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Abstract. A new method for a creation of the information system for sequential identification of
states of technological processes or other dynamic systems for their supervision and control is
considered. The states of dynamic system can be unknown and can change themselves abruptly or
slowly. The method is based on a sequential nonlinear mapping of many-dimensional vectors of pa-
rameters (collection of which describes the present state of dynamic systems) into two-dimensional
vectors in order to reflect the states and their changes on the PC screen and to observe the situa-
tion by means of computer. The mapping error function is chosen and expressions for sequential
nonlinear mapping are obtained. The mapping preserves the inner structure of distances among the
vectors. Examples are given.
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1. Introduction

Technological processes have to be supervised for their control. The states of the tech-
nological processes or other complicated dynamic systems (DS) such as power stations,
manufacture supervision, production control and so on are described by many parame-
ters that define the present state of the DS. The purpose of this paper is to present a new
method for discrete sequential detection of states of the DS for their control in real time.
While supervising a technological process or other DS there is a necessity to identify the
DS states or to detect their abrupt or slow changes. As the state of DS changes, L param-
eters (of any physical nature) which describe the state change as well. If the DS state is
described by a random process generated by this object, then the state is described by the
L parameters characterising the random process. The DS can have several unknown states
and we need to observe the states and detect their changes sequentially and independently
of the history. It is convenient to observe the DS states and their changes marking them
by some mark on the PS screen. According to the mark position we can make a decision
on the DS state and its change, if the mark position changes.

To solve these problems it is necessary to have a method for sequential detection
of many changes in several unknown properties of a random process. There are many
methods of detection of changes in the properties of random processes in the scientific
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publications (Basseville and Benveniste, 1986; Kligienė and Telksnys, 1984; Nikiforov,
1983), but there are no methods to solve the above mentioned problems. A nonlinear
mapping algorithm (Sammon, 1969) does not fit for the sequential representation of data.
A triangulation method for the sequential mapping (Lee et al., 1977) preserves only two
distances to vectors previously mapped and, in addition, it uses the spanning tree and, in
such a way, makes the mapping dependent of the history, hence we can not use it for our
task.

In the paper, we present a method for discrete sequential identification of states and
for detection of many abrupt or slow changes in several unknown states of DS, based on
sequential nonlinear mapping onto the plane of vectors of the L parameters given by DS.
The mapping error function is chosen and expressions for sequential nonlinear mapping
are presented along with some experimental results.

The technique described in this paper can be useful in industry, at the control desk, in
identification and control of technological processes, and in many regions where it is pos-
sible to get parameters describing the states of some dynamic objects. The experiments
given below illustrate that.

2. Problem Formulation

Let a DS be in any state of the S possible states. We can observe the vector of L param-
eters at the output of the DS. By the way, these parameters can be of any physical nature
(then we must introduce scale coefficients for each parameter). At the output of the DS
we can watch a random process as well. The process may be described by a proper math-
ematical model, e.g., autoregressive sequence. Then the DS state is defined by a vector
consisting of all L autoregressive parameters.

For detection of states of the DS it is necessary at discrete time moments to map the
L-dimensional vectors sequentially and nonlinearly into two-dimensional vectors (pre-
serving the inner structure of distance among the vectors) in order to represent the present
state by some mark on the PC screen and, having in mind the existence of particular states,
to identify the current state, a deviation from it or a transition to another state when the
mark changes its position.

The mapping result of the sequentially receiving parameter vectors has to be indepen-
dent on the mappings of the earlier received vectors (independence of the history).

3. Sequential Mapping Algorithm

The sequential nonlinear mapping requires for the existence of earlier mapped vectors.
Hence the mapping procedure consist of two stages.

The first stage. At the very beginning we have to carry out the nonlinear mapping of
M vectors (M > 2) simultaneously. We shall use for that the expressions in (Sammon,
1969).
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The second stage. Afterwards, we need to map sequentially and nonlinearly the re-
ceived parameter vectors and, in such a way, to identify the present state, its changes
and deviations from it for a practically unlimited time. In order to formalise the method
we denote by N the number of the sequentially received vectors of parameters which
describe the present states of DS.

Thus, let us have M + N vectors in the L-hyperspace. We denote them by Xi,
i = 1, . . . ,M ; and Xj , j = M + 1, . . . ,M +N . The M vectors are already simultane-
ously mapped into two-dimensional vectors Yi, i = 1, . . . ,M , using the expressions in
(Sammon, 1969). Now we need to sequentially map the L-dimensional vectors Xj into
two-dimensional vectors Yj , j = M + 1, . . . ,M + N , with respect to simultaneously
mapped theM initial vectors. Here the simultaneous nonlinear mapping expressions will
change into sequential nonlinear mapping expressions, respectively. First, before per-
forming iterations it is expedient to put the two-dimensional vectors being mapped in the
same initial conditions, i.e., yjk = Ck, j = M + 1, . . . ,M +N ; k = 1, 2. It is advisable
to put Ck close to the average of simultaneously mapped M initial vectors. Note that in
the case of simultaneous mapping of the first M vectors, the initial conditions are chosen
in a random way (Sammon, 1969). Let the distance between the vectors Xi and Xj in
the L-hyperspace be defined by dXij and on the plane – by dYij , respectively. This algo-
rithm uses the Euclidean distance measure, because, if we have no a priori knowledge
concerning the data, we would have no reason to prefer any metric over the Euclidean
metric.

Notice, that it is very important to choose a mapping error function because the map-
ping precision depends on it.

For computing the mapping error of distancesE we can find at least three expressions
(Duda and Hart, 1973):

E1 =
1∑M

i=1

(
dXij
)2 M∑

i=1

(
dXij − dYij

)2
, j = M + 1, . . . ,M +N ; (1)

function E1 reveals the largest errors independently of magnitudes of dXij ; but if dXij is
small then the mapping error can be comparable with the same distance;

E2 =
M∑
i=1

(dXij − dYij
dXij

)2

, j = M + 1, . . . ,M +N ; (2)

function E2 reveals the largest partial errors independently of magnitudes of
∣∣dXij − dYij ∣∣;

but, in this case, big distances will have rather a great mapping error;

E3 =
1∑M

i=1 d
X
ij

M∑
i=1

(
dXij − dYij

)2
dXij

, j = M + 1, . . . ,M +N ; (3)

functionE3 is a useful compromise and reveals the largest product of the error and partial
error. So we choose the third expression for computing the mapping error of distances E.
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For the correct mapping we have to change the positions of vectors Yj , j = M +

1, . . . ,M + N on the plane in such a way that the error E would be minimal. This is
achieved by using the steepest descent procedure. After the r-th iteration the error of
distances will be

Ej(r) =
1∑M

i=1 d
X
ij

M∑
i=1

[
dXij − dYij(r)

]2
dXij

, j = M + 1, . . . ,M +N ; (4)

here

dYij(r) =

√√√√ 2∑
k=1

[yik − yjk(r)]
2
, i = 1, . . . ,M ; j = M + 1, . . . ,M +N. (5)

During the r + 1-iteration co-ordinates of the mapped vectors Yj will be

yjk(r + 1) = yjk(r) − F·∆jk(r), j = M + 1, . . . ,M +N ; k = 1, 2; (6)

where

∆jk(r) =
∂Ej(r)

∂yjk(r)

/∣∣∣∂2Ej(r)

∂y2
jk(r)

∣∣∣, (7)

F is the factor for correction of the coordinates and it is defined empirically to be F =

0.35,

∂Ej
∂yjk

= H
M∑
i=1

D·C
dXij · dYij

, (8)

∂2Ej
∂y2

jk

= H
M∑
i=1

1

dXij · dYij

[
D − C2

dYij

(
1 +

D

dYij

)]
, (9)

H = − 2∑M
i=1 d

X
ij

, D = dXij − dYij , C = yjk − yik.

When E(r) < ε, where ε can be taken arbitrarily small, the iteration process is over
and the result is shown on the PC screen. In fact, it is enough ε = 0.05. In order to have an
equal computing time for each mapping we can execute a constant number of iterations
R. In practice, it is enoughR = 30.

Minimum necessary value of the M is obtained in (Montvilas, 1995).
Next we present the two more characteristic experiments.
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4. Experiment 1

Let a technological process or DS be described by L = 5 parameters defining its states
and be in any state of the S possible states. Let S = 4 and we detect the states of DS(4)
at M +N = 18 time moments. Let us take the case when the number of initial simulta-
neously mapped vectors is M = 2 and does not involve all the possible states of DS(4).
Afterwards we detect the states of DS(4) at the time moments N = 3÷ 18 sequentially.
A priori the states of DS(4) are known at the time moments (see Table 1).

In Fig. 1 the mapping results are presented, where at the first M = 2 time moments
the state vectors mapped simultaneously are denoted by mark×with an index that means
the time moment number, and the state vectors mapped sequentially are denoted by mark
+ with the respective index.

Table 1

The states of DS(4) at the time moments M +N = 2 + 16 = 18

MAPPING SIMULTANEOUS SEQUENTIAL

(i) (j)

MARK × +

TIME 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18MOMENT

STATE 1 2 3 4 2 1 3 3–4 4 4 2 2–3 3 1 2 1 4 3

Fig. 1. The view on the PC screen of the ends of mapped vectors of DS(4) for 18 time moments.
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At the time moments number 8 and number 12 there were slow changes of the states
of DS(4) and it was between the states number 3 and number 4 and between the states
number 2 and number 3, respectively. In Fig. 1 this situation is clear.

5. Experiment 2

Let a dynamic system be described by L = 6 parameters defining the states and be in
any state of the S possible states. Let S = 5 and we detect the states of DS(5) at the
M +N = 50 time moments. Let us take M = min(S,L+ 1) (Montvilas, 1995). In our
case M = 5. Afterwards we detect the states of DS(5) at the time moments N = 6÷ 50

sequentially. A priori the states of DS(5) are known at the time moments (see Table 2).
At the time moment number 50 the DS was out of order: one parameter of 6 ones,

describing the 4-th state of the DS became to be zero (one physical parameter of DS
disappeared).

In Fig. 2 the mapping results are presented on the screen where the state vectors are
denoted by mark× with an index that means the time moment number.

At the time moment number 50 the corresponding mark goes to other place on the
screen and indicates the damage of the DS. In Fig. 2 this situation is clear.

Now about borders among different states on the screen. It depends on a concrete
situation, on the character of a dynamic system to be identified or controlled. The borders
can touch one another, if the DS can not have damaged states in fact, and they can have
distances among them, if the DS can have non-technological states or can be damaged.
Real regions of states can be found for a concrete object by additional investigations
having all data of the states.

The main importance of the method is that it is possible to begin work even when the
states are unknown yet, and while working one can accumulate the information and use
it for determination of states and borders among them.

Table 2

The states of DS(5) at the time moments M +N = 5 + 45 = 50

SIMULTANEOUS SEQUENTIAL
MAPPING

(i) (j)

STATE 1 2 3 4 5 1 2 3 4 5 DAMAGED

TIME 1 2 3 4 5 6, 7, 8, 10, 11, 14, 15, 18, 19, 22, 23, 50

MOMENT 9, 30, 12, 13, 16, 17, 20, 21, 24, 25,

31, 32, 28, 29, 36, 37, 38, 39, 26, 27,

44 41, 42, 43 45, 46, 47 40, 48, 49 35
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Fig. 2. The view on the PC screen of the ends of mapped vectors of DS(5) for 50 time moments.

6. Conclusions

The described method enables us to construct the information system in order to sequen-
tially detect the dynamic system states, their abrupt or slow changes, rapidly to ascertain
the damages and to supervise the situation on the PC screen for DS control.

Before sequential detection of the states, it is sufficient to map simultaneously only
M = min(S,L+ 1) parameter vectors, where S is the amount of states, L is the dimen-
sionality of parameter vectors which describe the dynamic system states. In the case of
M = L+ 1, these points have to form an L – dimensional space.

The method can be used for the sequential analysis of random processes (classifica-
tion, clustering, recognition) and for the sequential visualisation of multidimensional data
as well.
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Dinamini ↪u sistem ↪u stebėjimo ir valdymo informacinės sistemos
sukūrimo klausimai

Algirdas Mykolas MONTVILAS

Straipnyje nagrinėjamas technologini ↪u proces ↪u ar kit ↪u dinamini ↪u sistem ↪u būsen ↪u bei j ↪u
pasikeitim ↪u nuoseklaus nustatymo informacinės sistemos sukūrimas, grindžiamas parametr ↪u,
aprašanči ↪u būsenas, vektori ↪u nuosekliu netiesiniu atvaizdavimu ↪i dvimat ↪e erdv ↪e ir duomen ↪u
pateikimu kompiuterio ekrane.

Parodyta, kad galima nuosekliai nustatinėti staigius arba lėtus dinamini ↪u sistem ↪u būsen ↪u
pasikeitimus, aptikti j ↪u gedimus bei stebėti situacij ↪a kompiuterio ekrane.


