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Abstract. In the previous paper (Pupeikis, 1998), the problem of recursive estimation of the state
of linear dynamic systems, described by an autoregressive model (AR), in the presence of time-
varying outliers in observations to be processed has been considered. An approach to the robust
recursive state estimation has been obtained and proved by estimating the real chemical process
(Box and Jenkins, 1970). The aim of the given paper is the development of the abovementioned
approach for the robust recursive state estimation of an autoregressive-moving average (ARMA)
process in a case of additive noises with patchy outliers. The results of numerical simulation and
the state estimation of the AR model (Figs. 1–4) and the real chemical process, described by the
ARMA model, which is chosen from the same book of Box and Jenkins (Figs. 5–8) are given.
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1. Statement of the Problem

It is known (Schick and Mitter, 1994) that some time various recursive robust techniques
turn out to be efficient in the presence of rare and isolated outliers. On the other hand, it
is established that always there arise special problems when the outliers occur in batches.
In such a case, a generalized problem of the model of outliers which are varying in time
could be solved according to Pupeikis and Huber (1997); Pupeikis (1998). Therefore, we
apply here an approach to optimizing the state estimation of a dynamic process and the
generalized model of time varying outliers in observations to be processed for solving the
abovementioned problem.

Assume that we consider the linear discrete-time process of order n with single input
µk and single output xk described by the autoregressive moving average (ARMA) model
of the form

xk = W (q−1;α)µk ∀k = 0, 1, . . . , (1)
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where xk and µk denote the unobserved values of sequences {xk} and {µk}, respectively,
µk ∼ N (0, σ2

µ),

W (q−1;α) =
1−B(q−1; b)

1−A(q−1; a)
(2)

is a system transfer function,

A(q−1; a) =
n∑
i=1

aiq
−i, (3)

B(q−1; b) =
n∑
i=1

biq
−i, (4)

are polynomials,

αT = (aT , bT ), aT = (a1, . . . , an), bT = (b1, . . . , bn) (5)

are parameters of polynomials (3), (4), q−1 is the backward shift operator defined by
xk−n = xkq

−n.
Suppose that {xk} is observed under additive noise Zk, i.e.,

uk = xk + zk, (6)

where uk is observed value of output Uk, zk denotes the unobserved value of the sequence
{zk}, which is the sequence of independent identically distributed variables with an “ε-
contaminated” distribution of the form

p(zk) = (1− εk)N (0, σ2
ξ ) + εkN (0, σ2

ν), (7)

and the variance

σ2
z = (1− εk)σ2

ξ + εkσ
2
ν , (8)

p(zk) is a probability density distribution of an noise Zk, moreover,σζ < σν , 0 6 εk 6 1

is the unknown fraction of “contamination” varying in a time.
It is supposed that the roots of A(q−1; a) and B(q−1; b) are outside the unit circle of

the q−1 plane. The true orders n of polynomials (3), (4) and the true values of parameters
(5) are known.

The aim of the given paper is a optimization of the robust recursive estimation of
states x1, x2, . . . , xN of the ARMA process (1)–(8) in the presence of patchy outliers in
observations u1, u2, . . . , uN of an output Uk.
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2. Recursive Optimization of a State Estimation

The ARMA model can be rewritten as the stochastic state-space model in the form

Xk+1 = AXk + hµk+1, (9)

uk = cTXk + dTwk + zk, (10)

where

Xk = (xk, xk−1, . . . , xk−n+1)T (11)

is the n× 1 state vector,

A =


a1 a2 . . . an
1 0 . . . 0
...

...
...

...
0 . . . 1 0

 (12)

is the n× n matrix µk+1 is value of the sequence {µk} at time moment k + 1,

h = c = (1, 0, . . . , 0)T , (13)

d = (b1, b2, . . . , bn)T , (14)

wk = (µk−1, µk−2, . . . , µk−n)T (15)

are the n× 1 vectors.
So, we have the following structure:

xk+1

xk
...

xk−n+2

 =


a1 a2 . . . an
1 0 . . . 0
...

...
. . .

...
0 1 . . . 0




xk
xk−1

...
xk−n+1

+


1

0
...
0

µk+1, (16)

uk = [1 0 . . . 0]


xk
xk−1

...
xk−n+1

+ [b1 b2 . . . bn]


µk−1

µk−2

...
µk−n

+ zk. (17)

Assume that N observations u1, u2, . . . , uN are obtained and a bank of the state
estimates x̂1(1), . . . , x̂N (1), x̂1(2), . . . , x̂N (2), . . . , x̂1(L), . . . , x̂N (L) are calculated by
processing u1, u2, . . . , uN by means of a bank of robust parallel L Kalman filters

x̂(j)(k + 1) = Ax̂(j)(k) + k(k + 1)ψj
{
ek+1(j)

}
for j = 1, 2, . . . , L and k = 0, 1, . . . , N − 1. (18)
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Here

x̂(j)(k + 1) =
(
x̂k+1(j), x̂k(j), . . . , x̂k−n+2(j)

)T
for j = 1, 2, . . . , L (19)

is the state estimate at time moment k + 1,

x̂(j)(k) =
(
x̂k(j), x̂k−1(j), . . . , x̂k−n+1(j)

)T
for j = 1, 2, . . . , L (20)

is the state estimate at time moment k, k(k) is a time-varying filter gain, which is obtained
using the respective formulas (Schick and Mitter, 1994) and is the same one for all the L
filter,

ψj
(
ek+1(j)

)
=


−∆j , if ek+1(j) < −∆j

ek+1(j), if −∆j 6 ek+1(j) 6 ∆j for j = 1, 2, . . . , L

∆j , if ek+1(j) > ∆j

(21)

is the special function, which is used to transform the residual ek(j) ∀j = 1, 2, . . . , L

defined by

ek(j) = uk − cT x̂k(j)− dTwk for j = 1, 2, . . . , L. (22)

The filters in the bank (18) are different because of the threshold ∆j ∀j = 1, 2, . . . , L in
(21) only, which has a different value ∆1 < ∆2 < . . . < ∆L for each Kalman filter.

In order to select a function to be minimized in the problem of a optimization of the
state estimation it is important to determine a relation between the oft used but unknown
filtering error and the characteristics, which are known beforehand or could be easily
calculated. Further such a relation between the filtering error (to be more precise, the
average square error of prediction of the state) and the variance of reconstructed input µk
will be used according to Pupeikis (1998).

The problem to be solved now is at each time moment k from a bank of L current state
estimates, generated by a bank of the LKalman filter (18)–(22) to choose an estimate that
guarantees the minimal current filtering error.

The current values of variance (σ2
µ(i)) for i = 1, 2, . . . , L, k = 0, 1, . . . at a time

moment k + 1 are obtained by the equation

(
σ2
µ(i)

)
k+1

=
(

1− 1

k

)(
σ2
µ(i)

)
k

+
1

k
µ2
k+1(i)

for i = 1, 2, . . . , L, k = 0, 1, . . . (23)

using their values (σ2
µ(i))k for i = 1, 2, . . . at a time moment k and the values of recon-

structed inputs µk+1(i) for i = 1, 2, . . . at a time moment k + 1.
Then, we can rewrite (23) in such a form

(
σ2
µ(i)

)
k+1

=
(

1− 1

k

)(
σ2
µ(i)

)
k

+
1

k

(
µ2
k+1 + 2µk+1∆µk+1(i) + ∆µ2

k+1(i)
)

for i = 1, 2, . . . , k = 0, 1, . . . (24)
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if µk+1(i) ∀i = 1, 2, . . . in (23) is replaced by

µk+1(i) = µk+1 + ∆µk+1(i) for i = 1, 2, . . . , L, k = 0, 1, . . . , (25)

where µk+1 is the value of input at a time moment k + 1.
On the other hand,

µk+1(i) = W−1
(
q−1;α

)
x̂k+1(i) for i = 1, 2, . . . , L, k = 0, 1, . . . , (26)

or the same

µk+1(i) = µk+1 +W−1
(
q−1;α

)
ζk+1(i) for i = 1, 2, . . . , L, k = 0, 1, . . . ,(27)

as

x̂k+1(i) = xk+1 + ζk+1(i) for i = 1, 2, . . . , L, k = 0, 1, . . . (28)

is where ζk+1(i) = ζk+1(i,∆i) for i = 1, 2, . . . , L, k = 0, 1, . . ., moreover,∣∣ζk+1(i)
∣∣ 6 |xk+1| for i = 1, 2, . . . , L, k = 0, 1, . . . , (29)

and ζk(i) ∼ N (0, σ2
ζ(i)) for i = 1, 2, . . . , L. Then, using (25) and (27) it follows that

∆µk+1(i) = W−1(q−1;α)ζk+1(i) for i = 1, 2, . . . , L, k = 0, 1, . . . (30)

and correspondingly(
xk+1 − x̂k+1(i)

)2
=
(
W (q−1;α)(µk+1 − µk+1(i))

)2
=
(
W (q−1;α)(−∆µk+1(i))

)2
= ζ2

k+1(i)

for i = 1, 2, . . . , L, k = 0, 1, . . . . (31)

A current deviation at a time moment k + 1 between the value of input and that of a
reconstructed input, generated by the l-th filter, is∣∣∆µk+1(l)

∣∣ = 0, k = 0, 1, . . . , (32)

when ζk+1(l) = 0 ∀k = 0, 1, . . . , i.e., as x̂k+1(l) = xk+1 ∀k = 0, 1, . . . and hence
µk+1(l) = µk+1 ∀k = 0, 1, . . .

Theorem 1. Assume that∣∣x̂k+1(i)
∣∣ =

∣∣xk+1 + ζk+1

∣∣ > |xk+1| for i = 1, 2, . . . , L, k = 0, 1, . . . , (33)
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while

x̂k(1) 6= x̂k(2) 6= . . . 6= x̂k(L− 1) 6= x̂k(L), for k = 1, 2, . . . , (34)(
σ2
µ(1)

)
k
6=
(
σ2
µ(2)

)
k
6= . . . 6=

(
σ2
µ(L−1)

)
k
6=
(
σ2
µ(L)

)
k

for k = 1, 2, . . . , (35)

and in the bank of current state estimates (34) there exists x̂k(l) = xk for k = 0, 1, . . .

that equality (32) is valid. Then(
σ2
µ(l)

)
k+1

<
(
σ2
µ(j)

)
k+1

for j = 1, 2, . . . , L− 1, k = 0, 1, . . . , (36)

and (
xk+1 − x̂k+1(l)

)2
<
(
xk+1 − x̂k+1(j)

)2
for j = 1, 2, . . . , L− 1, k = 0, 1, . . . , (37)

if (
σ2
µ(1)

)
0

=
(
σ2
µ(2)

)
0

= . . . =
(
σ2
µ(L−1)

)
0

=
(
σ2
µ(L)

)
0

= c. (38)

Here c > 0.

Proof. Let us assume that ζk+1(i) = δixk+1 for i = 1, 2, . . . , L, k = 0, 1, . . ., where on
k+ 1 iteration δi = δi(k+ 1; ∆i) ∀i = 1, 2, . . . , L, δi > 0 for i = 1, 2, . . . , L− 1, while
δl = 0, and moreover xk+1 6= 0 ∀k = 0, 1, . . ..

Then, from (33) it follows that∣∣x̂k+1(i)
∣∣ =

∣∣xk+1 + δixk+1

∣∣ > ∣∣xk+1

∣∣
for i = 1, 2, . . . , L, k = 0, 1, . . . , (39)

and

∆µk+1(i) = δiW
−1(q−1;α)xk+1 = δiµk+1

for i = 1, 2, . . . , L, k = 0, 1, . . . . (40)

Thus, we can rewrite equation (24) in such a form

(
σ2
µ(i)

)
k+1

=
(

1− 1

k

)(
σ2
µ(i)

)
k

+
1

k
µ2
k+1(1 + δi)

2

for i = 1, 2, . . . , L, k = 0, 1, . . . , (41)

while the current square filtering error (31) is(
xk+1 − x̂k+1(i)

)2
= δ2

i x
2
k+1 for i = 1, 2, . . . , L, k = 0, 1, . . . , (42)

and for any δj > 0 j = 1, 2, . . . , L− 1 (36) and (37) are valid.
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REMARK 1. The minimal variance (σ2
µ(l))k+1 ∀k = 0, 1, . . . guarantees a minimal cur-

rent filtering error (42) which is equal to zero therefore, that in (42) δl = 0 corresponds to
the optimal current state estimate x̂k+1(l) = xk+1 ∀k = 0, 1, . . .. On the other hand, by
increasing δj j = 1, 2, . . . , L− 1 increases the current variance (41) and current filtering
error (42), respectively. Hence, it is possible to choose an optimal current state estimate
if δj > 0 for j = 1, 2, . . . , L in (39).

Theorem 2. Assume that∣∣x̂k+1(i)
∣∣ =

∣∣xk+1 + ζk+1(i)
∣∣ 6 ∣∣xk+1

∣∣
for i = 1, 2, . . . , L, k = 0, 1, . . . , (43)

while

x̂k(1) 6= x̂k(2) 6= . . . 6= x̂k(L− 1) 6= x̂k(L) for k = 1, 2, . . . , (44)(
σ2
µ(1)

)
k
6=
(
σ2
µ(2)

)
k
6= . . . 6=

(
σ2
µ(L−1)

)
k
6=
(
σ2
µ(L)

)
k

for k = 1, 2, . . . , (45)

and in the bank of current state estimates (44) there exists such x̂k(l) = xk for k =

0, 1, . . . that equality (32) is valid. Then(
σ2
µ(l)

)
k+1

>
(
σ2
µ(j)

)
k+1

for j = 1, 2, . . . , L− 1, k = 0, 1, . . . , (46)

and (
xk+1 − x̂k+1(l)

)2
<
(
xk+1 − x̂k+1(j)

)2
for j = 1, 2, . . . , L− 1, k = 0, 1, . . . , (47)

if (
σ2
µ(1)

)
0

=
(
σ2
µ(2)

)
0

= . . . =
(
σ2
µ(L−1)

)
0

=
(
σ2
µ(L)

)
0

= c. (48)

Here c > 0.

Proof. Suppose that ζk+1(i) = δixk+1 for i = 1, 2, . . . , L, k = 0, 1, . . . , where δi =

δi(k+1; ∆i) ∀i = 1, 2, . . . , L, δi < 0 for i = 1, 2, . . . , L−1, while δl = 0 and moreover
xk+1 6= 0 ∀k = 0, 1, . . ..

It follows from (43) that∣∣x̂k+1(i)
∣∣ =

∣∣xk+1 + δixk+1

∣∣ 6 ∣∣xk+1

∣∣ for i = 1, 2, . . . , L, k = 0, 1, . . . , (49)

and

∆µk+1(i) = δiW
−1(q−1;α)xk+1 = δiµk+1

for i = 1, 2, . . . , L, k = 0, 1, . . . . (50)
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Thus, one can rewrite the equation (24) in a form (41) too, while a current filtering
error is of the form (42) and for any δj < 0, j = 1, 2, . . . , L− 1 (46) and (47) are valid.

REMARK 2. In such a case, the current variance (σ2
µ(l))k+1 ∀k = 0, 1, . . ., which corre-

sponds to the current optimal state estimate x̂k+1(l) ∀k = 0, 1, . . . will not be minimal.
Hence, it is impossible to choose the optimal current state estimate using inequalityes (36)
and (37) because decreased the current variance (41) and increased the current filtering
error, (42), respectively. On the other hand, when inequality (43) is satisfied, e.g., when
during recursive calculations all the observations are damaged by the all Kalman filters
(except one filter which generates the optimal state estimate), using relatively too small
thresholds ∆i ∀i = 1, 2, . . . , L − 1 in Huber’s ψ-function (21), then it is possible also
to choose the optimal current state estimate, which corresponds to the maximal value of
current variance (24) and to the minimal value of current filtering error (42), respectively.

The respectiveL estimates of the variance σ2
µ are obtained by the formula of the form



σ2
µ(1)

σ2
µ(2)

...
σ2
µ(L−1)

σ2
µ(L)


N

=
1

N − 1



N∑
i=1

(µi(1)− µ(1))
2

N∑
i=1

(µi(2)− µ(2))
2

...
N∑
i=1

(µi(L− 1)− µ(L− 1))2

N∑
i=1

(µi(L)− µ(L))
2


, (51)

using, correspondingly, the L reconstructed values µk(j) ∀j = 1, . . . , L and k =

1, 2, . . . , N . Here µ(1), . . . , µ(L) are the means of reconstructed inputs, respectively.
If the variance σ2

µ(j) is minimal, i.e.,

σ2
µ(l) < σ2

µ(j) ∀j = 1, 2, . . . , L− 1, (52)

then the vector x̂N (l) = (x̂1(l), x̂2(l), . . . , x̂N (l))TN of estimates of the states x1, x2, . . . ,

xN is an optimal one. The abovementioned equations let us to choose the optimal state
estimates after processing all observationsu1, . . . uN only. In order to choose at each time
moment k the current optimal state estimate, which would guarantee the current minimal
value of reconstructed input and current minimal square filtering error, respectively, at
these time moments, it is necessary to rewrite formula (51) in the recursive form.
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3. Simulation Results

The unobserved noiseless sequence Xk (Fig. 1, entire line) is described by AR(1) model
of the form

xk = 0.85xk−1 + µk, k = 1, 100. (53)

Then the output Uk to be observed in the presence of patchy outliers (Fig. 1, entire-dotted
line) is

uk = xk + zk, k = 1, 100, (54)

where uk, zk are the values of an output Uk and a noise Zk, respectively, at a time mo-
ment k, Zk is a sequence of independent identically distributed variables with an “ε-
contaminated” distribution of the form (7) and the variance (8).

The sequence (54) is used for estimation of the values xi, i = 1, 100, of the process
Xk. In this case, for an additive noise Zk

zk =

{
0, if ζ > ε,
νkσν , if ζ < ε

(55)

holds, where νk, ζk are independent Gaussian variables with zero means and variances 1.
Here ε = 0.2.

Fig. 1. Two time series in an absence (entire line) and a presence (entire-dotted line) of patchy outliers.
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Fig. 2. Noiseless time series and its estimate, which is obtained using only one Kalman filter.

For the state estimation by processing Uk = (u1, . . . , u100)T the bank of the parallel
Kalman filters (18)–(22) is used, which can be rewritten for the AR(1) process (53) with
the a priori known parameter a1 = 0.85 as

x̂(j)(k + 1) = a1x̂
(j)(k) + k(k + 1)ψj

(
uk+1 − a1x̂

(j)(k)
)

(56)

for j = 1, . . . , L, ∀k = 1, 100,

where

κk+1 = φk+1(σ2
z + φk+1)−1, (57)

φk+1 = a2
1pk + σ2

µ, (58)

pk+1 = φk+1(1− κk+1), (59)

ψj(ek+1) =


∆j , if ek+1 < −∆j ,

ek+1, if −∆j 6 ek+1 6 ∆j ,

∆j , if ek+1 > ∆j ,

for j = 1, L, (60)

moreover, ∆1 = 1; ∆2 = 1.5; ∆3 = 2; ∆4 = 2.5; ∆5 = 2.75; ∆6 = 3; ∆7 = 3.5;
∆8 = 2000; L = 8 and p0 = 0.1; σ2

µ = 1; σ2
z = 1; x̂0 = 0 ∀j = 1.8.

In Figs. 2, 3, noiseless and really unobserved output (53) (entire line) and its two
estimates (dotted lines) are presented. In Fig. 2 the first estimate is obtained using only
one Kalman filter with ∆ = 2.5 in (60), while the second estimate in Fig. 3 is obtained
using a bank of Kalman filters by optimizing the state estimation itself. In Fig. 4 the
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Fig. 3. Noiseless time series and its estimate, which is obtained using a bank of Kalman filters.

Fig. 4. Operation of the Kalman filters by processing observations with patchy outliers.
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operation of the Kalman filters in time for the second estimate, respectively, is presented.
From the simulation and state estimation results, presented in Figs. 2, 3, it follows, that
the accuracy of state estimate, obtained using the bank of Kalman filters by optimizing
the estimation itself, is higher as compared to the accuracy of such estimates based on
constant ∆. In the presence of patchy outliers the adaptive technique chooses 5 Kalman
filters (Fig. 4) at different time moments.

4. Recursive State Estimation of a Chemical Process

The noiseless sequence xk is the time-series A from Box and Jenkins ( 1970), which is
described by the ARMA model of the form

x
(A)
k = 1.45 + 0.92x

(A)
k−1 + µk − 0.58µk−1, k = 1, 197, (61)

or by the model of the form

x̃
(A)
k = 0.92x̃

(A)
k−1 + µk − 0.58µk−1, k = 1, 197, (62)

if the free term of sequence xk is eliminated.
Here x(A)

k , x̃(A)
k are the values of the abovementioned sequence at a time moment k.

Then the output Uk to be observed in the presence of outliers (Fig. 5) is

ũ
(A)
k = x̃

(A)
k + zk, k = 1, 197, (63)

where ũ(A)
k , zk are the values of output Uk and noise Zk, k = 1, 197, respectively, at a

time moment k; Zk is a sequence of independent identically distributed variables with an
ε-contaminated distribution of the form (7) with variance (8).

The sequence ũ(A)
k , k = 1, 197, from (63) is used for the state estimation of the

ARMA process (61) in a case of a priori known parameters a1 = 0.92, b1 = −0.58. In
this case, for an additive noise Zk, k = 1, 197, the equality of the form is valid

zk =

{
0, if ζk > εk,

10νk, if ζk < εk,
(64)

where νk, ζk are independent Gaussian variables with zero means and variances 1; εk is
a time varying “contamination” fraction of the form

εk =


0.1 for k = 1, 2, . . . , 100,

0.2 for k = 101, 102, . . . , 150,

0.05 for k = 151, 152, . . . , 197.
(65)

By processing Ũ (A)
k = (ũ

(A)
1 , . . . , ũ

(A)
197)T the bank of parallel Kalman filter (18)–(22)

is used for the state estimation. Moreover,
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Fig. 5. The output of the chemical process (62) in the presence of patchy outliers.

Fig. 6. Noiseless time series A and its estimate (dotted line), which is obtained using a bank of Kalman filters
(18)–(22).
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Fig. 7. Operation of the Kalman filters (18)–(22) by processing observations of the chemical process (62) with
time-varying and patchy outliers.

Fig. 8. Noiseless time series A and its estimate (dotted line), which is obtained using only one Kalman filter
with ∆ = 0.75 in (21).
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∆1 = 0.75, ∆2 = 0.8, ∆3 = 0.9, ∆4 = 1, ∆5 = 1.2, ∆6 = 1.4, ∆7 = 1.6,
∆8 = 1.8, ∆9 = 2, ∆10 = 2000 and p0 = 0.1; σ2

µ = 1; σ2
z = 1; x̂0(i) = 0 ∀i = 1, 10,

L = 10 in (18)–(22).
In Fig. 6, a noiseless and really unobserved output (62) and its estimate are presented.

The estimate (dotted line) is obtained using the bank of Kalman filters (18)–(22) by op-
timizing the state estimation itself. In Fig. 7, the operation of Kalman filters in time for
such a current state estimate is presented. The results presented in Fig. 7 show that, in
such a case, at different time moments the adaptive technique chooses seven Kalman fil-
ters with different thresholds ∆ in (21). Fig. 8 shows us the unobserved output (62) and
the estimate (dotted line), which is obtained using only one Kalman filter with the con-
stant ∆ = 0.75 in (21). From the simulation and the state estimation results, presented
in Figs. 5–8 it follows that the accuracy of the state estimates, obtained using the bank
of Kalman filters by recursive optimizing of the estimation itself, is higher as compared
to the accuracy of such estimates based on the constant ∆ = 0.75 (Fig. 8). It could be
mentioned that the results averaged by 20 experiments in the presence of time varying
outliers including the patchy outliers are given in (Pupeikis and Huber, 1997).

5. Conclusions

The classical robust Hubers theory of estimation of a location parameter uses stochastic
models with time-homogeneous contamination of outliers (Huber, 1964; 1981). However,
if the various robust recursive algorithms turn out to be efficient in the presence of rare
and isolated outliers, then always there arise special problems in the presence of patchy
outliers. In such a case, it is important to solve the generalized problem of the model of
outliers, which are varying in time. Therefore, in our work, a recursive state estimation
approach with an optimization of the estimation itself is applied. In theory (Theorems 1–
2), it is based on a simple but important relation between the variance of a reconstructed
input of the process and that of the filtering error as well as on the fact that both variables
take their minimum at the same place. In practice, our approach is realized by means of a
bank of parallel Kalman filters (18)–(22), consisting of simple recursive equations, which
differ one from another by threshold ∆ in Hubers ψ-function (21) only. At each recursive
step a current state estimate, which guarantees the minimal filtering error, is chosen from
the respective bank of current state estimates by means of optimization technique, using
equations (51) and condition (52). The results of numerical simulation (Figs. 1–4) and
the state estimation using a practical chemical time-series (Figs. 5–8), described by (61),
(63), prove the efficiency of the model of time varying outliers and usefulness of the
proposed recursive approach for the state estimation in the presence of patchy outliers in
observations to be processed.
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Rekurentinis dinamini ↪u proces ↪u būvio ↪ivertinimo optimizavimas,
esant nestacionariam dideli ↪u impuls ↪u srautui stebėjimuose

Rimantas PUPEIKIS

Straipsnyje nagrinėjamas proceso, aprašomo autoregresijos – slenkančio vidurkio (ARMA)
modeliu (1)–(8), būsen ↪u ↪ivertinimo uždavinys, taikant lygiagreči ↪u Kalmano filtr ↪u bank ↪a. ↪Irodytos
teoremos teigia, kad esant pakankamai bendroms s ↪alygoms mažėjant filtravimo paklaid ↪u reikšmėms
atitinkamai mažėja atkurt ↪u ↪iėjim ↪u dispersij ↪u reikšmės, kurias nesunku suskaičiuoti rekurentiškai.


