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Abstract. The aim of the article is to show a stochastic approach for both modelling and optimizing
the statistical agent belief in a probability model.
Two networks are defined: a decision network D of the agent belief state and a utility network

U, presenting the utility structure of the agent belief problem.
The agent belief is presented via the following three items (B,D,U), where B is a Bayesian

network, presenting the probability structure of the agent belief problem.
Two propagation algorithms inD and in U are also presented.
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1. Introduction

The present stage of statistical software development is creating a set of agents and their
coming to life in multiagent systems for statistical investigations. An approach for build-
ing a multiagent system for time series forecasting is presented in (Prat et al., 1994). Some
desirable characteristics of multiagent systems for statistical investigations are discussed
in (Noncheva and Stojanov, 1995).
The aim of our research work is to build an agent for statistical hypotheses testing.

This agent embodies statistical expertise and possesses intelligent behaviour. It is concep-
tualized by using concepts which are usually applied to humans. Its mental state consists
of components such as knowledge, belief, intention, and obligation.
The primary subject of this study is the agent belief in a probability model.
The necessity for defining the agent belief about the type of the probability distribu-

tion arises from the fact that the population distribution, which is background of many
models of mathematical statistics, is unknown. As a result of this insufficient knowledge
comes the indefiniteness of the appropriate method choice for statistical analysis, i.e., re-
sulting in indefiniteness at the choice of the best behaviour of the agent, which agent is
making the statistical analysis.
The agent belief is presented by a certainty threshold function. We say that the agent

believes in the probability model if the agent certainty is not smaller than a threshold
number that is known in advance.
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However, the agent certainty is an unobservable random variable.
The agent belief about the probability model (i.e., about the probability distribution)

must be based on the mechanism knowledge of the phenomenon under investigation. But
if the phenomenon under investigation is unknown, the agent can make its own choice
about the probability distribution after it has tested a Goodness-of-fit hypothesis. It is also
possible that the agent may ask the user for his opinion.
Consequently, the agent will make use of a pre-test and a post-test when making a

decision about the probabilitymodel. Usually, as a pre-test a statistical test about the form
of the probability distribution is used, and after that the user is asked about his opinion.
The results of those two tests are respectively 1−p, where p is the p-value of test statistic
and the user’s degree of certainty, represented as numbers in the interval [0, 1].
It is natural to consider decision rules, which have a monotonous form. For example,

the agent believes in normal population distribution, if the value of the variable, repre-
senting its certainty, is not smaller than the fixed in advance threshold value; otherwise
the agent rejects the assumption for normality.
It is natural to expect also that the high values of the pre-test results will lead to

lower requirements of the post-test results. That is, the received preliminary information
influences the decision rules about the agent belief. Decision rules in which post-test
decisions are functions of the concrete result from the pre-test, will be called weak rules.
Consequently, the problem for decision making about the agent belief is reduced to

find threshold values for observable results, which are optimal with respect to Bayes’
approach.

2. Modeling of the Agent Belief

LetT be a continuous random variable which has probability distribution in the setΩt =
[0, 1]. Let t ∈ Ωt be a possible value of T .
The random variableT is called agent certainty.
LetΩt be divisible by {Ak = [tk, tk+1], tk ∈ Ωt, tk+1 ∈ Ωt, k = 0, 1, . . . , n− 1},

i.e.,Ai ∩Aj = ∅ when i �= j and
∑n−1

k=0 Ak = Ωt.
Let δ be a categorical variable which can take on values from the set

D = {a0,a1, . . . ,an−1} .

We may define the random variableBel as a function of the random variableT in the
following manner:

Bel(T ) =

⎧⎪⎪⎨
⎪⎪⎩

a0, if t0 � T < t1,
a1, if t1 � T < t2,
. . .

an−1, if tn−1 � T < tn.

The random variableBel(T) is called the agent belief . The values a0,a1, . . . ,an−1,
which the random variable Bel can take on, are called agent belief states. The set D is
called a set of the possible states of the agent belief.
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Our objective is to determine the value of the function δ = Bel(T).
However, the agent certainty is an unobservable random variable.
We shall emphasize once again that the choice of the appropriate probability model

must be based above all on the understanding of the mechanism of the phenomenon under
examination. However, when the phenomenon is unknown, the agent – after having tested
statistical hypotheses – can make its own choice about the probability distribution. When
the agent makes a decision about the form of the probability distribution, it can ask the
user and make use of his expertise and intuition, too.
In accord with the results of the observations x 1,x 2, . . . ,xn we are to make a de-

cision δ = δ(x 1,x 2, . . . ,xn) ∈ D . The function δ(x 1,x 2, . . . ,xn), defined in the set
of possible results from the observations and accepting values in set D of the possible
states of agent belief is called a decision-making rule for agent belief state or – in short –
a decision rule.
We need to define a utility structure for the agent belief problem. A utility function is

called a function uj(t) which describes the utility of the result from the appropriation of
the state aj , j = 0, 1, . . . , n − 1 of the agent belief, when agent certainty is t . A linear
utility structure is used in (Noncheva, 1998). Gausian probability distribution functions
are appropriate for determining optimal decision rules about agent belief, too.
We will consider four cases that are frequently met in the statistical analysis. For all

of them we will define a decision rule for the agent belief in the probability model.

Case 1. Normality at an assumption for symmetry
Let us consider the agent belief about the normality of the population distribution.
Usually, as a pre-test is used Goodness-of-fit test and after that the user is asked about

his opinion. The results of those two tests are respectively 1−p, where p is the p-value of
test statistic and the user degree of certainty, represented as numbers in the interval [0, 1].
Sometimes, e.g., in regression analysis, the user is first asked if the population dis-

tribution is normal, then the model is build and as a final step the residuals from the
estimated regression model are tested for normality.
Let us mark the pre-test results with X 1 and the post-test results with X 2. Let us

further assume thatX 1 andX 2 are continuous random variables with probability distri-
bution inΩ1 = [0, 1] andΩ2 = [0, 1], respectively.
Let T be the agent certainty, i.e., a continuous random variable with a probability

distribution in the setΩt = [0, 1]; and it cannot be observed.
Let us assume that the relation between X 1, X 2 and T can be represented by their

joint density f (x1, x2, t).
Then the weak monotonous rules for making a decision are defined as follows:

δ(x 1,x 2) =

⎧⎨
⎩

a0, if X 1 < xc
1,

a1, if X 1 � xc
1, X 2 < xc

2(x1),
a2, if X 1 � xc

1, X 2 � xc
2(x1),

(1)

where aj , j = 0, 1, 2 are agent belief states, xc
1 and xc

2 are the threshold values forX 1

andX 2.
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Case 2. Symmetry
In order to form its belief about the symmetry of the probability distribution of the

population being investigated, the agent makes use of a statistical test for symmetry.
LetX = 1 − p , where p is the p-value of the statistics of the test for symmetry and

T be the agent certainty. ObviouslyX can be observed whileT cannot be observed. We
assume that X and T are continuous random variables and the relation between them
can be represented by their joint probability distribution function f (x, t).
The agent belief in symmetry depends on the threshold value tc, which is fixed in ad-

vance and known to the agent. For example tc = 0.95. If the certainty value T exceeds
the threshold value tc, then the agent is convinced in the symmetry of the population
distribution under study. Otherwise the agent is convinced in the asymmetry of the distri-
bution.
However, the random variable T is unobservable. Then the monotonous rules for

making a decision about the agent belief, based on the observable random variable X ,
will be defined as follows:

δ(x ) =

{
a0, if X < xc,
a1, if X � xc,

where the states a0 and a1 represent the agent belief in the symmetry and the asymmetry
of the distribution, and xc is the threshold value forX .

Case 3. A combined model
We are going to address the problem of formation of the agent belief in normality

of the continuous probability distribution of the population under investigation. For this
purpose a statistical test for symmetry, a statistical test for normality (pre-test for normal-
ity) and making an inquiry about the user opinion (post-test for normality) are used. The
results from these three tests are respectively 1−p1, 1−p2, where p1 and p2 are the p-
values of the statistics of the two tests, and the degree of the user’s certainty, represented
as a number in the interval [0, 1].
Let us designate with X 1 the observed result from the symmetry test, with X 2 – the

observed result from the pre-test for normality, with X 3 – the observed result from the
post-test for normality, and with T – the agent certainty of normality, which cannot be
observed.
Let us assume thatX 1,X 2,X 3 and T are continuous random variables with a joint

probability density function f(x1, x2, x3, t).
The rule for making a decision δ(x1, x2, x3) determines the state of the agent belief

for each possible realization (x1, x2, x3) of the random vector (X 1,X 2,X 3).
The monotonous weak rule for making a decision about agent belief in this case has

the form:

δ(x1, x2, x3) =

⎧⎪⎪⎨
⎪⎪⎩

a0, if X1 < xc
1, X2 ∈ [0, 1], X3 ∈ [0, 1],

a1, if X1 � xc
1, X2 < xc

2(x1), X3 ∈ [0, 1],
a2, if X1 � xc

1, X2 � xc
2(x1), X3 < xc

3(x1, x2),
a3, if X1 � xc

1, X2 � xc
2(x1), X3 � xc

3(x1, x2),
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where

• aj , j = 0, 1, 2, 3 are the following states of the agent belief:

a0 – agent rejects the assumption for the symmetry of the distribution, describing
the population under investigation;

a1 – agent rejects the assumption for normality of the distribution;

a2 – agent supposes (suspects) that the distribution of the population being
investigated is normal;

a3 – agent convinced that the distribution describing the population is normal.

• x c
1, x c

2, x c
3 are the threshold points forX 1,X 2 andX 3.

Case 4. A general model
In order to form its belief about the type of population distribution, the agent can start

with a statistical test for symmetry. In case when the hypothesis for symmetry is rejected,
then a hypothesis for suspicious observations can be tested. If the latter is rejected, data
transformation can be made.
If the hypothesis for suspicious observations cannot be rejected, the agent must ask the

user, if there are grounds of non-statistical nature for the sharply deviating observations
to be removed. The case in which the hypothesis for symmetry cannot be rejected, the
agent can continue with an examination for normality.
Usually a Goodness-of-fit test is used as a pre-test and after that the user opinion is

asked.
We shall represent the agent belief as a threshold function, which can take on one of

the five possible states aj , j = 0, 1, 2, 3, 4, where:

a0 – agent is certain that the distribution is asymmetric and there are no suspicious ob-
servations. It will offer a suitable data transformation;

a1 – agent is certain that the distribution is asymmetric and that the asymmetry is due to
suspicious observations. It will ask the user whether to remove them or not;

a2 – agent is certain that the distribution is asymmetric, but not normal. It will make use
of the assumption for symmetry in the statistical analysis;

a3 – agent is certain that the distribution is symmetric and it assumes that it is normal,
too. It will use only robust statistical tests;

a4 – agent is certain that the distribution is normal. It will use statistical tests, which are
sensitive to the assumption of normality, too.

Let us designate with X 1 the observed value 1 − p1, where p1 is p-value of the
statistics of the test for symmetry. Let us designate withX 2 the observed value 1 − p2,
where p2 is p-value of the statistics of the test for suspicious observations. Let X 3 be
the observed result from the pre-test for normality. Let X 4 be the observed result from



408 V. Noncheva

the post-test for normality. Let T be the agent certainty of normality of the distribution,
the value which cannot be observed.
Let us assume thatX 1,X 2,X 3,X 4 andT are continuous random variables.
Let us suppose that the connection between the measured results from the testsX 1,

X 2, X 3, X 4 and the variable T can be represented by the joint probability density
f (x1, x2, x3, x4, t).
The decision-making rule δ(x1, x2, x3, x4) determines for each possible realization

(x1, x2, x3, x4) of the random vector (X 1,X 2,X 3,X 4)which state aj , j = 0, 1, . . . , 4,
will be appropriated to the agent belief about the distribution of the population under
investigation.
The weak monotonous rules for making a decision about the agent belief δ(x1, x2, x3,

x4) will be defined as follows:

δ(x1, x2, x3, x4) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a0, if X 1 < xc
1, X 2 < xc

2(x1),
a1, if X 1 < xc

1, X 2 � xc
2(x1),

a2, if X 1 � xc
1, X 3 < xc

3(x1),
a3, if X 1 � xc

1, X 3 � xc
3(x1), X 4 < xc

4(x1, x3),
a4, if X 1 � xc

1, X 3 � xc
3(x1), X 4 � xc

4(x1, x3),

where aj , j = 0, 1, 2, 3, 4 are the states of the agent belief, xc
1, xc

2, xc
3, xc

4 are the threshold
values correspondingly forX 1,X 2,X 3 andX 4.

3. A Decision Network

Decision networks are graphic structures, that represent probability relations and infor-
mation flows (Shachter, 1986; Shachter, 1988).
A decision network consists of the following items:

• a set of basic operations;
• a probability structure;
• a utility structure;
• a decision rule;
• an optimal action, through which the expected utility is maximized.

DEFINITION 1. A decision network comprises of the following set of items: ((A, I),
(X,P ),A∗, u, δ). It is within this particular set where they are as shown below:

• (A, I) is recognized as a directed graph of basic operations, where
A = {Ai, i = 1, . . . , k} is the set of these basic operations, and
I = {Il,m = (Al, Am), l �= m, l = 1, . . . , k; m = 1, . . . , k} is the set of directed
information arcs;

• (X,P ) is a Bayesian network;
• A∗ is the decision set;
• u:X → R is the utility function, where R represents the real numbers set;
• δ: A → A∗ is the decision rule.
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Nodes:
Random variables
X – pre-test result
Y – post-test result
T – agent certainty
Operations:
A1 – statistical test
A2 – in formation required
from the user

A∗
i – optimal aagent belief state,
maximizing the excepted utility
U – utility structure

Fig. 1. Decision network for agent belief problem presented in Case 1.

Let us now postulate a definition of a decision network for the agent belief state.

DEFINITION 2. A decision network for the agent belief state is a decision network within
which we recognize the following parameters:

• A is a set of (pre- and post-) tests;
• A∗ is a set of the possible states of the agent belief;
• u:X → [01] is a utility function;
• δ: A → A∗ is a weak monotonous decision rule.

Fig. 1 is a graphic representation of the decision network, presenting the agent belief
problem in Case 1. The basic operation nodes Ai ∈ A, i = 1, 2, completing the tests,
are represented in the figure by squares, whereas the circles represent the random value
nodes. The dotted lines represent the information arcs, which arcs, in fact visualize the
information flow; whereas the continuous lines show the relations into the probability
model. The decision rule δ: A → A∗ is defined through (1).
Finally we are ready to postulate a propagation algorithm for decision network for

agent belief state. It is as shown below.

Algorithm 1. An algorithm determining agent belief state.
Input: A decision network for agent belief state.
Output: The optimal agent belief state.
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Steps:
1. Do the basic operations in the order specified by the decision network
information arcs.

2. Apply the decision rule to the basic operation results in order to get the optimal
agent belief state.

3. End.

4. A Utility Network

4.1. Event Tree

Let us assume thatX = {X 1,X 2, . . . ,Xn} is a set of continuous random variables.
In the present discussion we will examine a binary treelike structure with the follow-

ing properties:

• the nodes and the leaves are mapped events;
• the sample space Ω is mapped in the root;
• each node has 0 or 2 children;
• if nodes Aj and Ak are respectively left and right child of Ai node, then Aj maps
the event {Xj < xc

j}, whereas Ak maps complementary event {Xj � xc
j}. Thus,

we may designate the following equation: Aj = Ak = {Xj � xc
j}.

Obviously, the number of the elements in the above-listed structure is 2n + 1, the
number of leaves is n + 1, and, furthermore, each element’s children are ordered.
The event tree presents the conditions of the decision rules.

DEFINITION 3. The event tree is in canonical form if the indices of the random variables
– associated with the nodes – aligned from the tree root to the leaves and from left to
right, coincide with the first n natural numbers.

From now on we are to consider event trees in canonical form only.
The event trees, presenting the conditions of the decision rules from Case 1 and Case

4 are represented in Fig. 2 and in Fig. 3, respectively.

Ω

↙ ↘
A1 = {X1 < x1} A1 = {X1 � x1}

↙ ↘
A2 = {X2 < x2} A2 = {X2 � x2}

Fig. 2. Event tree, representing the decision rule condition in Case 1.
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Ω

↙ ↘
A1 ={X1<x1} A1 ={X1 �x1}

↙ ↘ ↙ ↘
A2 ={X2<x2} A2 ={X2 �x2} A3 ={X3<x3} A3 ={X3 �x3}

↙ ↘
A4 ={X4<x4} A4 ={X4 �x4}

Fig. 3. Event tree, representing the decision rule condition in Case 4.

4.2. Factors

DEFINITION 4. The path that goes from the first level to a leaf in the event tree is called
a factor.

It is obvious that factors’ number in the event tree is n + 1.
We must bear in mind that we are to interpret the factor as events simultaneously

occurring, i.e., as an intersection of the factor’s events.
LetF = {Fi, i = 1, 2, . . . , n+1} be the set of the factors in the event tree. It presents

the decision rule conditions (see (1)).
For convenience’s sake we are to number the factors in event tree from left to right.

Further on, we will associate a utility function ui, i = 1, 2, . . . , n + 1, with each factor,
which is to say that each leaf from the event tree will be presumably associated with an
utility node. Therefore, a set of utility nodes is associated with a set of factors in the event
tree. Consequently, a set of factors, as well as, a set of utility functions is associated with
the event tree.
In the light of the ideas, presented in (Shoham, 1997a) and (Shoham, 1997b), we may

define a new data structure.

DEFINITION 5. The pair (F ,U ), whereF is the set of factors andU is the set of utility
nodes – both associated with event tree – is called a utility network.

Let us note that to calculate the expected utility we also need to know the probability
structure of the random variables setX = {X 1,X 2, . . . ,X n}.
Let us now define the following operations.
The ψ(Fi) = ψ(Ai) operation results in a list of random variables associated with the

factor, which factor is further on associated withAi leaf.
The ε(Ai) operation results in the index of the element with the greatest index from

the random variables list, associated with the factor, which factor is further on associated
withAi leaf.
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The U(Ai) operation results in the utility function, associated with Ai leaf.
The π(Ai) operation results inAi node’s parent.
Consider the following example.
Let us assume that the factor F2 = {X1 � x1}, {X2 < x2} is associated with theA2

leaf (see Fig. 2), then ψ(A2) = X1, X2, ε(A2) = 2.

4.3. Algorithm

We are now ready to present a propagation algorithm for generation of equations, whose
roots are the optimal values xc

i in the set of factors in the event tree.

Algorithm 2. An algorithm for generating symbolic integral equations.
Input:

• a utility network, associated with the event tree;
• A Bayesian network.
Output: n symbolic integral equations.
Initialization: Each Ai leaf in the event tree is associated with two symbol variables

as follows:

Ai.head := U(Ai),

Ai.tail := NIL.

Steps:
1. Find (Ai, Ai) element with the greatest index i from the set of paired leaves, i.e.,
the leaves having the maximum level number in the event tree.

2. Find ψ(Ai) – the list of the random variables associated with Ai leaf, then find
i = ε(Ai).

3. Find the left hand of the equation:

left := E{[Ai.head(T ) −Ai.head(T )]/ψ(Ai)}+Ai.tail−Ai.tail

4. Generate the equation:

left= 0

5. Find Ak = π(Ai), which is the paired leaves parent (Ai, Ai). If it turns to be the
tree’s root go to Step 9. Otherwise designateA0

i = [xc
i ; 1] and find the random

variables list ψ(Ak) = ψ(Ai)\X i.
6. If π(Ai) = Ak then accept Ak.head := Ai.head,

Ak.tail :=

∫

A
0

i

{left}.fi(x i/ψ(Ak))dx i+Ai.tail,
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else acceptAk.head := Ai.head,

Ak.tail :=

∫

A
0
i

{left}.fi(x i/ψ(Ak))dx i +Ai.tail

7. Remove Ai and Ai leaves.
Hence, we have articulated an equation for xc

i and a new utility network.
8. Repeat the steps above beginning with Step 1.
9. End.
In the algorithm described above, the := sign has been used to designate the operation

for value acceptance of a symbolic variable; whereas the = sign has been used to note
the same operation, but for a numerical variable. The concatenation operation was not
explicitly shown. For clarity’s sake the symbolic strings in the concatenation operation
are underlined; whereas the symbolic variables are in bold.

4.4. Fundamental Theorem

Let us consider an arbitrary event tree with n+1 leaves. Let us bound the expected utility
step-by-step, applying the following operations for each step k, k = 1, 2, . . . , n.
We are to consider a paired leaves and the utility nodes, associated with them. Find

an upper bound of the expected utility. Remove the paired leaves, and then associate this
upper bound with their parent. However, our aim is not to find an upper bound of the
expected utility, but to generate optimal threshold values equations. To find them it is
enough to preserve the needed information in two symbolic variables and to associate
them with the leave parent. What’s more, the information in these two variables is suffi-
cient to restore the upper bound of the expected utility in every step.
First, let us associate two symbolic variables Ak.head and Ak.tail, within which

the needed information for generating an equation will be preserved, with each leafAk,
k = 1, . . . , n + 1.
Let this event tree be initialized in the following manner:

• Ak.head = uk(t), where uk(t) is the utility function, associated withAk leaf,
• Ak.tail = φ, where φ is the empty string.

Then, the following theorem holds:

Theorem. An arbitrary utility network with an initialized event tree is considered. Let
Aj−1 = π(Aj) and Aj−1 = π(Ai), and Algorithm 2 is applied.

Then the threshold value xc
j−1 of the random variable, associated with the paired

nodes (Aj−1, Aj−1), satisfies the equation:

E
{

[Aj−1.head(T ) −Aj−1.head(T )]/ψ(Aj−1)
}

+ Aj−1.tail−Aj−1.tail = 0,
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where

Aj−1.head = Aj .head,

Aj−1.tail =

∫

A0
j

{
E
{
[Aj .head(T ) −Aj .head(T )]/ψ(Aj)

}

+Aj .tail−Aj .tail

}
fj (xj/ψ(Aj−1)) dxj + Aj .tail,

where

A0
j =

{
xj :E

{[
Aj .head(T ) −Aj .head(T )

]
/ψ(Aj−1)

}

+ Aj .tail−Aj .tail � 0
}
;

Aj−1.head = Ai.head,

Aj−1.tail =

∫

A0
i

{
E
{[
Ai.head(T )−Ai.head(T )

]
/ψ(Ai)

}

+ Ai.tail −Ai.tail

}
.fi (xi/ψ(Aj−1)) dxi + Aj .tail,

where

A0
i =

{
xi: E

{
[Ai.head(T ) −Ai.head(T )]/ψ(Ai)

}

+ Ai.tail −Ai.tail � 0

}
,

and Algorithm 2 correctly generates these equations.

Proof. The basic units a utility network is composed of are called u-units. The three
basic units of a utility network are: symmetric, right asymmetric and left asymmetric
ones. They are presented in Fig. 4.

1. Let us first consider a partial case in which the leaves of the u-units are leaves in
the utility network, too.

1.1. Let us consider the u-unit from Fig. 4a as a utility network. We will bound the
expected utility step-by-step.

Eu(Aj) = E {uj(T )/ψ(Fj−1)}
+

∫

Aj

E {[uj+1(T ) − uj(T )] /ψ(Fj)} .fj (xj/ψ(Fj−1)) dxj .

The expected utility may be presented as follows:

Eu(Aj) = E {Aj .head(T )/ψ(Fj−1)} +
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Aj .head = uj(t) Āj .head = uj+1(t)

Aj .tail = ∅ Āj .tail = ∅

a)

Aj−1.head = uj−1(t)

Aj−1.tail = ∅

Aj .head = uj(t) Āj .head = uj+1(t)

Aj .tail = ∅ Āj .tail = ∅

b)

¯Aj+1.head = uj+2(t)
¯Aj+1.tail = ∅

Aj .head = uj(t) Āj .head = uj+1(t)

Aj .tail = ∅ Āj .tail = ∅

c)

Fig. 4. U -nits: a) symmetric; b) right asymmetric; c) left asymmetric.

+

∫

Aj

{
E
{[
Aj .head(T )−Aj .head(T )

]
/ψ(Fj)

}

+Aj .tail−Aj .tail
}
fj (xj/ψ(Fj−1)) dxj .
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Then an upper bound of the expected utility is:

Eu(A0
j
) = E {Aj .head(T )/ψ(Fj−1)}

+

∫

A0
j

{
E
{[
Aj .head(T ) −Aj .head(T )

]
/ψ(Fj)

}

+Aj .tail−Aj .tail
}
fj (xj/ψ(Fj−1)) dxj ,

where

A0
j =

{
xj : E

{
[Aj .head(T ) −Aj .head(T )]/ψ(Fj)

}

+ Aj .tail−Aj .tail � 0

}
. (2)

Let us assume that the function in the left hand of the inequation in (2) changes its
sign from negative to positive exactly once.
Consequently, xc

j is the root of the equation:

E
{

[Aj .head(T ) −Aj .head(T )]/ψ(Fj)
}

+ Aj .tail−Aj .tail = 0

(see Step 3 and Step 4 of Algorithm 2).
1.2. Let us consider the u-unit in Fig. 4b and use the result obtained above. In the vari-

ablesAj−1.head andAj−1.tail associated with the nodeAj−1 = π(Aj) the information
is preserved in the following manner:

Aj−1.head = Aj .head = uj,

Aj−1.tail =

∫

A0
j

{
E
{[
Aj .head(T ) −Aj .head(T )

]
/ψ(Fj)

}

+ Aj .tail−Aj .tail

}
.fj (xj/ψ(Fj−1)) dxj + Aj .tail,

where

A0
j =

{
xj : E

{
[Aj .head(T )−Aj .head(T )]/ψ(Fj)

}
+ Aj .tail −Aj .tail � 0

}

(see Step 6).
In that case the upper bound of the expected utility may be presented as follows:

Eu(A0
j ) = E

{
Aj−1.head(T )/ψ(Fj−1)

}
+ Aj−1.tail . (3)

We remove (Aj , Aj) leaves (see Step 7 of Algorithm 2) and in that way, it is within
the π(Aj) ≡ π(Aj) node where the all information necessary for generating the next
equations is preserved.
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We continue to bound the expected utility.

Eu(Aj−1, A0
j) = E {uj−1(T )/ψ(Fj−2)}

+

∫

Aj−1

{
E {[uj(T ) − uj−1(T )] /ψ(Fj−1)}

+

∫

A0
j

E {[uj+1(T ) − uj(T )] /ψ(Fj)}

.fj (xj/ψ(Fj−1)) dxj

}
.fj−1 (xj−1/ψ(Fj−2)) dxj−1

= E {Aj−1.head(T )/ψ(Fj−2)}
+

∫

Aj−1

{
E {[Aj−1.head(T ) −Aj−1.head(T )] /ψ(Fj−1)}

+Aj−1.tail−Aj−1.tail

}
.fj−1 (xj−1/ψ(Fj−2)) dxj−1.

An upper bound of the expected utility is:

Eu(A0
j−1

, A0
j) = E {Aj−1.head(T )/ψ(Fj−2)}

+

∫

A0
j−1

{
E {[Aj−1.head(T ) −Aj−1.head(T )] /ψ(Fj−1)}

+Aj−1.tail −Aj−1.tail
}
.fj−1(xj−1/ψ(Fj−2))dxj−1,

where

Ao
j−1 =

{
xj−1: E

{
[Aj−1.head(T )−Aj−1.head(T )]/ψ(Fj−1)

}

+ Aj−1.tail−Aj−1.tail � 0

}
. (4)

Let us assume that the function in the left hand of the inequation in (4) changes its
sign from negative to positive exactly once.
Then xc

j−1 is the root of the equation:

E
{[
Aj−1.head(T )−Aj−1.head(T )

]
/ψ(Fj−1)

}
+ Aj−1.tail−Aj−1.tail = 0.

In the variables π(Aj−1).head and π(Aj−1).tail associated with the node Aj−1 =

π(Aj) the information is preserved in the following manner:

π(Aj−1).head = Aj−1.head,
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π(Aj−1).tail =

∫

A0
j−1

{
E
{[
Aj−1.head(T ) −Aj−1.head(T )

]
/ψ(Fj−1)

}

+Aj−1.tail−Aj−1.tail
}
.fj−1(xj−1/ψ(Fj−2))dxj−1 + Aj−1.tail,

where

A0
j−1 =

{
xj−1: E

{
[Aj−1.head(T )−Aj−1.head(T )]/ψ(Fj−1)

}

+ Aj−1.tail−Aj−1.tail � 0
}

(see Step 6).
We remove the paired leaves (Aj−1, Aj−1) (see Step 7 of Algorithm 2) and in such

way the π(Aj−1) ≡ π(Aj−1) node carries the all information required for generating the
next equations.

1.3. Let us now consider the u-unit in Fig. 4c.
At the first step the expected utility may be presented as follows:

Eu(Aj) = E {uj(T )/ψ(Fj−1)}
+

∫

Aj

E {[uj+1(T ) − uj(T )] /ψ(Fj)} fj(xj/ψ(Fj−1))dxj

= E {Aj .head(T )/ψ(Fj−1)}
+

∫

Aj

{
E
{[
Aj .head(T )−Aj .head(T )

]
/ψ(Fj−1)

}

+Aj .tail−Aj .tail
}
fj(xj/ψ(Fj−1))dxj .

In the variables, associated with Aj−1 = π(Aj) node we preserve the needed infor-
mation:

Aj−1.head = Aj .head

and
Aj−1.tail =

∫

A0
j

{
E
{[
Aj .head(T )−Aj .head(T )

]
/ψ(Fj)

}

+Aj .tail−Aj .tail
}
.fj(xj/ψ(Fj−1))dxj + Aj .tail,

where

A0
j =

{
xj : E

{[
Aj .head(T )−Aj .head(T )

]
/ψ(Fj)

}

+ Aj .tail−Aj .tail � 0
}
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(see Step 6).
As a result we obtain the upper bound for the expected utility:

Eu(A0
j ) = E {Aj−1.head(T )/ψ(Fj−1)} + Aj−1.tail, (5)

and xc
j is the root of the equation:

E
{

[Aj .head(T ) −Aj .head(T )]/ψ(Fj−1)
}

+ Aj .tail−Aj .tail = 0.

We remove (Aj , Aj) leaves (see Step 7 of Algorithm 2) and associate the obtained
upper bound Eu(A0

j) with their parent Aj−1.
At the second step the expected utility may be presented as follows:

Eu(Aj−1, A0
j) = E {Aj−1.head(T )/ψ(Fj−2)} + Aj−1.tail

+

∫

Aj−1

{
E
{
[Aj−1.head(T )−Aj−1.head(T )]/ψ(Fj−1)

}

+Aj−1.tail−Aj−1.tail
}
fj−1 (xj−1/ψ(Fj−2)) dxj−1.

Then xc
j−1 is the root of the equation:

E
{

[Aj−1.head(T ) −Aj−1.head(T )]/ψ(Fj−1)
}

+ Aj−1.tail−Aj−1.tail = 0.

We appropriate

π(Aj−1).head = Aj−1.head,

π(Aj−1).tail =

∫

A0
j−1

{
E
{[
Aj−1.head(T ) −Aj−1.head(T )

]
/ψ(Fj−1)

}

+Aj−1.tail−Aj−1.tail
}
fj−1 (xj−1/ψ(Fj−2)) dxj−1 + Aj−1.tail,

where

A0
j−1 =

{
xj−1: E

{[
Aj−1.head(T ) −Aj−1.head(T )

]
/ψ(Fj−1)

}

+ Aj−1.tail−Aj−1.tail � 0

}
.

An upper bound of the expected utility is

Eu(A0
j−1, A

0
j) = E {π(Aj−1).head(T )/ψ(Fj−2)} + π(Aj−1).tail .

We remove (Aj−1, Aj−1) leaves (see Step 7 of Algorithm 2). Then π(Aj−1) =

π(Aj−1) node carries the all information required for generating the next equations.



420 V. Noncheva

Fig. 5. Symmetric u-unit in an utility network.

2. In the general case herein the unit leaves are nodes in the utility network (see Fig. 5).
Let us assume that the utility function

u∗(t) = E
{
Aj .head(T )/ψ(Fj)

}
+ Aj .tail

is associated with Aj leaf and that the other utility function

u∗∗(t) = E {Aj .head(T )/ψ(Fj)} + Aj .tail

is associated with Aj leaf.
Then the expected utility is

Eu(Aj) = E {Aj .head(T )/ψ(Fj−1)} + Aj .tail

+

∫

Aj

{
E
{[
Aj .head(T )−Aj .head(T )

]
/ψ(Fj)

}

+Aj .tail−Aj .tail
}
fj (xj/ψ(Fj−1)) dxj ,

and an upper bound of the expected utility is:

Eu(A0
j ) = E {Aj .head(T )/ψ(Fj−1)} + Aj .tail

+

∫

A0
j

{
E
{[
Aj .head(T ) −Aj .head(T )

]
/ψ(Fj)

}

+Aj .tail−Aj .tail
}
fj (xj/ψ(Fj−1)) dxj ,

where

A0
j =

{
xj : E

{[
Aj .head(T ) −Aj .head(T )

]
/ψ(Fj)

}
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+ Aj .tail−Aj .tail

}
� 0.

Therefore, xc
j is the root of the equation:

E
{[
Aj .head(T )−Aj .head(T )

]
/ψ(Fj)

}
Aj .tail −Aj .tail = 0

(see Step 3 and Step 4 of Algorithm 2).
2.1. Let π(Aj) = Aj−1.
In the variables associated with Aj−1 = π(Aj) node we preserve the needed infor-

mation:

Aj−1.head = Aj .head and

Aj−1.tail =

∫

A0
j

{
E
{[
Aj .head(T )−Aj .head(T )

]
/ψ(Fj)

}

+Aj .tail −Aj .tail
}
.fj(xj/ψ(Fj−1))dxj + Aj .tail

(see Step 6).
Then, we receive the following upper bound of the expected utility:

Eu(A0
j ) = E{Aj−1.head(T )/ψ(Fj−1)} + Aj−1.tail

(see (5)).
We remove the paired leaves (Aj , Aj) (see Step 7 of Algorithm 2). And it is with their

parent Aj−1 we associate the upper boundEu(A0
j), obtained above.

2.2. Let π(Aj) = Aj−1.
In the variables associated with Aj−1 = π(Aj) nodes, the necessary information is

preserved in the following manner:

Aj−1.head = Aj .head,

Aj−1.tail =

∫

A0
j

{
E
{[
Aj .head(T )−Aj .head(T )

]
/ψ(Fj)

}

+Aj .tail −Aj .tail
}
.fj(xj/ψ(Fj−1))dxj + Aj .tail,

where

A0
j =

{
xj : E

{
[Aj .head(T ) −Aj .head(T )]/ψ(Fj)

}

+ Aj .tail−Aj .tail � 0}

(see Step 6).
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In that case an upper bound of the expected utility is:

Eu(A0
j ) = E

{
Aj−1.head(T )/ψ(Fj−1)

}
+ Aj−1.tail (see (3)).

We remove the paired leaves (Aj , Aj) (see Step 7 of Algorithm 2). And it is again
with their parent Aj−1 we associate the upper bound, obtained above.
Therefore, the theorem is proved.

4.5. Example

The problem for decision making about the agent belief state, as presented in Case 4,
is considered herein. It may be represented by both the utility network in Fig. 6 and
Bayesian network in Fig. 7. The integral equations will be generated by means of Algo-
rithm 2.

Ω

↙ ↘
A1 ={X1<x1} A1 ={X1 �x1}

↙ ↘ ↙ ↘
A2 ={X2<x2} A2 ={X2 �x2} A3 ={X3<x3} A3 ={X3�x3}

↙ ↘
A4 ={X4<x4} A4 ={X4 �x4}

Fig. 6. Utility network presenting the utility structure in Case 4.

f(x1, x2, x3, x4) = f1(x1).f2(x2/x1).f3(x3/x1).f4(x4/x3).

Fig. 7. Bayesian network presenting the probability structure in Case 4.
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Initialization:
A2.head := u1, A2.tail := NIL,
A2.head := u2, A2.tail := NIL,
A3.head := u3, A3.tail := NIL,
A4.head := u4, A4.tail := NIL,
A4.head := u5, A4.tail := NIL.
Steps:
1. The paired leaves (Ai, Ai) have the greatest index from the highest level of the
event tree.

2. ψ(A4) = X 4,X 3,X 1 and i = ε(A4) = 4.
3. left := E{[u5(T ) − u4(T )]/X 4,X 3,X 1}.
4. The equation is

E {[u5(T ) − u4(T )] /X 4,X 3,X 1} = 0.

5. A0
4 = [xc

4, 1], A3 = π(A4), and Ψ(A3) = X3, X1.
6. A3.head := u4,

A3.tail :=

∫

A
0
i

{
E {[u5(T ) − u4(T )] /X 4,X 3,X 1}

}
.f4 (x 4/X 3,X 1) dx 4.

7. We removeA4 and A4 leaves.
Hence, the first equation E{[u5(T ) − u4(T )]/X 4,X 3,X 1} = 0 is obtained.

8. The steps above are repeated beginning with Step 1.

1. Now (A3, A3) have the biggest index from the highest level of the event tree.
2. ψ(A3) = X 3,X 1 and i = ε(A4) = 3.
3. left := E{[u4(T ) − u3(T )]/X 3,X 1} +

∫
A

0

4
{E{[u5(T ) −

u4(T )]/X 4,X 3,X 1}}.f4(x 4/X 3,X 1)dx 4.
4. We obtain the following equation:

E {[u4(T ) − u3(T )] /X 3,X 1}
+

∫
A

0
4

{
E {[u5(T ) − u4(T )]/X 4,X 3,X 1}

}
.f4(x 4/X 3,X 1)dx 4 =0.

5. A0
3 = [xc

3, 1], A1 = π(A3), and Ψ(A1) = X1.
6. A1.head := u3 and

A1.tail :=

∫

A
0

3

{
E {[u4(T ) − u3(T )] /X 3,X 1}

+

∫

A
0

4

{
E {[u5(T ) − u4(T )] /X 4,X 3,X 1}

}
.f4

(x 4/X 3,X 1)dx 4

}
f3(x 3/X 1)dx 3.
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7. We removeA3 and A3 leaves.
Now we obtained the equation as below:
E {[u4(T ) − u3(T )] /X 3,X 1}

+
∫
A

0

4

{
E {[u5(T ) − u4(T )] /X 4,X 3,X 1}

}
.f4(x 4/X 3,X 1)dx 4 = 0.

8. We repeat the steps above beginning with Step 1.

1. (A2, A2) have the biggest index from the highest level of the event tree.
2. ψ(A2) = X 2,X 1 and i = ε(A4) = 2.
3. left := E{[u2(T ) − u1(T )]/X 2,X 1}.
4. The equation E{[u2(T ) − u1(T )]/X 2,X 1} = 0 is generated.
5. π(A2) = A1, Ψ(A1) = X1.
6. A0

2 = [xc
2, 1], A1.head := u1,

A1.tail :=
∫
A

0
2

{
E {[u2(T ) − u1(T )] /X 2,X 1}

}
.f2(x 2/X 1)dx 2.

7. We removeA2 and A2 leaves.
Hence, the equation E{[u2(T ) − u1(T )]/X 2,X 1} = 0 is generated.

8. We repeat the steps above starting with Step 1.

1. Finally, we work with the paired leaves (A1, A1).
2. ψ(A1) = X 1 and i = ε(A4) = 1.
3. left := E {[u3(T ) − u1(T )] /X 1}

+
∫
A

0
3

{
E {[u4(T ) − u3(T )] /X 3,X 1}

+
∫
A

0

4

{
E
{[

u5(T ) − u4(T )
]
/X 4,X 3,X 1

}}
.f4(x 4/X 3,X 1)dx 4

}

×f3(X 3/X 1)dx 3 −∫
A

0
2

{
E {[u2(T ) − u1(T )] /X 2,X 1}

}
.f2(x 2/X 1)dx 2.

4. The equation is:

E {[u3(T ) − u1(T )] /X 1} +
∫
A

0
3

{
E {[u4(T ) − u3(T )] /X 3,X 1}

+
∫
A

0

4

{
E
{
[u5(T )

−u4(T )]/X 4,X 3,X 1

}}
.f4(x 4/X 3,X 1)dx 4

}
f3(X 3/X 1)dx 3

− ∫
A

0

2

{
E {[u2(T ) − u1(T )] /X 2,X 1}

}
.f2(x 2/X 1)dx 2 = 0.

5. π(A2) = Ω. Go to Step 9.
9. The end.
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Conclusions

The agent belief in the probability model may be presented via the following three items
(B,D,U), where:

• B is a Bayesian network, presenting the probability structure of the agent belief
problem;

• D is a decision network of the agent belief state.
• U is a utility network, presenting the utility structure of the agent belief problem.

A decision for the agent belief state can be made via propagation inD.
The agent belief state can be optimized via propagation in U, using at the timeB.
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Agento ↪isitikinimas: prezentacija, sklidimas ir optimizavimas

Veska Noncheva

Straipsnio tikslas yra parodyti stochastin ↪i būd ↪a agent ↪u ↪isitikinimui statistiškai modeliuoti
ir optimizuoti naudojantis tikimybiniu modeliu. Apibrėžti du tinklai: agento ↪isitikinimo būklės
sprendimo tinklasD ir naudos tinklas U, pateikiantis agento ↪isitikinimo uždavinio naudos struktūr ↪a.
Agento ↪isitikinimas yra atvaizduotas naudojantis trij ↪u dydži ↪u kombinacija (B, D, U). Čia B yra
Bajeso tinklas, nusakantis agento ↪isitikinimo uždavinio tikimybin ↪e struktūr ↪a. Taip pat pasiūlyti du
sklidimo tinklu algoritmai.


