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Abstract. The problem multialternative recognition of non­
stationary processes on the basis of dynamic models is investigated 
in the paper. The algorithms of pointwise and group classifications 
are compared. Clustering algorithms based on nonlinear mapping 
of the segments of random processes onto the plain are used to 
construct the classifiers. 
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Introduction. Receiving, information processing and 
development of quided effects is basic in the work of complex 
objects control systems, in particular of automatic and au­
tomated management and control systems. During informa­
tion processing a control system has to solve such problems as 
detection, coordinate and parameter estimation, smoothing, 
prediction, recognition, moment determination of change in 
properties and other. The problem of noise, vibrational, ra­
dio and hydrolocational signal recognition arises in technical 
and medical diagnostics, during the quality control of systems 
according to .the dynamic data under the control of techno-
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logical processes, while recognizing moving dynamic objects 
and in a number of other problems. The recognition of sta­
tionary random processes based on a description of classes 
by dynamic models in the shape of differential and difference 
stochastic equations was firstly considered in the papers of 
Shpilewski (1971), Petrov and Shpilewski (1974). Further 
in connection with the development of digital computers li­
near autoregression models AR gained a wide dissemination 
in practice (Shpilewski, 1980). The proposed approach to the 
recognition of stationary random processes appeared to be 
extremely fruitful. It allowed to obtain the constructive met­
hods of recognition of random processes with a continuous and 
discrete time, to work out dynamic classification algorithms in 
the recognition of sequences in a current time, in the recog­
nition under noise circumstances and partial observation. In 
the paper by Krutowski and Shpilewski (1975) on the basis 
of the approach proposed the problem of a sequential multial­
ternative recognition, detection and moment estimation of a 
change in properties of the combined process has been solved. 

Training algorithms in the recognition under the condi­
tions of an apriori indetermination have been developed. The 
dependence of a recognition error on the length of training 
and recognitable stationary sequences has been investigated 
(Shpilewski, 1986). 

An urgent problem is the recognition of non-stationary 
random processes. One of the approaches consists of the use 
of a piecewise-stationary approximation (Atamukas and Shpi­
lewski, 1979) of non-stationary processes by the stationary 
dynamic models, in particular, by AR models. The approach 
under consideration is reduced to a separation of the non­
stationary process to subclasses of stationary segments and 
a description of each subclass by a stationary model. This 
approach is also used for the recognition of non-stationary 
processes, presenting by itself a mixture of the finite number 
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of stationary processes. Cluster analysis is used for the con­
struction of subclasses. 

The method based on the construction of subclasses al­
lows as to obtain a constructive description of subclasses of 
non-stational'y processes and construct decision rules for the 
classifiers. Under this approach general number of classes es­
sentially increases and a necessity arises for the recognition of 
segments of the sequence differing in length. The use of recur­
rent equations in the classifiers for sufficient statistics which 
allow to obtain a pointwise processing of the sequences and 
realize the recognizing device in the shape of a multichanuel 
conveyer operator is non-advisable, i.e., computer time, neces­
sary for the recognition of a sequence considerably increases. 
A necessity arises to develop group classification algorithms, 
allowing to reduce processing and decision making time. 

2. Statement of the problem. Let in the measur­
able space ([2, F) a random process Yt, t ~ 0 with a con­
tinuous time yt = {Yr,O :::;; r :::;; t} or with a discrete time 
Yn = {Yl,YZ, ... ,Yn} be defined. Let {Fd, t ~ 0 be a non­
decreasing set of a-algebras F t a{ys, s :::;; t} and 
F = a{UFd, with respect to which Ys, s :::;; t is measur­
able. With respect to the observed process Yt M alternative 
hypotheses were introduced 

(1) 

making up the whole group of events, i.e., if Pm is an apriori 
probability of the hypothesis hM, then 

M 

Pm > 0, L Pm = 1. (2) 
m=l 

M probability measures p(m), m = 1, Jyf are connected 
with the hypotheses, defined in ([2, F) and the measure 
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P = ~Pmp(m). Let Pt, pt(m) be a contraction of the mea­

sures P and pt(m) on a-algebras Ft. Each random process yt 
of class m induces the measures flm(A t ) in the space of real­
izations 

flm(At) = p(m) {w: yt E Ad. 

Everywhere further the dependence of the measure p(m) 
on index m may be both functional and parametric. In the 
latter case probability characteristics depend on the vector of 
the parameters em. 

The problem of multialte~native classification of the ob­
served realization 

(3) 

in the case of a continuous time or 

(4) 

in the case of a discrete time consists in a partitioning of the 
space of Yn realizations (respectively n) to non-overlapping 
sets Am (or the space n to w m ), m = 1,2, ... , IV[ from the 
minimum condition of probability error 

M 

minPer(t) = min L p(m) {w : Y~ E Am(t), h m } 
m=l 

for the decision rule: the observed realization y~ relates to 
class hk if 

3. General solution. The construction of abstract sets 
Ak(t) in the space of realizations or Wk in n may be obtained 
using decision rules 
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8(h,y~) 

and the theory of statistical solutions (Wald, 1946). 
The randomized decision rule 8(h, y~) for each y~ defines 

the probability 8(hj, y~) in each of the possible classes hj 

M 

L 8(hj, y~) = 1. 
i=1 

For the loss function lij = l( hi, h j) mean losses equal to 

M 

L l(hi' hj) 8(hj, yn, 
j=1 

and the risk Rs( i) is determined as a mean value 

M 
Rs(i) = J ~ l(hi' hj) 8(hj, y~) Pi(dw). (5) 

{} )=1 

The function Rs(t) defines M risk values. In this case 
there arises a problem to find out decision rule (5), minimiz­
ing the maximal risk value. We come to the minimax criteria 
of classification. Under Bayesian approach when all apriori 
probabilities· (2) of classes hI, h2 , ••• , hM' are known, we cal­
culate an average risk 

M M 

Rs = ~ Pi J~ l(hi,hj)8(hj,y~)Pi(dw). (6) 
1=1 {} )=1 

An optimal decision rule is defined from the average risk 
Rs minimum condition. 
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It isabvious that the average risk will be minimal, if 
decision rules are selected from the minimum condition of the 
aposteriori risk for each realization of observed process (3). 

(7) 

introduce an aposteriori probability of the hypothesis hi 
by the relation 

dPi 
Pi(t) = dP (w )Pi. 

Then the aposteriori risk is equal to 

M 

R'Y(Y~) = L Z(hi' '(Y~)) Pi(t). 
i=l 

(8) 

Hence, it follows that the aposteriori risk will be minimal, 
if the observed realization Y~ is refered to such a class hk' for 
which 

M M 

hk : L ZikPi(t) ~ L lijPi(t), j = 1, M. (9) 
i=l i=l 

The average risk criterion of minimum is a sufficiently 
general criterion. The criterion of ideal observation, the cri­
terion of weighted combination and the criterion of Neyman­
Pearson are partial cases, e.g. in the detection problem (recog­
nition of two classes). These criteria are obtained from the 
average risk general criterion of minimum (6) for different loss 
functions. For an ordinary loss function of the shape 

Z .. _ {I, 
ZJ - 0, 

i i= j, 
z =), 

the average risk criterion minimizes the complete probability 
of misclassification. The decision rule will take the shape 

hk : Pk(t) = m~x Pi(t). (10) 
Z 
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The considered general mathematical statement of a pro­
cess recognition problem and the standart solution within the 
frames of the theory of statistical solutions extremely simplify 
the problem and conceal those difficulties which arise while 
solving practicular problems. In order to build the construc­
tive methods for the recognition of real processes two methods 
have an essential value: 

- in what shape the measures Pi are set for the descrip­
tion of real processes; 

- what degree of indeterminacy is in setting of these mea­
sures. 

4. MathematicaJ models of random processes. 
The methods of recognition of random signals based on the 
use of stochastic dynamic models for the description of pro­
cesses of the classes are considered in the given paper. In' 
the case of a continuous time the processes of class hm ~e 

described by the stochastic differential equations 

where Am(w, y, t) is an I-dimensional random vector func­
tion of timet, observations y = y~, random event w, B(y, t) 
is the matrix of dimensionality functions [1 xl], Wt is an 
I-dimensional standart Wiener process. 

In the case of a discrete time the processes of class hm 

are described by the recurrent stochastic equations 

where Am (y:=f, n) is the I-dimensional random function, 

Bm (y:=i, n) is the matrix of dimensionality functions 
[l x n, Vi(n) is a sequence of independent normally distributed 
random variables. 
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In particular, for the description of classes of stationary 
processes, linear autoregression models are used in the shape 

p 

hm : Yn = a~m) + L a~m)Yn_r + bm v~m), m = 1, M. (13) 
i=l 

Parameters of the dynamic models are defined in the 
learning regime by the realizations of random processes of 
known classes. For ·this purpose the methods of the least 
squares maximal likelihood, Bayes or Yule-Walker equations 
are used. 

5. Classification of processes with a continuous 
time. The main equations for the statistics used for the recog­
nition of classes of the processes, described by models (11), we 
shall get on the basis of the following theorem. 

Theorem. Let an observed process Yt be the Ito process 
and for each hypothesis hm ' be defined by stochastic differen­
tial equation (11), the coefficients of which satisfy usual lim­
itations, accepted in the optimal nonlinear filtration theory 
(Liptser, Shiryaev, 1974, Theorem 8.1). Then the aposteriori 
probability of class Pm (t) satisfies the differential equation 

dpm(t) = Pm(t)[Am(t) - A(t)]* (BB*)-l [dYt - A(t)dt] (14) 

with the initial conditions 

where Ai(t), A(t) are determined by the relation 

Am(t) = E[Am( W, y, t)/y~, hi], 
M 

A(t) = L Ai(t)pi(t). 
i=l 
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We get the proof of the theorem from a general equa­
tion of nonlinear filtration. We shall get the equations for 
the relation of aposteriori probabilities Vij( t) and the likeli­
hood relation Aij(t) = ~Vij(t) using Ito change of variables 
formula in the shape 

with the initial conditions 

It is possible to obtain in a similar way the differential 
equations for a likelihood relation logarithm, for the likelihood 
function and other statistics, used for process recognition. 

The sufficient statistics Pm(t), Vij(t) are determined as 
a result of solution of differential equations (14), (15), in this 
connection we face an essential difficulty implied in the calcu­
lation of an aposteriori mathematical expectation Am(t). In 
partial cases it is possible to write out evident expressions for 
the calculation of Am. If the random function Am ( w, y, t) in 
(11) is defined as a function of an unobserved component Xt 
in the shape Am(w,y,t) = Am(Xt,Yt,t), then the problem is 
reduced to the evaluation of the aposteriori distribution Xt. It 
is possible to get a constructive solution when the unobserved 
component Xt enters linearly (11) and is reduced to the cal­
culation of the aposteriori mathematical expectation, i.e., to 
the filtration problem. 

6. Pointwise classification in the recognition of 
Markov sequences. Consider M classes of Markov processes 
with a transient probability density of observations Yn of the 
shape 

(16) 
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and the probability distribution density of the initial 
vector Y~ 

(17) 

We shall get the solution of Markov sequences recognition 
problem (16), (17) on the basis of recuITe~t equations for the 
aposteriori probabilities of classes in the shape 

hm : Pm(n) = ~m(Yn/Y:=nPm(n -1) , m = I,M, (18) 

E h(Yn/y:=i)Pi(n - 1) 
i=l 

with the initial conditions 

( ) _ Pm fm(Y~) 
Pm P - f(Y~) . 

For the likelihood function Li( n) the recurrent equations 
follow from (18) 

with the initial conditions 

Obviously processes (12) an Markov with a transient pro­
bability density 

(20) 

Consequently, we shall get the current or pointwise classi­
fication of process (12), substituting density (20) to recurrent 
equations (18) or (19). 



A.-M.Montvilas et al. 87 

In the case of Markov processes defined by autoregression 
equations (13), the likelihood function satisfies the recurrent 
equation 

1 
Lm(n) = VZ; (21) 

27rbm 

x exp { -(Yn - a~m) - ~ a~m)Yn_r)' /(2b;')} Im(n - 1). 

Talking into consideration the normality of transient pro­
bability density in (13) for the likelihood function logarithm, 
we get the recurrent equation 

p 

lm(n) = lm(n -1) - (Yn-a~m) - L a~m)Yn_r)2 
r=l 

1 
/(2b~) -In bm - 2" In 27r 

with the initial conditions 

lm(P) = Infm(Y~). 

(22) 

Decision rules (9), (10) and the recurrent equations for 
sufficient statistics (18), (19), (21), (22) allow us to obtain 
dynamic classification algorithms of stationary processes in a 
current time. 

7. Group classification in the recognition of non­
stationary sequences. Consider some constructive approac­
hes to the description of non-stationary processes on the basis 
of stationary models (13). 

Let us call the stationary process Yn, 0 ~ n ~ N a 
piecewise-stationary, if its transient probability distribution 
density is piecewise-constant and of the shape 

fm1 (Yn!y:=n if 0 ~ n ~ tt, 

f(Yn/y:=f,n) = f m2(Yn/y:=n if tl ~ n ~ t2, (23) 
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where mi takes the value from the set 1, K m, Km is the num­
ber of subclasses hm,k of class h m. For transient probabili­
ties f m; (Ynl y:=n the conditions of stationarity of their corr~­
sponding processes are accomplished, the number of switching 
points ti equals to f-l - 1, f-l ~ Nand ti - ti-l ~ T, i = 1, f-l. 
The choice T ensures the set length of stationary segments. 

Let us also consider the class of locally-stationary pro­
cesses, possessing such a property that the segments of these 
processes considered in small intervals of length T can be cer­
tainly considered as the realizations of stationary processes. 

The approach under consideration aimed at the recog­
nition of piecewise-stationary and locally-stationary process 
consists of: 

- partitioning of non-stationary realizations of class hm 

into the segments of stationary observations; 
- construction of subclasses hm k of the stationary se-, 

quences Yn for each class hm; 
- description of subclasses hm,k by AR models which are 

standarts of these classes; 
- classification of stationary segments of the observed re­

alization; 
- recognition of a non-stationary process realization. 
For the partitioning of a non-stationary realization into 

stationary segments the aposteriori or sequential methods and 
segmentation algorithms are, used, based on a detection of a 
change in properties of piecewise-stationary processes or a par­
titioning of locally-stationary sequen~es into stationary seg­
ments. The construction of subclasses of stationary segments 
hm,k is equivalent to the clustering problem and is realized in 
the learning regime. It is possible to carry out the clustering 
both in the space of the stationary segments realization pro­
cesses and in the space of the parameters, calculated for each 
segment. 

The method, based on the construction of subclasses, al-
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lows us to obtain a constructive description of the classes of 
non-stationary processes and to construct the decision rules 
for group classifiers. Under this approach the number of clas­
ses significantly increases and a necessity for the recognition of 
realization segments of the d~termined length arises. The use 
of recurrent equations (22) for group classification as well as 
of those received on the basis of their expressions for sufficient 
statistics requires much time and is not advisable. 

From (22) we get the expression for the likelihood func­
tion logarithm of the realization Yn of the length T 

I = -Tlnb + ~lnIM(m)l- _1_(y-1)'M(m)(y1) 
m m 2 p 2b2 P P P 

m 

1 T P 2 
~ (- ~ (17.')- ) - 2b2 ~ Yn - ~ ar Yn-r , 

m n=p+1 r=l 

(24) 

where 

Expression (24) as well as recurrent equation (22) for 
Im( n) requires a pointwise calculation of the observed realiza­
tion by call the models of the class. For group classification 
algorithms let us transform (24) to the shape 

Im(n) = -TIn bm + ~ In IM~m) I - 2~2 (jj~)' M~m)(y~) 
m 

1 T 
_ -A' ~ (-n- p )( -n-p ), A 2b2 m ~ Yn Yn m, 

m 

(25) 

where the vector 

A - ( (m) (m) (m) 1) 
m - -ap , -ap _ 1 ' .•• - a1 , • 



90 ,Discriminant analysis of random processes 

Let us present the quadratic form 

Qm = (Y~)' M;m)(y~) 
in the shape 

Qm =A~SpAm. 

The matrix Sp is defined the help of the methods, pre-
sented in Box, Jenkins (1970). Denoting the matrix 

T 
E (y:-P)(y:-P), by Rp,-we get for (25) the expression 

n=p+l 

where 
Gp = Sp+Rp. 

The elements of the symmetric matrix Gp = {gif} of the size 
[p + l,p + 1] are equal to 

T-p 

gij = L Yn+i-l Yn+ j -1- (27) 
n=p+3-i-j 

The determinant IMp I may be expressed by means of parame­
ters of the AR model, using statistics (26) for the classification 
of segments of the realizations T' readings long. 

For the use of statistics in group classification algorithms 
it is advisable to select the mean value J.Lm- Substituting fin = 
Yn - J.Lm, we get 

gij = 

T-p 

L (Yn+i-l - J.Lm) (Yn+j-l - J.Lm) 
n=p+3-i-j 

T-p 

L Yn+i-1 Yn+j-l 
n=p+3-i-j 

T-p 

- Pm L (Yp+i-l + Yp+j-1) + P~D3-
n=p+3-i-j 

(28) 
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Having introduced the matrixes Dl = {dtj }, D2 
D3 = {dtj} 
with the elements 

T-p 

d}j = L Yn+i-l Yn+j-b 
n=p+3-i-j 

91 

{d'fj }, 

T-p (29) 
4j = L (Yn+i-l + Yn+j-l), 

n=p+3-i-j 

d~j = T - 2(p + 1) + i + j, 

we get the final expression for the statistics 

1 
1m = -Tlnbm + 2lnlMni 

- 2~2 [A~DIAm - J.LmA~D2Am + J.L~A!nD3Am]. 
m 

(30) 

It is convenient to use statistics 1m (30) for the realization 
of group classification at a large number of classes. After the 
calculation it is easy to determine the statistics: the likelihood 
function, the likelihood ratio logarithm 

the aposteriori probability of the class 

Pm(N) = 

The solution is made on the basis of decision rule (10). The 
use of expressions (30) allows us to significantly diminish com­
puter time. 
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8. Comparison of algorithms of pointwise and 
group classification. The dynamic classification algorithms 
which use recurrent equations for likelihood function loga­
rithm (22) or corresponding expressions (24), require a piece­
wise calculation of the observed realization by each cluster, 
i.e., expressions (24) are calculated consequently by realiza­
tion readings for each AR model. Group classification algo­
rithms also require the calculation of statistics (30) for each 
cluster, however entering in (30) the matrices D1 , D2 , D3 
do not depend on the cluster (class) and are calculated by 
observed realization (6) once in the process of its recognition. 
Since algorithms (24) and (30) use the identical statistics Im,k, 
their comparison may be carried out by the expenditures of 
computer time. In this connection it should be noted that the 
matrices D1 , D2 , D3 in expression (30) are symmetric 

dL = d~i' 1=1,2,3, i,j = 1,p+ 1, 

and the elements of the main diagonal and parallel to it may 
be calculated recurrently 

d~+l,i+l = d}j + Yp+l-jYp+l-j + YT-p+iYT-p+j" 

~+l,i+l = d~j + Yp+l-jYp+l-j + YT-p+iYT-p+j· 
(31) 

For the given AR order equal to p, the number of classes 
M and the length of the observed realization equal to T, the 
number of multiplication and division operations in current 
classification (24) is equal to 

yDl ~ (p + 2)MT, (32) 

and the group of classification (30) 

yD2 ~ (p + l)T + (p + l)p + 3(p + l)(p + 2)M + 3M. (33) 
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A similar number of compositions, substractions and sen­
dings is equal to 

GBI ~ [(p + 3)M + 2M]T, 

GB2 ~ [2(p + l)T + 2(p + l)p + 3(p + l)(p + 2)M + 4M], 

the number of indexes .., 

UHI ~pMT, 

U H2 ~ (2p + 3)(T + p) + p. 

From the given calculations it is obvious that for a large 
number of readings (T = 1000) group classification algorithms 
gain in time approximately M times. Equating to (32) and 
(33), it is possible to get the smallest number of readings Tmin, 

at which the number of multiplication and division operations 
both in current and group classifications in the same: 

T,. _ 3(p + 1 )(p + 2)M + (p + l)p + 3M 
mm- (p+2)M-(p+l) . 

9. Clustering in group classification of random 
sequences. The construction of subclasses of the stationary 
segments in group classification of non-stationary processes 
is carried out in the learning regime with the use of cluster­
ing algorithms. The main parameters of clustering algorithms 
are the following: the distance measure between the objects 
of a set and threshold constants defining the solution in the 
very clustering process. For the construction of clusters in the 
space of realizations the aposteriori probability of a cluster, 
the likelihood function, the likelihood ratio, the Itakura-Saito 
distance, ect. are used as distance measures. The Euclidean 
distance is usually used for clustering in the space of param­
eters. As a result of clustering an initial set of objects must 
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be divided into clusters and a standarl for each cluster must 
be chosen. For complex processes in the case of a great or­
der AR (Montvilas, 1987) it is necessary to build complex 
hypersurlaces for the construction of clusters. A constructive 
clustering method is the method when a nonlinear mapping 
of the signal onto the plane in the shape of a two-dimensional 
vector is used. Its essence is in the following. Each stationary 
segment Y:-T of the considered non-stationary process may 
be described by autoregression model (13) and presented by 
L = p + 2-dimensional vector with the characterizing each 
vector parameters of AR: m,b,ak(k = 1, ... p). Let us de­
note these vectors Xi, i = 1,2, ... ,R; where R is the number 
of stationary segments. We shall map the vectors Xi onto 
the plane by two-dimensional vectors Zi, i = 1,2, ... , R. The 
main requirement for mapping of L-dimensional vectors by 
2-dimensional vectors is to retain the inner structure of dis­
tances in the hyperspace between L-dimensional vectors after 
mapping them on two-dimensional vectors. This is achieved 
using the method of nonlinear mapping (Samrnom, 1969). 

In practical cases it is possible to realize the clustering 
not only after the receipt of all the information on a ran­
dom process (Montvilas, Tshyjov, 1989), but also in a current 
time after an additional inflow of information on S station­
ary segments of the random process under clustering, in this 
connection the expressions of nonlinear mapping transform 
respectively. 

Thus, let us have in L-dimensional space R + S vectors: 
Xi, i = 1, ... , R; xh j = R + 1, ... , R + S. R vectors are al-
ready mapped on 2-dimensional vectors Zi, i = 1, ... , R. We 
shall map on the plane the S vectors Zj, j = R+ 1, ... , R+ S. 
In the capacity of the initial conditions the vectors Zj, j = 
R + 1, ... , R + S, in a random way arrange themselves on 
the plane within the limits of R vector reflected values. Let 
us denote the distances between the vectors Xi and x j in L-
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dimensional space by dij, while by dfj on the plane, respec­
tively. In the case of absence some kind of the apriori infor­
mation on the investigated random process Euclidean metric 
is. used as a measure. After that the normalized mean value 
of errors in distances denoted by H is calculated. Besides for 
the solution of a nonlinear mapping problem it is necessary to 
change the location of the vectors Zj, j - R + 1, ... , R + S on 
the plane in such a way that the error H would be minimal. 
It is realized by the method of a steepest descent. After the 
n-th iteration the distance error will be 

1 R R+S 

H(n) = R R+S L L [dij - dij(n)F /dij (34) 
E E dr i=1 j=R+1 
. . R ) t=1)= +1 

in this connection 

2 

dij(n) = L [Zik - Zjk(n)]2, 
k=1 

(35) 

i = 1, R; j = R + 1, R + S. 

For n + 1-th iteration the coordinates of the mapped vec­
tors Z j will be 

where 

Zjq(n + 1) = zjq(n) - Fb..jq(n), 

j = R+ 1, ... ,R+S, q = 1,2; 
(36) 

(37) 

F-coefficient for the correction of coordinates is defined 
empirically, F = 0.35; 

8H =E R D·B 
8z)'q L d:l!· d7i· ' i=1 t) t) 

(38) 
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{)2H R 1 B2 D 
{)z~ = E L d~. d~. [D - d~. (1 + d~)l, (39) 

;q i=l ZJ ZJ ZJ ZJ 

where 

E = - R 2 , D = dij - dij' B = Zjq - Ziq. 
L: d~· 
i=l Z) 

It is possible to realize a sequential clustering of piece­
wise-stationary multiparametric random processes after the 
inflow of information on each current stationary segment of 
the random process. Then for nonlinear mapping the above 
presented expressions for S = 1 are used. 

It should be noted that with regard to the latter remark 
the clustering method, based on nonlinear mapping of the clas­
sified stationary segments onto the plane, may be successfully 
applied for a sequential detection of many changes in several 
unknown states of the dynamic systems, generating multipara­
metric random processes. In this connection in order to follow 
the changes, e.g. the states of the technological process and 
its recognition, it is very convenient to reproduce the state 
or" the process by a mark on the screen of PC and, having in 
mind the existence of particular states, to identify the current 
state, a deviation from it or a transfer to another state. 

The developed methods and clustering, piecewise and 
group classification algorithms are practically realized by a 
computer in the shape of a program . package and applied for 
the solution of practical problems. 

Conclusions 
1. The methods of dynamic recognition, based on the 

use of stochastic dynamic models for the description of classes 
allow us to obtain the algorithms of piecewise (current) clas­
sification and those of group classification of the sequences. 
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2. Piecewise classification algorithms allow us to develop 
the methods of sequential multialternative recognition and to 
construct a multichanuel recognizing device of conveyer type. 

3. For the recognition of non-stationary piecewise· or 
locally-stationary sequences it is advisable to use group clas­
sification algorithms, based on the construction of the sub­
classes of stationary segments of the recognizable sequence. 
The use of group classification algorithms allows us to reduce 
the recognition time for a large number of subclasses and a 
big length of recognizable segments. 

4. For the construction of subclasses and the choice of 
standarts it is advisable to use clustering methods, based on 
nonlinear mapping of the classified segments onto the plane, 
besides it is possible to use these methods for a sequential 
detection of many changes in several unknown properties of 
random processes. 
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