to expand the set of
BP languages.

DEFINITION. For any u = u0u1 . . . un . . ., a string of states q0, q1, . . . , qn, . . . where
∀i > 0, P (qi, ui, qi+1) > 0 is named a possible evolution for u. The set of possible
evolutions for a certain u will be denoted by Ev(u). The evolutions themselves will be
denoted by Greek letters.

DEFINITION. Given u ∈ Aω , the probability of an evolution α of the PBA over u is:

∀α ∈ Ev(u), α = q0, q1, . . . ,

P (α) = P (q0, u0, q1)P (q1, u1, q2) . . . .
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Properties
Forall u ∈ Aω and α ∈ Ev(u) the following properties hold:
1. 0 6 P (α) 6 1.

2. Given u = u0 . . . un . . . and α = q0 . . . qn . . . ∈ Ev(u) then if
∀i ∈ N,P (qi, ui, qi+1) 6 P (qi−1, ui−1, qi) and P (q0, u0, q1) < 1 or if
∀i ∈ N,P (qi, ui, qi+1) < P (qi−1, ui−1, qi) then P (α)→ 0.

3. ∃PBA, ∃u ∈ Aω , ∃α ∈ Ev(u) such that 0 < P (α) < 1.

Proof.
1. ∀u ∈ A, q, q′ ∈ Q,P (q, u, q′) ∈ [0, 1]⇒ P (α) > lim

n→∞
0n = 0 and

P (α) 6 lim
n→∞

1n = 1.

2. If for u = u0 . . . un . . . and α = q0 . . . qn . . . ∈ Ev(u)

∀i ∈ N,P (qi, ui, qi+1) 6 P (qi−1, ui−1, qi) and P (q0, u0, q1) < 1 then
P (α) = P (q0, u0, q1) . . . P (qi, ui, qi+1) . . . 6 lim

n→∞
P (q0, u0, q1)n = 0. If for

u = u0 . . . un . . . and α = q0 . . . qn . . . ∈ Ev(u)

∀i ∈ N,P (qi, ui, qi+1) < P (qi−1, ui−1, qi) and P (q0, u0, q1) = 1 then
P (α) = P (q0, u0, q1) . . . P (qi, ui, qi+1) . . . 6 lim

n→∞
P (q1, u1, q2)n = 0.

3. Such a case results from the product: P (α) = (1− 1
22 )(1− 1

32 ) . . . (1− 1
n2 ) . . .

that has the value 1
2 .

DEFINITION. The infinity set associated to an ω-word u ∈ Aω for a PBA automaton is:

InPBA(u) =
{

(q, p), q ∈ Q, p ∈ [0, 1]|∃α ∈ Ev(u)∃ωq′ ∈ α,

q = q′; p = max
α

P (α)
}
.

In other words, a state is in the infinity set of a certain word if there exists a possible
evolution on the respective word in which the state is visited an infinity of times. The
probability related to the state will be the sum of probabilities of evolutions on which the
state is visited an infinity of times. This will avoid that a state q appears in the infinity set
more then once (i.e., for different values of the probability).

The union of the first projection of the pairs in InPBA(u) will be denoted by
InQPBA(u), while the second component with InpPBA(u).

DEFINITION. Let us use the notation FInPBA(u) ⊆ In(PBA)(u) such that
FInQPBA(u) = InQPBA(u) ∩ F . The language recognised by a probabilistic Büchi au-
tomaton is then

(Aω , p) where ∀u ∈ Aω , p(u) = max
(q,p)∈FInPBA(u)

p.

The following form will also be used:

L(ABP ) = {(u, p(u)) ∈ (Aω , p)|FInPBA(u) 6= ∅}.
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The class of languages recognised by probabilistic Büchi automata will be denomi-
nated as the class of probabilistic Büchi languages or BP.

In the definition above p represents the second component of the pair InPBA(u) for
which the maximum is achieved. In words, the language recognised by the PBA will be
formed by all the words for which there exist evolutions in which a final state is visited
an infinity of times. The probability of membership in this language of a certain word
will actually be the maximum of probabilities of the evolutions on which the final state is
visited an infinity of times.

3. Decomposition Theorems

In the present section we will refer to the transition system concept. The object of this
section is the presentation of decomposition theorems for classical as well as probabilis-
tic transition systems and the prove of a decomposition result for probabilistic Büchi
automata. If the decomposition theorems for classical transitions systems presented here
have a relatively long history, being discussed in depth in (Arbib, 1968a, 1968b) we will
also present a recent result for the decomposition of a probabilistic transition system
(Maler, 1995).

The transition system concept was defined in reference works (Arbib, 1968a, 1968b;
Ginsburg, 1962; Paz, 1970) in more or less different ways and having different names.
The more often used denominations are state-output automaton, abstract automaton or
abstract machine. The following definition only partly corresponds to the initial one given
by Mealy.

DEFINITION (Transition systems). A transition system (TS) is a structure A =

(X,Q, Y, δ, β) where X is the input alphabet, Q is the set of states, Y is the output
alphabet. δ : Q × X → Q is the state transition function and β : Q → Y the output
function.

The intuitive interpretation is the following: The system is at any moment t in time in
a state q ∈ Q and receives an input character x ∈ X that determines the evolution of the
system in a state δ(q, x) and the output of a character β(q).

Let in the following the set X∗ be the set of all finite sequences of symbols from X

including Λ the empty string formed with 0 characters as well. X∗ is a semigrup with
unity raported to the concatenation operation, the concatenation being associative and
having as neutral element Λ. We can extend than δ : Q×X∗ → Q applying repeatedly:

δ(q, λ) = q,

δ(q, x′x”) = δ(δ(q, x′), x”).

To every state q of the TS we can associate the way it prroduces output depending on
input. Let this be the function Mq : X∗ → Y where Mq(x) = λ(q, x) and λ(q, x) =
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β(δ(q, x)). Evidently the behavior of the TS is identic for two states having equal input-
output functions, that is Mq1(x) = Mq2(x) for any input string x. If our interest lies in
the external behavior of the transition system we can replace the Mq functions with the
reduced set of distinct Mq functions constructing as such a new TS having only those
states that have distinct Mq functions. Let than the ST in the state q, having the input-
output function f and q′ an accesible state meaning that there exists x ∈ X∗ such that
δ(q, x) = q′. Than q′ has the function:

M ′q(x
′) = Mδ(q, x)(x′) = λ(δ(q, x), x′) = λ(q, xx′) = f(xx′) = fLx(x′),

where Lx : X∗ → X∗ is “left multiplication with x” function. Lx is not an homo-
morfism. In the reduced form of the TS we will replace any accesible state q with the
input-output function fLx and the reduced form will have a finite number of states if
there exists a finit number of distinct functions fLx (such that an infinite number of
strings x ∈ X∗ should correspond to the same flx). Than our interest will be reduced to
a TS of the form:

A(f) = (X,Q, Y, δf , βf),

where is the function that maps X∗ in Y and:

Qf = {g : X∗ → Y |g = fLx for x ∈ X∗},
δf (g, x) = gLx,

βf (g) = g(Λ).

We will specially refer to the case in which f is such that Qf is a finite set. We will
refer in the following to the TS by its f function.

DEFINITION. For any TS A(f) the associated semigroup fS is defined as being formed
by all the transformations of the set of states Qf inducted by input strings forA(f), that
is:

fS = {s : Qf → Qf |∃x ∈ X∗ such that s(q) = δ(q, x) for any q ∈ Q}.

DEFINITION (State homomorfisms). Being given two TS A1 = (X,Q1, Y, δ1, β1) and
A2 = (X,Q2, Y, δ2, β2) a homomorfisms of states fromA1 toA2 is a surjective function
φ : Q1 → Q2 such that for any q ∈ Q1 and x ∈ X there is:

φ(δ1(q, x)) = δ2(φ(q), x).

We will denoteA1 6φ A2. Two TS are isomorfous if φ is bijective.

DEFINITION (Cascade product). Being given two TSA1 = (X,Q1, Z, δ1, β1) andA2 =

(Z,Q2, Y, δ2, β2) we define their cascade product as a transition system A1 ◦ A2 =
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(X,Q, Y, δ, β) such that, Q = Q1 × Q2 and for all (q1, q2), (q′1, q
′
2) ∈ Q, x ∈ x and

y ∈ Y there is:

δ((q1, q2), x) = (q′1, q
′
2) and

β((q1, q2)) = y,

if and only if there exists z ∈ Z such that :

δ1(q1, x) = q′1 and

β1(q1) = z,

δ2(q2, z) = q′2 and

β2(q2) = y.

The definition can be evidently extended to any finite number of TS where the output
alphabet of a givenAi corresponds to the input alphabet ofAi+1.

To be able to present the decomnposition theorems we will have to introduce first
some particular cases of transition systems.

DEFINITION (Reset automaton). A transition system that transfers any state in the same
new state is named reset automaton. The reset state r is than a right zero the semigroup
associated to the automaton, that is, if S is the associated semigroup and "." the operation,
than sr = r for any s ∈ S.

DEFINITION (Permutation automaton). A transition system in which any state is trans-
fered in a single state is named permutation automaton. The semigroup associated to a
permutation automaton is a group.

A transition system that has a reset or permutation type mapping is named
permutation-reset automaton. Such an automaton will have an associated semigroup re-
sulted from the union of groupG and a set of resets R.

Theorem 1 (Krohn Rhodes decomposition theorem). Any determinist transtion system
A is backwards homomorfous to a cascade product of permutation and reset automata.

We will not give the proof of this classical result, more forms of it can be found in
(Arbib, 1968b).

Additional information to this theorem can be found in (Arbib, 1968b; Eilenberg,
1976; Ginzburg, 1968; Maler, Pnueli, 1990).

Let us follow with the presentation of the probabilistic case.
As in the case with the TS the definition of probabilistic transtion system (PTS) is not

new and can be found in different papers under different names (e.g., Arbib, 1968a; Paz,
1970; Starke, 1972).

DEFINITION (Probabilistic transition systems). A probabilistic transition system (PTS)
is a structure A = (X,Q, Y, p) where X is the input alphabet, Q the set of states, Y the
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output alphabet and p : Q×X ×Q× Y → [0, 1] the input-output transition probability
function, satisfying for any q ∈ Q, x ∈ X , the condition:∑

(q′,y)∈Q×Y
p(q, x, q′, y) = 1.

The intuitive sense of the definition is the following: given A in a state q, the sys-
tem reads the input symbol x, passes in a new state q′ and writes the output symbol y
with a probability p(q, x, q′, y). Diverse similar known models can be considered as de-
generate variants of PTS, where either X or Q are single element sets, or |Y | 6 |Q| or
other additional restrictions are imposed to the form of p. Let us mention Markov chains,
deterministic transition systems and Bernoulli processes as such examples.

As in the determinist case, one of the important concepts related to probabilistic tran-
sition systems are homomorfisms. A system A1 is homomorfous with A2 if, in some
conditions,A1 aproximatesA1.

DEFINITION (Homomorfisms of PTS). Given two PTS A1 = (X,Q1, Y, p1) and A2 =

(X,Q2, Y, p2) a homomorfism (of states) from A1 to A2 is a surjective function φ :

Q1 → Q2 such that ∀(q2, x, q′2, y) ∈ Q2 ×X ×Q2 × Y and ∀q1 ∈ φ−1(q2) there is

p(q2, x, q
′
2, y) =

∑
q′1∈φ−1(q′2)

p1(q1, x, q
′
1, y).

We will note as in the determinist case A1 6φ A2. Two systems are isomorfous if φ
is bijective.

This definition can be intuitively explicited by the fapt that A2 can be constructed by
the partitioning of Q2 in blocks such that the transition probabilities between blocks are
consistent with the transition probabilities between elements. It can than be observed that
in the case of 0 − 1 probabilities this corresponds to the familiar concept of automata
homomorfism, that is φ(δ(q, x)) = δ′(φ(q), x). It can be proven that that the PTS homor-
fism is transitive, that is, A2 6φ A1 and A3 6ψ A2 lead to A3 6θ A1 where θ = ψφ.

Two PTS can be conected such that the input of the second PTS is the output of the
first PTS.

DEFINITION (Cascade product). Given two PTS A1 = (X,Q1, Z, p1) and A2 =

(Z,Q2, Y, p2), their cascade product isA1 ◦A2 = (X,Q, Y, p) whereQ = Q1×Q2 and
for any (q1, q2), (q′1, q

′
2) ∈ Q, x ∈ X and y ∈ Y :

p((q1, q2), x, (q′1, q
′
2, y) =

∑
z∈Z

p1(q1, x, q
′
1, z) · p2(q2, z, q

′
2, y).

This definition can be extended to the family A1, . . .Ak of PTS, such that the input
aphabet of Ai+1 should be the output alphabet of Ai. It can in fact also be reduced to
the familiat notion of cascade product between deterministic systems ifZ = X ×Q1 and
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Y = Q2. In that case we can use the known result that specifies that any finite automaton
can be decomposed in simpler parts.

DEFINITION (Probability of a transformation). Given a set Q = {q1, . . . , qn}, we will
note byM = QQ the set of all nn transformations overQ.M with the composition oper-
ation forms a semigroup. For any Markov chain1 A = ({x∗}, Q,Q, p) we will consider
π : M → [0, 1] where:

π(m) =
n∏
i=1

p(qi,m(qi)),

PROPOSITION 1.
∑
m∈M

π(m) = 1.

PROPOSITION 2. Any Markov chainA = ({x∗}, Q,Q, p) having |Q| = n is isomorfous
with a cascade product between a Bernoulli generator with at most nn outputs and a
determinist finite automaton with n states.

To use well this decomposition and to connect it with the Krohn-Rhodes decomposi-
tion theorem we will need a weak variant of the following proposition (Maler, 1995):

PROPOSITION 3. Given the PTS B = (X,Q,Z, p), A1 = (Z,R, Y, p1) and A2 =

(Z, S, Y, p2). If A2 6 A1 than B ◦ A2 6 B ◦ A1.

COROLLARY 1. Any Markov chain is the backwards image through an homomorfism
of a cascade product between a Bernoulli process and a string of deterministic reset and
permutation automata.

COROLLARY 2. Any non-deterministic automata is the backwards image through an ho-
momorfism of a cascade product between a non-deterministic transition system with a
single state and a deterministic automata.

Let us return now to the probabilistic Büchi automata.

Theorem 2. For any PBA there exists a PTS with binary output that is equivalent to it.

Proof. Let ABP = ((Q, q0, P, F ) be a probabilistic Büchi automaton whereQ is the set
of states, q0 the start (or initial) state, P the probability function defined as P : Q×A×
Q→ [0, 1] and F the set of final states. The function P will have the property:

∀q ∈ Q, ∀x ∈ A,
∑
q′∈Q

P (q, x, q′) = 1.

1We omit the input (one single element) and the output of the system (equal with the state) from the
definition of p.
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We define than a PTS A = (A,Q, 0, 1, p) where A is the input alphabet, Q the space
of states, {0, 1} the output alphabet (such a TS is named a binary output TS). p : Q ×
A × Q × {0, 1} → [0, 1] is the input/output transition probability function, defined as
follows:
∀q, q′ ∈ Q, x ∈ A if q′ ∈ F than p(q, x, q′, 1) = P (q, x, q′) and p(q, x, q′, 0) = 0

otherwise p(q, x, q′, 0) = P (q, x, q′) and p(q, x, q′, 1) = 0

The verification of the fact that the function p satisfies for all q ∈ Q, x ∈ A, the
condition:∑

(q′,y)∈Q×{0,1}
p(q, x, q′, y) = 1

is immediate and results from the way the PTS is defined and from the similar condition
that exists at PBAs.

As usually two automata are equivalent if they recognise the same language.
To prove that the two systems are equivalent we will have to define the acceptance

method of the PTS. We will as such say that a ∈ A∗ is accepted by the PTS with the
probability p if after the input of a the output will have an infinity of appearances of 1.
The acceptance probability is p = max

m∈M
π(m).

Proving the equivalence is than narrowed to the equality L(ABP ) = L(A).
Let (a, p) ∈ L(ABP ) where a ∈ A∗ and p ∈ [0, 1]. Than according to the definition

of the language recognised by the PBA we will have:

p(a) = max
q∈InQ

ABP
(a)∩F

p.

In the upper definition p represents the second component of the pair from InABP (u)

for which the maximum is achieved.
From the form of p(a) it can be seen that this non-nil only if there exists a final state

in the infinity set InQABP (a). By construction if such a state exists on the output of A
there will be a 1 on the output for every occurence of the respective final state, that is an
infinity of 1s. More, the formula below is than true:

p(a) = max
q∈InQ

ABP
(a)∩F

p = max
m∈M

π(m) = p.

The proof of the reverse implication is based on the finiteness of the set F of the
PBA. Let (a, p) ∈ L(A) than for the input of a on the output we will get an infinity of
appearances of 1 with the probability p. Than, according to the construction there exists
an evolution of the PBA with a probability p on which final states are reached an infinity
of times. We know that F ⊆ Q and Q is finite, from where it results that F is finite, so
there ∃qf ∈ F such that qf ∈ InQABP (a) ∩ F . This leads to the fact that a is recognised
by the PBA. The recognition probability is equal with the acceptance probability of the
A being the probability of the evolution on which the infinity of appearances of 1 occurs.
Observation. The converse of the theorem is not true.
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Theorem 3. Any PBA is the backwards image of a cascade product between a Bernoulli
generator and a deterministic Büchi automaton through an homomorfism.

Proof. Let us consider the PTS equivalent with a given PBA (according to Theorem 2).
Than according to the decomposition theorem (the remark to Proposition 2) this is the
backwards image through an homomorfism of a cascade product between a Bernoulli
generator and a deterministic automaton. Given the necesity of the evolution of the prod-
uct over infinite objects, the deterministic automaton will have to be equipped with the
Büchi acceptance method. This leads to the theorem.
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Tikimybini ↪u automat ↪u dekompozicijos teoremos neribotiems
objektams

Robert D. REISZ

Apibrežtas tikimybinis Buchi automatas PBA, pasinaudojant specialia tikimybine kalba.

↪Irodyta PBA liečianti teorema, panaši ↪i klasikin ↪e Krohn-Rhodes teorem ↪a.


