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Abstract. Structurization of the sample covariance matrix reduces the number of the parameters
to be estimated and, in a case the structurization assumptions are correct, improves small sample
properties of a statistical linear classifier. Structured estimates of the sample covariance matrix are
used to decorellate and scale the data, and to train a single layer perceptron classifier afterwards.
In most from ten real world pattern classification problems tested, the structurization methodology
applied together with the data transformations and subsequent use of the optimally stopped single
layer perceptron resulted in a significant gain in comparison with the best statistical linear classifier
– the regularized discriminant analysis.
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1. Introduction

For the case of two Gaussian populationsN(µ1,Σ1),N(µ2,Σ2) the asymptotically opti-
mal classification rule is a quadratic discriminant function. When the covariance matrices
are identical, the resulting decision algorithm is linear:

gF (x) =

(
x− 1

2
(µ1 + µ2)

)′
Σ−1(µ1 − µ2), (1)

where x = (x1, x2, . . . , xp)
′ is the vector to be classified, and Σ stands for the covariance

matrix common for both classes.
If we assume that p components x1, x2, . . . , xp of the feature vector x are mutually

independent and have equal variances, the simplest – Euclidean distance classifier is ob-
tained:

gE(x) =

(
x− 1

2
(µ1 + µ2)

)′
(µ1 − µ2). (2)

In the procedure of the statistical classifiers design, one needs to estimate the param-
eters associated with the class probability densities. When the data dimensionality p is
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high and the number of samples N available for the classifier design is limited, these
estimates are inaccurate and result in low generalization accuracy. Generalization prop-
erties of the classifier depend on the relationship between N and p : N/p for the linear
classification rules andN2/p for the quadratic classification rules (Raudys 1972; Raudys
and Pikelis, 1980). Therefore a ratio learning-set/dimensionality plays an essential role
in selecting and constructing the classification algorithm.

In practice, the parameters of the classifiers (1)–(2) – the covariance matrix Σ and
mean vectors µ1, µ2 are substituted by their “plug-in” estimates S,x1,x2. This ap-
proach results in optimal properties of the classifier if the training-set size is very large.
In small learning-set cases, the variability of the covariance matrix estimate becomes high
resulting in strong dependence of the generalization accuracy on the particular learning-
set. If the number of learning samples used to estimate the covariance matrix is smaller
than the dimensionality, the covariance matrix becomes singular and one can not invert
it.

A number of methods exists to cope with the problems arising in the case of high
dimensionality in comparison with the learning-set size:

• Dimensionality reduction. Various feature extraction and selection techniques are
used. Feature extraction algorithms perform linear and non-linear transformations
of the original p-variate vectors, and feature selection methods find the most
informative subsets of features (e.g., Sammon, 1969; Bryant and Guseman, 1979).
• Pseudoinversion of the covariance matrix. The inverse of the covariance matrix

estimate is replaced by the pseudoinversion

SPSEUDO = T ′D−1T = T ′
(
d−1 0

0 0

)
T , where T is a p× p matrix of

eigenvectors, andD =

(
d 0

0 0

)
is a p× p matrix of eigenvalues, obtained by a

singular value decomposition of the estimated covariance matrix S : TST ′ = D,
and d is a diagonal matrix with 2N − 2 non-zero eigenvalues in its diagonal
(Fukunaga, 1972).
• Regularization of the sample covariance matrix. Covariance matrix estimate S is

substituted by a ridge estimate SRDA = S + λI in order to gain stability, where I
is p× p identity matrix and λ is a positive regularization constant. The ratio of the
largest and smallest eigenvalues of S is reduced by this technique. The resulting
decision rule is called a regularized discriminant analysis (RDA). It is a very good
classification algorithm (Friedman, 1989).
• Structurization of the sample covariance matrix. This method considerably

reduces the number of parameters estimated from the learning-set, and can
improve the small sample properties of the classifier if correct hypothesis on the
structure of the covariance matrix are made. The covariance matrix is transformed
into a certain form that is described by a smaller number of distinct elements. We
will call them the parameters of the structured covariance matrix. Various models
of the structurization exist: Diagonal, Toeplitz, Circular, autoregression, moving
average, autoregression-moving average, Block-diagonal (Morgera and Cooper,
1977; Raudys, 1991; Raudys and Saudargienė, 1998).
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Theoretical studies (Raudys, 1972; Deev, 1974; Meshalkin and Serdobolskij, 1978)

showed that parameters of the probability density function asymptotically do not effect

the generalization error, if these parameters are common for both classes and their num-

ber increases linearly with the increase in the dimensionality. Asymptotic analysis was

performed with an approach where the dimensionality and the training-set size tend to

infinity, i.e., p → ∞, N → ∞, and N/p = β (β is a positive constant). It means if the

number of the parameters describing the structured covariance matrix is proportional to

the dimensionality, the structurization of the covariance matrix may result in the signifi-

cant improvement of the generalization properties of the classifier in the high dimensional

and large learning-set case. Therefore if correct hypothesis on the data structure are used

to structurize the sample covariance matrix, the generalization accuracy of the classifier

increases. Moreover, the structured sample covariance matrix can be applied to transform

the data into spherical populations for a single layer perceptron training procedure and

can reduce the generalization error even in a case when assumptions on the data nature

differ from reality.

There exists a great variety of the models of the covariance matrix. A statistical verifi-

cation of the model correspondence to the data is a procedure requiring a lot of computer

time. Moreover, the goal when solving the classification problems is to minimize the

probability of misclassification, but not the criteria of the model compliance. Therefore

the selection of the model, resulting the lowest generalization error, can be performed

experimentally.

The influence of the structurization of the covariance matrix on the generalization

error of the linear discriminant analysis (LDA) and the optimally stopped single layer

perceptron (SLP) was investigated in our previous work (Raudys and Saudargienė, 1998).

Simulation experiments were performed in two-category case with artificial multivariate

Gaussian populations sharing the common covariance matrix. In addition, several real-

world data sets were used. Sample covariance matrix was structured by Toeplitz, Circular,

first order tree dependence, autoregression, Block-diagonal models and substituted into

LDA as well as used to decorellate and scale the data for the subsequent SLP training.

In this paper we continue to analyze the efficacy of the structurization technique ap-

plied in LDA design and SLP training process. The following models of the structur-

ization of the covariance matrix are analyzed: Toeplitz, Circular, autoregression, Block-

diagonal and the new ones are introduced: moving average, autoregression-moving av-

erage, Block-diagonal with structured blocks, Block-diagonal Markov. A usefulness of

analytical expressions of the asymptotic probability of misclassification of Fisher LDA

is considered, and difficulties arising in estimating the expected probability of misclas-

sification are discussed. The proposed classifier design methodology is applied to ten

multidimensional real world data sets.
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Notations and abbreviations

p− dimensionality SLP − single layer perceptron

N − number of learning vectors in one class OFS− original feature space

CM− covariance matrix TFS− transformed feature space

LDA− linear discriminant analysis AR− autoregression model

RDA− regularized discriminant analysis MA−moving average model

PMC− probability of misclassification BD− Block-diagonal model

ARMA− autoregression moving average EDC− Euclidean distance
model classifier

2. Models of the Covariance Matrix

An objective of structurization of the covariance matrix is to reduce the number of the
parameters to be estimated from the learning-set. In this paper we concentrate our investi-
gations on the models of the covariance matrix that describe a stationary random process
or posses the Block-diagonal structure.

2.1. Covariance Matrices for Stationary Random Processes

Let {Xt, t = 0,±1,±2, . . .} be a discrete-time random signal process. If the signal has
a Gaussian amplitude distribution, it is completely described by its mean value:

x = E{Xt} = lim
N→∞

1

N

N∑
t=1

xt, (3)

and by its autocovariance function:

γk = E
{

[xt − x][xt+k − x]
}

= lim
N→∞

1

N

N∑
t=1

xtxt+k − x2. (4)

Autocovariance with the delay k γk is a covariance between the components xt and
xt+k separated by k intervals of time. The variance of the process is:

σ2
x = γ0 = E

{
[(xt − x)]2

}
= lim
N→∞

1

N

N∑
t=1

x2
t − x2. (5)

A random signal is stationary in the narrow sense if the probability densities and
the joint probability densities are independent of a time shift. A random signal is called
stationary in the wide sense if x and γk are independent of time (Isermann, 1981).
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It is assumed an observation x = (x1, x2, . . . , xp)
′ is taken from a stationary random

sequence, i.e., the components of the p-variate feature vector x are the measurements of
a stationary process at a time t = 1, 2, . . . , p. The relationship between the components
is described by the covariance matrix.

2.1.1. Toeplitz Covariance Matrix of a General Form
Toeplitz covariance matrix describes a stationary random process and has the form (Box,
Jenkins, 1974):

Σ =



γ0 γ1 γ2 . . . γp−1

γ1 γ0 γ1 . . . γp−2

γ2 γ1 γ0 . . . γp−3

. . . . . . . . . . . . . . .

γp−1 γp−2 γp−3 . . . γ0


, (6)

where γ0 = σ2
x is the variance of the process, and γ1, γ2, . . . , γp−1 determine the de-

pendencies between the components. Only p parameters have to be estimated from the
learning-set.

2.1.2. Circular Covariance Matrix
The covariance matrix of a Circular structure represents a stationary periodical process
and has the following form (Han, 1970):

Σ =



γ0 γ1 γ2 . . . γ2 γ1

γ1 γ0 γ1 . . . γ3 γ2

γ2 γ1 γ0 . . . γ4 γ3

. . . . . . . . . . . . . . . . . .

γp−1 γp−2 γp−3 . . . γ0 γ1

γ1 γ2 γ3 . . . γ1 γ0


. (7)

For p-dimensional case only p/2 parameters describe the covariance matrix.
The matrix can be transformed into a canonical form using p × p orthonormal trans-

formation matrix T = {tij} that does not depend on Σ (Han, 1970):

TΣT ′ =


α1 0 . . . 0

0 α2 . . . 0

. . . . . . . . . . . .

0 0 . . . αp

 . (8)
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The ijth element of the orthonormal matrix T is:

tij =
√
p

(
cos

2π

p
(i− 1)(j − 1) + sin

2π

p
(i− 1)(j − 1)

)
. (9)

2.1.3. Autoregression (AR) Model
Random process is described by difference rth order autoregression equation AR(r):

r∑
k=0

[
ak(xt−k − µ)

]
= et, a0 = 1, (10)

where random variables et, et−1 . . . are mutually independent and identically distributed
N(0, 1).

The parameters a1, a2, . . . , ar fulfil the conditions of a stationary process: the roots

z1, z2, . . . , zr of the characteristic polynomial
r∑
k=0

akz
r−k of Formula (10) lie inside the

unit circle of the complex plane: |zk| < 1, k = 1, 2, . . . , r. An inverse of the covariance
matrix is of a special form: all elements, except the ones in the main diagonal and 2r

subdiagonals, are zeros. It is important to note, this matrix can be inverted analytically
(Kligienė, 1977) employing the autoregression parameters a1, a2, . . . , ar:

Σ−1 =



k11 . . . k1r kr 0 . . . 0 0 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

kr1 . . . krr k1 k2 . . . 0 0 0 . . . 0

kr . . . k1 k0 k1 . . . 0 0 0 . . . 0

0 . . . k2 k1 k0 . . . 0 0 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 . . . 0 0 0 . . . k0 k1 k2 . . . 0

0 . . . 0 0 0 . . . k1 k0 k1 . . . kr

0 . . . 0 0 0 . . . k2 k1 krr . . . kr1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 . . . 0 0 0 . . . 0 kr k1r . . . k11



, (11)

where

kl =
r−l∑
k=0

akak+1, kst =

min(s,t)−1∑
k=0

akak+|s−t|, s, t = 1, 2, . . . , r,

l – element or delay, r – order of the process. While calculating the sample covariance
matrix the AR parameters a1, a2, . . . , ar are replaced by their estimates â1, â2, . . . , âr
obtained from the autocovariance function using Yule-Walker equations (Box, Jenkins,
1974). The Markov process is a partial case of the autoregression model with r = 1.
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2.1.4. Moving Average (MA) Model
The relationship between the components of the random process is determined by the sum
of the weighted variables νt, νt−1, . . . , νt−q that are mutually independent and Gaussian
distributed N(0, σ2

ν):

q∑
k=0

[
bk(νt−k − µ)

]
= xt, b0 = 1, (12)

where q is the order of the moving average process MA(q). MA process is stationary
without any restrictions for the parameters b1, b2, . . . , bq.

The covariance matrix has Toeplitz form and is composed from the variance of the
process σ2

x in the main diagonal, and q covariances γ1, γ2, γ3 . . . , γq in q subdiagonals.
All elements in the subdiagonals, which order is higher than q, are zeros.

The variance of the process σ2
x is (Box, Jenkins, 1974):

σ2
x = (1 + b21 + b22 + . . .+ b2q)σ

2
ν , (13)

and the covariances γ1, γ2, γ3, . . . , γq are:

γk =

{
(−bk + b1bk+1 + b2bk+2 + . . .+ bq−kbq)σ2

ν , k = 1, 2, . . . , q,
0, k > q.

(14)

To find the sample covariance matrix the parameters b1, b2, . . . , bq and the variance
of noise σ2

ν are replaced by their estimates b̂1, b̂2, . . . , b̂q, σ̂2
ν that are obtained from the

autocovariance function in an iterative procedure (Box, Jenkins, 1974).

2.1.5. Autoregression – Moving Average (ARMA) Model
The dependencies between the variables of the random process are described by the rth

order autoregression – qth order moving average equation ARMA(r, q):

r∑
k=0

[
ak(xt−k − µ)

]
−

q∑
k=0

[
bk(νt−k − µ)

]
= 0, a0 = 1, b0 = 1, (15)

where variables νt, νt−1, . . . are mutually independent and Gaussian distributed N(0,

σ2
v). The process is stationary under condition the roots z1, z2, . . . , zr of the characteristic

polynomial
r∑
k=0

akz
r−k of formula (15) lie inside the unit circle of the complex plane:

|zk| < 1, k = 1, 2, . . . , r.
The covariance matrix has Toeplitz form. The covariances are calculated analytically

engaging r autoregression and q moving average parameters a1, a2, . . . , ar, b1, b2, . . . ,
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bq . The variance of the process σ2
x and the first m covariances γ1, γ2, . . . , γm are found:

σ2
x

γ1

γ2

. . .

γm

 = K−1C, (16)

where m is equal to r if r > q and to q if r < q, K is the matrix of the coefficients
K = {kij} of size (m+ 1)× (m+ 1), andC = (c0, c1, c2, . . . , cm) is the vector of free
parameters.

The matrix of the coefficientsK is constructed of AR coefficients:

K =



−1 a1 a2 a3 . . . ar−1 ar

a1 a2 − 1 a3 a4 . . . ar 0

a2 a1 + a3 a4 − 1 a5 . . . 0 0

. . . . . . . . . . . . . . . . . . . . .

ar−2 ar−1 + ar−3 ar + ar−4 ar−5 . . . 0 0

ar−1 ar−1 + ar−3 ar−3 ar−4 . . . −1 0

ar ar−1 ar−2 ar−3 . . . a1 −1


(17)

The m+ 1 free parameters c0, c1, c2, . . . , cm are calculated:

ck =


−δ2

ν +
q∑

i=k+1

biγxν(k − i), k = 0,

bkσ
2
ν +

q∑
i=k+1

biγxν(k − i), k = 1, . . . , q,

0, k = q + 1, . . . ,m,

(18)

where γxν(−n) is the covariance function between the sequence x = (x1, x2, . . . , xp)
′

and the noise vector ν = (ν1, ν2, . . . , νp)
′ found in an iterative procedure for each value

of n:

γxν(−n) = σ2
ν

( n−1∑
i=1

aiγxν(−n+ i) + (an + bn)
)
,

n = 0, 1, . . . , q; an = 0 if n > r. (19)

The remaining p−m covariances γm+1, γm+2, . . . , γp are expressed in a simple form:

γk = σ2
ν(a1γk−1 + a2γk−2 + . . .+ arγk−r), k = m+ 1, . . . , p. (20)

For calculation of the sample covariance matrix the estimates of the parameters and
variance of a noise â1, â2, . . . , âr, b̂1, b̂2, . . . , b̂q, σ̂

2
ν are found in an iterative procedure

using the autocovariance function (Box, Jenkins, 1974).
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2.2. Block-diagonal Covariance Matrices

2.2.1. Block-diagonal Covariance Matrix of a General Form
The features are grouped into blocks that are assumed to be statistically independent:

Σ =


Σ1 0 . . . 0

0 Σ1 . . . 0

. . . . . . . . . . . .

0 0 0 Σ1

 . (21)

The number of parameters describing the Block-diagonal covariance matrix is k =

1
2

h∑
j=1

kj(kj + 1), where h is the number of independent blocks, kj – dimensionality of

the jth block.

2.2.2. Block-diagonal Covariance Matrix with Structured Blocks
The components of the feature vectors are divided into blocks. It is assumed that blocks
are statistically independent and each block posses the process type structure, i.e., is
structured by any of the models presented above.

2.2.3. Block-diagonal Markov Model
The dependencies between the blocks are described by the Markov model. Feature vector
x = (x1, x2, . . . , xp)

′ is considered as the sequence of h mutually dependent random
vectors of size k: x = (x∗1,x

∗
2, . . . ,x

∗
h)′, where x∗i = (x(i−1)×k+1, x(i−1)×k+2, . . . ,

x(i−1)xk+k). It is assumed that the covariance matrix is of the form (Kligys, 1981; 1984):

Σ =


Σ0 −AΣ0 A2Σ0 . . . (−A)h−1Σ0

−AΣ0 Σ0 −AΣ0 . . . (−A)h−2Σ0

. . . . . . . . . . . . . . .

(−A)h−1Σ0 (−A)h−2Σ0 −Ah−3Σ0 . . . Σ0

 , (22)

where Σ0 is the covariance matrix of the vector x andA is the matrix of the coefficients:

A = Σ1Σ−1
0 , (23)

Σ0 = E
{

(x∗i − µx)′(x∗i − µx)
}
, (24)

Σ1 = E
{

(x∗i − µx)′(x∗i+1 − µx)
}
. (25)

Matrix A fulfils the conditions of a stationary process: the roots of the characteristic
polynomial det(I +Az) = 0 lie inside the unit circle of the complex plane.

While finding the sample covariance matrix, A, Σ0 and Σ1 are replaced by their
estimates Â, S0 and S1:

Â = S1S
−1
0 , (26)
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S0 =
1

h

h∑
i=1

(x∗i − xx)′(x∗i − xx), (27)

S1 =
1

h− 1

h−1∑
i=1

(x∗i − xx)′(x∗i+1 − xx), (28)

xx =
1

h

h∑
i=1

x∗i . (29)

3. Asymptotic and Expected Probabilities of Misclassification

A probability of misclassification is a main criteria to select the model of the structur-
ization while constructing the classifier. The best choice of the model is indicated by the
lowest PMC in comparison with the PMC obtained using other models or standard clas-
sification algorithms. There are four distinct PMC: Bayes, conditional, expected, asymp-
totic (Raudys, Pikelis, 1980). Bayes PMC PB is the probability of misclassification of
the optimal Bayes classifier, constructed having complete knowledge of the underlying
probability density functions. A conditional PMC PN depends on the characteristics of
the particular learning-set used to design the classifier. The expected PMC EPN is the
expectation of the conditional PMC PN over all learning-sets of a given size N . The
asymptotic PMC is a limit P∞ = limN→∞EPN .

In this section we estimate a gain that can be obtained when the structurization
methodology is applied to construct the linear discriminant function. For this we must
find analytically the asymptotic and expected probabilities of misclassification, the error
rates that characterize the classifier. Asymptotic PMC depends on the complexity of the
classifier (assumptions used to construct the classifier), the dimensionality of the learn-
ing data, the true covariance matrix. Let us have the discriminant function with already
found true exact parameters – mean vectors of the populationsµ1, µ2 and the structured
sample covariance matrix ΣST instead of the true covariance matrix Σ:

gFST (x) =
(
x− 1

2
(µ1 + µ2)

)′
Σ−1
ST (µ1 − µ2). (30)

Then the gFST (x) is the linear function of random normal variable x and it has the Gaus-
sian distribution with the mean and the variance

E
{
gFST (x)|x ∈ πi

}
=
(
µi −

1

2
(µ1 + µ2)

)
Σ−1
ST (µ1 − µ2), (31)

V
{
gFST (x)|x ∈ πi

}
= (µ1 − µ2)′Σ−1

STΣΣ−1
ST (µ1 − µ2). (32)

The asymptotic probability of misclassification is:

PF ST
∞ = q1Prob

{
gFST (x) < 0|x ∈ π1

}
+ q2Prob

{
gFST (x) > 0|x ∈ π2

}
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= q1Φ

 E{gFST (x)|x ∈ π1}√
V {gFST (x)|x ∈ π1}

+ q2Φ

 E{gFST (x)|x ∈ π2}√
V {gFST (x)|x ∈ π2}

 ,(33)

where Φ{a} =
∫ a
−∞(2π)−1/2σ−1 exp{−t2/(2σ2)} dt is a standard Gaussian cumulative

distribution function, and q1, q2 are a priori probabilities of the classes π1, π2 respec-
tively.

For q1 = q2 = 0.5 we obtain:

PF ST
∞ = Φ

−1

2

(µ1 − µ2)′Σ−1
ST (µ1 − µ2)√

(µ1 − µ2)′Σ−1
STΣΣ−1

ST (µ1 − µ2)

 = Φ

{
−δ

ST

2

}
, (34)

where δST =
(µ1 − µ2)′Σ−1

ST (µ1 − µ2)√
(µ1 − µ2)′Σ−1

STΣΣ−1
ST (µ1 − µ2)

is a “structured” Machalanobis dis-

tance.
Formula (34) is a tool to evaluate asymptotic PMC of Fisher LDA with the struc-

tured sample CM when the assumptions on its structure are either correct or not. This
is illustrated by the simulation experiments performed with two-category case artificial
Gaussian 60-variate populations with common covariance matrix and real data sets. Ana-
lytical asymptotic errors of Fisher LDA, expressed by formula (34), were compared with
the experimental results. All samples of the real data sets were used to estimate the means
of the classes and the covariance matrix, and then to evaluate the generalization perfor-
mance of LDA. When all design set is used as a learning set and then reused as a test
set, the obtained error rate estimate is called resubstitution error (Raudys, 1973). There-
fore, in fact we calculated resubstitution error, although in this chapter we consider it as
the asymptotic error. Sample covariance matrix was structured by the process type and
Block-diagonal models. Block-diagonal model, applied for artificial data, consisted of 2
blocks of sizes 10×10 and 50×50 in the diagonal; for the real Lung noise data it was
represented by 6 blocks of size 11×11 in the diagonal.The results are presented in Table
1. In upper rows the analytical values of asymptotic PMC are given, and in lower rows
the experimental results are listed.

Asymptotic PMC values, obtained analytically, correspond to the experimental results
for artificial Gaussian data. It shows that formula (34) is appropriate while applied for
Gaussian populations with common covariance matrix. For the real world data, however,
it may lead to biased-sometimes too optimistically – estimates. As an example is the
Lung noise data set: the asymptotic PMC, calculated analytically is P∞ = 0.00 for the
Block-diagonal model and shows the good separability of the classes. However, in the
experiments we obtain high asymptotic PMC: P∞ = 0.13.

Asymptotic behaviour of PMC is not a reliable criteria for selecting the model of the
structurization while constructing the classifier in small learning-set case. It would be
advantageous to estimate the expected PMC. The dependence of the generalization error
on the learning-set size, dimensionality and Machalanobis distance has been obtained for
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Table 1

Comparison of theoretical (above) and experimental (below) values of the resubstitution error. Dimensionality
p = 60, Machalanobis distance δ =3.76 for artificial Gaussian populations with common covariance matrix of
Circular, Toeplitz structure. Covariance matrix structured by Toeplitz, Circular, 1st order AR, 4th order AR, 1st
order MA, 2nd order MA, 1st-1st order ARMA, 2nd-2nd order ARMA models, Block-diagonal models.

Model of structur./Data Conventional S Circular Toeplitz AR1 AR4

Circular 0.03 0.03 0.03 0.23 0.20

(artificial) 0.03 0.03 0.03 0.23 0.20

Toeplitz 0.03 0.05 0.03 0.03 0.03

(artificial) 0.03 0.05 0.03 0.03 0.03

Lung noise 0.00 0.01 0.01 0.01 0.01

(real world) 0.05 0.23 0.23 0.29 0.29

Sonar 0.10 0.19 0.18 0.19 0.19

(real world) 0.09 0.16 0.15 0.19 0.16

Model of structur./Data MA1 MA2 ARMA1.1 ARMA2.2 BD

Circular 0.26 0.26 0.25 0.25 0.19

(artifical) 0.26 0.26 0.25 0.25 0.19

Toeplitz 0.03 0.03 0.03 0.03 0.03

(artifical) 0.03 0.03 0.03 0.03 0.03

Lung noise 0.01 0.01 0.01 0.01 0.00

(real world) 0.31 0.30 0.30 0.30 0.13

Sonar 0.24 0.22 0.20 0.21 –

(real world) 0.23 0.22 0.20 0.20 –

the Fisher LDA (Raudys, 1972; Deev, 1970; 1972) with equal number of learning patterns
from both classes N1 = N2 = N and assuming the populations are Gaussian with the
common covariance matrix:

EPFN ≈ E

− δ
2

1√(
1 + 2p

Nδ2

)
2N

2N−p

 , (35)

where δ =
√

(µ1 − µ2)′Σ−1(µ1 − µ2) is a M achalanobis distance. The term 1 +
2p

Nδ2

reflects the inexact estimation of the mean vectors, and the term
2N

2N − p arises due to

inexact estimation of the covariance matrix.
When we know that Σ = Iσ2 we can use the Euclidean distance classifier (2) instead
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of Fisher LDA (1) and have (Raudys, 1967):

EPEN ≈ Φ

− δ
2

1√(
1 + 2p

Nδ2

)
 . (36)

For more general case where we apply the Euclidean distance classifier for Gaussian
populations with Σ 6= Iσ2,

EPEN ≈ Φ

−δ∗2 1√(
1 + 2p∗

N(δ∗)2

)
 , (37)

where δ∗ is a modified Euclidean distance δ∗ =
(µ1 − µ2)′(µ1 − µ2)√
(µ1 − µ2)′Σ(µ1 − µ2)

and p∗ is

a modified (intrinsic) dimensionality p∗ =
(µ1 − µ2)2(trΣ2)

((µ1 − µ2)′Σ(µ1 − µ2))2
. The modified

dimensionality p∗ may be larger or smaller than the actual dimensionality p. In extreme
cases p∗ can be equal to 1 or be very large. Therefore, the sensitivity of EDC to the
learning-set size when Σ 6= Iσ2 can be greater or smaller than the sensitivity of the EDC
when populations are spherical: Σ = Iσ2.

In an analogy with expression (37) for the structurization of CM technique, we ap-
proximate the expected error rate by the following expression:

EPF ST
N ≈ Φ

−δST2 1√(
1 + 2pST1

N(δST )2

)
2N

2N−pST2

 , (38)

where pST1, pST2 are modified dimensionalities. We remind, for correct model of the
structurization δST , pST1 = p, pST2 = 0 resulting in reduction of EPF ST

N .
We suppose, if the model of the structurization does not correspond to the true one,

the modified dimensionalities may be 1 6 pST1 < ∞ and 0 6 pST2 < ∞. There are
no explicit expressions for pST1 and pST2. These parameters, however, can be estimated
by simulation. In one of experiments, the Fisher LDA was trained using N patterns from
each of two 60-variate artificial Gaussian populations with the common covariance ma-
trix of Toeplitz type. Sample CM was structured by the 4th order AR model. The mean
generalization error was obtained by averaging the results over 25 experiments. The ex-
perimental values of the mean generalization error for a set of N values are presented
by a curve 1 in Fig. 1. A good approximation of the dependence obtained is a curve 2,
calculated analytically using formula (38) with the experimentally estimated parameters
pST1 = 60 and pST2 = 5.

Simulation studies showed that for each type of the data CM structure and the model
of the structurization there exist specific values of pST1, pST2. Table 2 contains the
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Fig. 1. The generalization error versus the learning-set sizeN . Simulation (1) and analytical (2) results, asymp-
totic error (3). Dimensionality p = 60, modified dimensionalities pST1 = 60 and pST2 = 5, Machalanobis
distance δ = 3.76, covariance matrix of the populations is of Toeplitz type, structurization model is the 4th
order AR.

modified dimensionalities estimated by simulation for Circular, Toeplitz, Block-diagonal
two-category case artificial Gaussian 60-variate data models. CM is structurized by the
4th order AR, 1st order MA and Block-diagonal models. In upper rows the values of
pST1 are given, and in lower rows the values of pST2 are presented. When the 4th order
AR structurization model is applied, a relationship between the expected PMC and the
learning-set sizeN is expressed by (38) with pST1 = 60 and pST2 = 15 for the data with
CM of Circular structure; pST1 = 60 and pST2 = 5 for the data with CM of Toeplitz
structure; pST1 = 60 and pST2 = 50 for the data with CM of Block-diagonal structure.

We see, in the empirical (38), the modified dimensionalities pST1, pST2 differ for each
data type, therefore just now we can not use the formula (38) to estimate the expected
PMC if the true model of CM is not known. Moreover, the parameters pST1 and pST2

are influenced by the learning-set size N . For example, the 4th order AR model applied
for Sonar data set results pST1 = 26 and pST2 = 0 for N = 31; pST1 = 15 and
pST2 = 0 for N = 60; the Block-diagonal model gives pST1 = 44 and pST2 = 0 for
N = 31; pST1 = 14 and pST2 = 0 forN = 60. It means, the dependence of the expected
generalization error on the true dimensionality p, learning-set size N , covariance matrix,
structurization model is much more complicated.

Our analysis shows that we can not find the modified dimensionalities pST1, pST2

unique for all data types and the structurization models. Therefore, for practical use we
suggest to utilize the standard cross validation procedure in order to decide which model
performs the best. These are our arguments:

1. Formula (38) is an approximate one. It shows main tendencies in evaluation the
mean generalization error, however, our analysis presented above had shown that
this formula is not sufficiently accurate for a wide range of values of N, p, and the
data models. It is very difficult to obtain a simple, easy to use, analytical formula
for the case when the data model differs from assumptions used to design the
classification rule.
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Table 2

Modified dimensionalities pST1 (above) and pST2 (below) for dimensionality p = 60, Machalanobis distance
δ = 3.76 for Circular, Toeplitz, Block-diagonal data models. Covariance matrix structured by the 4th order
AR, 1st order MA, Block-diagonal models

Model of structurization/Data AR4 MA1 BD

Circular 60 1 60

15 0 50

Toeplitz 60 5 60

5 0 50

Block-diagonal 60 1 60

(4 blocks × 15 features) 50 0 40

2. The real world data is not Gaussian with a common covariance matrix.
3. The generalization error depends on the data parameters (pST1, pST2). These

parameters, however, are unknown.
4. Analytical formulae such as (35) and (38) allow to calculate the mean values. In

real situations in the model selection, however, we need to know the conditional
classification error. This error is a function of a random learning-set.

5. A main innovation of our approach discussed in the previous paper (Raudys and
Saudargienė, 1998) and this one, is to use an optimally stopped single layer
perceptron after the data transformation performed on a basis of the structurized
covariance matrix estimate. In this technique, we do not need to choose a proper
covariance matrix model.

Therefore, a key point of our approach is: for each concrete real world pattern recog-
nition problem to test a number of different structures of the covariance matrix, and then
to use the cross validation technique to choose the best model.

4. Simulation Experiments

4.1. A Goal and Methodology

The goal is to study the effect of various types of the structurization of the sample covari-
ance matrix on the generalization performance of the linear statistical classifier and the
single layer perceptron. In our experiments we compared generalization error of statistical
LDA and SLP, denoted by P classiiferN , with the generalization error of optimized RDA
PRDAN , our bench-mark method, and calculated mean relative efficacies of the structuriza-

tion of the covariance matrix ν =
PRDAN

P classiiferN

. Simulation experiments were performed

with ten real world data sets. We did not selected the problems purposefully to fit the
structurization assumptions considered in this paper.
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The methodology of the simulation experiments is similar to that described in our
previous work (Raudys and Saudargienė, 1998). We will shortly remind the main theo-
retical aspects of the simulation study. In a first part of our experiments, the Fisher LDA,
described by formula (1), was constructed using the various structured sample estimates
of the covariance matrix. For the purpose of the comparison with other methods we have
included the Euclidean distance classifier, the standard Fisher LDA (if n = N1 +N2 < p,
the pseudoinversion is used), and the best known linear classification method – the stan-
dard RDA with the optimal regularization parameter λ evaluated from the 50 estimates
of the generalization error obtained for 50 values of the regularization parameter.

In another part of the experiments, we applied the matrix structurization methodology
to improve the SLP classifier training process. Prior to training we used the structurized
matrix estimates to transform the populations into spherical ones. It was shown (Raudys,
1998), that SLP may become the asymptotically optimal classifier after the first training
iteration to discriminate two spherically Gaussian pattern classes. The following condi-
tions must be fulfilled: the centre of the data is moved to the zero point; symmetrical
targets t1 = 1− t2 (for a sigmoid activation function) are used if the number of the train-
ing samples from both classes is equal N1 = N2 (t1 = −t2N1/N2, if N1 6= N2); initial
weights are zeros; and a total gradient training rule is used to update the weights. Then
after the first iteration SLP performs as the Euclidean distance classifier, and in following
iterations it moves towards the classifiers of the increased complexity – RDA, and later to
the standard Fisher LDA or Fisher LDA with a pseudoinversion of the covariance matrix
if n = N1 +N2 < p.

The conditions to obtain a good, almost optimal classifier after the first training it-
eration include certain requirements for the data: the populations must be transformed
into the spherical Gaussian ones. In our analysis a linear transformation y = D−

1
2T ′x

is used to decorellate and scale the components of the feature vector x, where D is a
diagonal p × p matrix composed from eigenvalues of the sample covariance matrix S,
and T is p × p eigenvectors matrix of S. Then the covariance matrix of vectors y is an
identity matrix. The SLP, trained only one iteration, is equivalent to EDC in the trans-
formed feature space and Fisher LDA in the original feature space. Use of the structured
sample covariance matrix SST allows to incorporate the statistical hypothesis on the data
structure into the perceptron training process. The feature vectors in the new space are

found by y = D
− 1

2

ST T
′
STx, where DST and TST are diagonal eigenvalue and eigen-

vectors matrix of the structured sample covariance matrix SST . Then SLP after the first
iteration performs as Fisher LDA with the structured sample CM in the original feature
space. For example, if it is assumed that CM has Toeplitz form, SLP trained on the data

y = D
− 1

2

ToeplitzT
′
Toeplitzx after the first iteration gives the generalization performance

similar to the Fisher LDA with the Toeplitz structured CM. Although at the very be-
ginning of the training in the new feature space the SLP classifier corresponds to the
Fisher LDA in the original feature space, further SLP training may significantly reduce
the generalization error if assumptions on the data normality, common covariance matrix,
its structure are not absolutely correct. The best performance could be achieved if SLP
would be stopped optimally.
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In our experiments, the SLP classifier was trained in the original and transformed
feature space. The data rotation and scaling y = D−

1
2T ′x was performed using the

conventional and the structured estimates of the covariance matrix. The centre of the data

was moved to
1

2
(x1 + x2). SLP was initialized with zero weights and trained in a batch

mode with the increasing learning rate η = 0.2 ∗ (1.03)t, where t-number of iterations
(tmax = 500). Generalization accuracy was estimated after each training iteration, and
the training was stopped at the optimal moment determined by the lowest generalization
error.

Learning-set was constructed fromN samples selected randomly in each class (except
the Phonetic data set; in this case N samples belonged to 10 from 20 randomly chosen
speakers), and all samples of the data were used as the test set. The mean generalization
error was computed by averaging the results over 25 experiments with each size of the
learning-set.

The sample CM was structured by the models described in Section 2. The Block-
diagonal model of a general form and Block-diagonal model with structured blocks were
applied in the classification of 5 data sets for which a priori information on the size of the
blocks was available, and the Block-diagonal Markov model was investigated for 3 data
sets with the feature blocks of the equal size.

In this work, the determination of the order of the process type model and the problem
of constructing the blocks in the Block-diagonal models have not been considered. The
AR, MA, ARMA models with the fixed order parameters were applied in classifying
the data. While applying the Block-diagonal models of structurization it was assumed
that sizes of the blocks and features belonging to them are known a priori. Although the
order of the model influences the structurization of the covariance matrix, the goal of our
investigations was not to determine the type and the model’s order, but to show that the
new approach allows to obtain a minimal generalization error. The influence of the model
order on the generalization error, as well as the methodology to build the blocks may be
the subject for further research.

4.2. Data Description

We used following ten real world data sets:
Vowels data set. 800 vowels, 400 in one class, pronounced by 20 speakers, are char-

acterized by 28 spectral and cepstral features.
Mammogram data set. The data set consists of 57 benign and 29 malignant mammo-

grams, represented by 65 features. The first 18 features characterize classification (num-
ber, shape, size, etc) and the remaining 47 ones – a texture (histogram statistics, Gabor
wavelet response, etc).

Sonar data set. Two classes describe sonar signals bounced off a metal cylinder and
those bounced off a cylindrical rock (111 and 97 patterns, respectively). Each pattern is
characterised by 60 features obtained by integrating energy within a particular frequency
over a certain period of time.

Ionosphere data set. Two class 33-variate radar data is represented by 127 patterns in
the first class and 226 patterns in the second one. The targets of the radars were free elec-
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trons in the ionosphere. A “good” radar returns are those showing evidence of some type
of structure in the ionosphere, and a “bad” one returns are those that do not; their signals
pass through the ionosphere. Received signals were processed using an autocorrelation
function whose arguments are the time of a pulse and the pulse number.

Musk data set. The data set describes a set of 92 molecules of which 47 are judged
by human experts to be musks and the remaining 45 molecules are judged to be non-
musks. The 166 features that describe these molecules depend upon the exact shape of the
molecule. Because bonds can rotate, a single molecule can adopt many different shapes.
The low-energy conformations were generated and then filtered to remove highly similar
conformation. This left 476 conformations: 207 in the first class and 269 in the second
one.

Satellite image data set. The data set consists of the multispectral values of pixels in
3× 3 neighbourhood in the satellite images. The first class consists of 479 patterns, and
the second one consists of 415 vectors. The feature vector contains 36 components that
corresponds to 9 pixel values in four spectral bands.

Thyroid data set. The data set is represented by 18-variate vectors that describe 93
healthy subjects and 191 hypothyroid patients. The first 6 features are continuos, and the
remaining 12 ones are binary.

Lung noise data set. Each of two classes – healthy and pathological – are described
by 180 vectors, measured on 18 subjects. 66 spectral and cepstral features characterize
6 stages of the respiration cycle: early, middle, late inhalation and early, middle, late
expiration.

Phonetic data set. The data set consists of 400 samples, 200 in each class. 96 cepstral
features characterize consonants “m”, “n” in a context of vowels “a-a”, pronounced by
20 different speakers. Feature vector is divided into 4 blocks having 24 components each.
Learning-set is constructed from the samples belonging to 11 randomly selected speakers.

Stock data set. 92-variate feature vector describes a history of 4 days-old 23 factors
that influence the fluctuation of the share prices in the stock. 610 samples represent the
decrease in the price, and 770 samples represent the increase.

These real world data sets were not selected purposefully to fit the CM models con-
sidered in this paper. Features of some of the data sets in no way are realizations of the
stationary random process, and thus there the random process CM models can not be
applied. Nevertheless, in order to trace an influence of an accuracy of incorrect assump-
tions about the CM structure on the classification results obtained we applied the random
process models for all data sets.

Asymptotic error rates are presented in Table 3. The available samples were split into
two sets of equal size: the first set was used as the training set to estimate the unknown
parameters of the classifier, and the second one was used as the test set. The general-
ization performance was tested twice: on the training set and on the test set. Then the
sets were interchanged, and the procedure was repeated. The mean value of these four
errors was used as the asymptotic error. This method was suggested by Raudys (1976).
For more exact calculation asymptotic error rates were obtained on 5 random splits of the
data and then averaging the estimates. In SLP training process the feature vectors were
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Table 3

Estimates of the asymptotic errors

No Classif. method Blocks SLP in LDA LDA& LDA& LDA& LDA&
Features TFS by Toeplitz BD BD& BD&

Data Tconv Toeplitz Markov

1. Vowels 1×28 0.01 0.02 0.05 – – –

2. Sonar 1×60 0.11 0.17 0.21 – – –

3. Ionosphere 1×33 0.09 0.10 0.12 – – –

4. Musk 1×166 0.06 0.12 0.29 – – –

5. Satellite 1×36 0.02 0.15 0.05 – – –

6. Mammogram 1×18+ 1× 47 0.01 0.10 0.22 0.11 0.32 –

7. Thyroid 1× 6+ 1× 12 0.02 0.03 0.03 0.03 0.04 –

8. Lung noise 6× 11 0.06 0.09 0.24 0.14 0.31 0.19

9. Phonetic 4× 24 0.00 0.06 0.06 0.01 0.03 0.10

10. Stock 4× 23 0.03 0.07 0.40 0.30 0.46 0.49

transformed by linear transformation y = D−
1
2T ′x, whereD and T are diagonal eigen-

value and eigenvectors matrix of the regularized data covariance matrix S = S + λI, λ
– small positive regularization constant.

4.3. Results

The standard statistical classifiers – EDC and Fisher LDA always performed with the
lower accuracy than RDA with optimal λ. In most cases we did not obtain the improve-
ment in the generalization accuracy of the statistical LDA with the structured sample CM.
In some cases, however, we achieved positive results. The gain was obtained in classifi-
cation the Lung noise data when the model of the Block-diagonal covariance matrix, con-
sisting of six blocks of size 11×11 in diagonal, was applied: the efficacy νLDA&BD = 1.2

for N = 22, EPRDAN = 0.24; νLDA&BD = 1.31 for N = 33, EPRDAN = 0.23; but
νLDA&BD = 0.52 for N = 132, EPRDAN = 0.07. For some models and data sets the
structurization of sample CM resulted in the generalization error that was higher, however
comparable with the accuracy of RDA. For example, the gain reached 0.93 times using
the ARMA1,1 model for the Satellite image data set, N = 12, EPRDAN = 0.04, and the
efficacy was 0.89 loosing behind RDA while applying the MA1 model in classification
the Ionosphere data for N = 11, EPRDAN = 0.16. A main reason of inefficacy of the
structurization while applying the standard statistical methods lies in incorrect assump-
tions on the covariance matrix structures. The standard RDA with the optimal λ is a very
good method, and it is difficult to improve it.

In the experiments with the SLP classifier, we obtained the significant increase in the
efficacy of the structurization using the methodology in companion with the optimally
stopped SLP. There we trained the perceptron on the data transformed according the
structured estimate of the sample CM. In spite of the fact that assumptions on the covari-
ance matrix structure, the Gaussian distribution of the data as well as on the equality of



264 A. Saudargienė

the covariance matrices were not correct, the application of the structurization methodol-
ogy and the optimally stopped SLP led to the improvement of the classification accuracy
of SLP in comparison with RDA.

The results obtained applying the process type models of the structurization in SLP
training process are presented in Table 4, and the results obtained while applying the
Block-diagonal models are given in Table 5. The first two columns contain the data name
and the training set size N , the third one contains the mean values of the generalization
error of the standard RDA with the optimal regularization parameter λ. In the following
columns the relative efficacy of the different classifiers (structurizations of the covari-
ance matrix) are listed. For example, when the Block-diagonal model was applied for the
Lung data, it yielded the efficacy νSLP in TFS by TBD = 1.36, 1.62, 2.05 for N = 22,
33, 132 respectively. ARMA1,1 model resulted no improvement in the generalization
performance of LDA for the Satellite image data and learning-set sizes N = 12, 18, 36:
νLDA&ARMA1,1 = 0.93, 0.87, 0.79. After the data transformation and SLP use we ob-
tained νSLP in TFS by TARMA1,1 = 1.04, 1.15, 2.13. Roughly correct a priori information
on the data covariance matrix structure used to transform the data prior to training SLP
results the higher generalization accuracy of the classifier. It was known a priori that 96
process type features of the Phonetic data could be divided into four independent groups.
SLP, trained on the data transformed by the AR1 model, outperformed RDA up to 1.38
times: νSLP in TFS by TAR1 = 1.08, 1.38, 1.35 for the learning-set sizes N = 32, 48, 80.
Use of the Block-diagonal model with four structured blocks by the AR1 model increased
the gain up to 1.68 times: νSLP in TFS by TBD&AR1

= 1.64, 1.21, 1.68.
Usually when the learning-set is small, the model parameters are estimated inexactly,

and then the gain is not significant. The efficacy of the structurization increases with the
increase in N . For the Sonar data and learning-set N = 20 the MA2 model applied in
SLP training yielded the gain νSLP in TFS by TMA2 = 1.01, while for N = 80 the gain
was essentially higher: νSLP in TFS by TMA2 = 1.93.

There were real world data sets, for which no one of the models investigated was
suitable. An example is the Musk data, where we have not obtained the gain applying
structurization methodology neither in LDA design nor in SLP training process. Only the
ordinary transformation with the conventional sample CM and subsequent use of SLP im-
proved the classification accuracy in the large training set case: νSLP in TFS by Tconv =

1.44 for N = 184. It shows that populations do not posses a covariance matrix neither of
the process type, nor of the Block-diagonal type.

LDA with the structured sample CM results the lower generalization accuracy than
SLP trained in the transformed feature space and stopped optimally since the assump-
tions on the structurization model and Gaussian distribution of the data often do not
correspond to reality. In the training process, the single layer perceptron corrects these
crude hypothesis. Some models (e.g., ARMA2,2 for Stock data) resulted in decrease in
the accuracy even of the optimally stopped SLP. It may indicate that the data needs more
complicated model than the ones used.
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Table 4

Mean generalization error EPRDAN of standard RDA and the relative efficacies ν =
PRDA
N

Pclassiifer
N

of SLP,

trained in the original and transformed feature space using conventional CM and CM structured by Toeplitz,
Circular, 1st order AR, 4th order AR, 1st order MA, 2nd order MA, 1st-1st order ARMA, 2nd-2nd order ARMA
models (I – EPRDA, II – νSLPinOFS , III – νSLPinTFSbyTcircular , IV – νSLPinTFSbyTToeplitz , V –
νSLPinTFSbyTAR1

, VI – νSLPinTFSbyTAR4
, VII – νSLPinTFSbyTMA1

, VIII – νSLPinTFSbyTMA2
,

IX – νSLPinTFSbyTARMA1,1
, X – νSLPinTFSbyTARMA2,2

, XI – νSLPinTFSbyTconv )

Classif. method I II III IV V VI VII VIII IX X XI
Data

Vowels N=9 0.08 0.97 1.09 1.19 0.91 0.8 0.88 0.87 0.87 0.84 0.32

Vowels N=14 0.07 1.06 1.08 1.05 0.97 0.88 0.94 0.92 0.91 0.90 0.20

Vowels N=54 0.03 1.05 1.12 1.10 1.03 1.05 1.04 1.04 1.04 1.04 0.84

Mammo N=10 0.18 0.98 1.02 0.96 0.96 0.98 0.97 0.97 0.96 0.90 0.71

Mammo N=20 0.09 1.02 1.11 1.02 1.07 1.04 1.14 1.03 1.08 1.03 0.47

Mammo N=25 0.07 1.19 1.44 1.33 1.54 1.38 1.46 1.41 1.40 1.34 0.43

Sonar N=20 0.22 1.08 0.98 0.96 0.99 0.99 1.05 1.01 0.98 0.98 0.66

Sonar N=30 0.19 1.11 1.03 1.03 1.04 1.04 1.08 1.06 1.04 1.03 0.61

Sonar N=80 0.11 1.45 1.98 1.93 1.93 1.94 1.7 1.93 1.89 1.92 1.89

Ionosph N=11 0.16 1.00 1.01 0.99 1.05 1.13 1.07 1.01 1.06 1.04 0.54

Ionosph N=16 0.14 1.05 1.01 0.97 1.06 1.10 1.07 1.04 1.08 1.08 0.48

Ionosph N=66 0.10 1.31 1.35 1.32 1.29 1.33 1.27 1.30 1.29 1.30 1.23

Musk N=55 0.18 1.01 1.03 0.97 1.00 1.00 1.00 1.01 1.00 1.01 0.59

Musk N=83 0.14 0.97 1.00 1.00 0.96 0.96 0.96 0.96 0.96 0.96 0.52

Musk N=180 0.08 0.74 0.80 0.78 0.73 0.74 0.73 0.73 0.73 0.73 1.44

Satellite N=12 0.04 1.02 0.87 0.84 1.02 0.73 1.03 1.19 1.04 0.98 0.32

Satellite N=18 0.04 1.12 0.98 0.82 1.10 0.74 1.14 1.24 1.15 1.00 0.17

Satellite N=72 0.04 1.87 1.37 1.13 1.88 1.21 2.14 2.01 2.13 1.48 0.94

Thyroid N=6 0.05 1.02 0.90 0.79 0.97 1.00 1.02 1.11 1.09 1.06 0.27

Thyroid N=9 0.04 1.04 0.98 0.84 1.01 0.9 1.09 1.10 1.09 1.00 0.40

Thyroid N=36 0.03 1.57 1.55 1.45 1.54 1.52 1.72 1.67 1.67 1.60 1.14

Lung N=22 0.24 0.99 0.99 0.99 1.03 1.03 1.01 1.03 1.03 1.03 0.70

Lung N=33 0.23 1.07 1.09 1.10 1.10 1.15 1.12 1.13 1.12 1.14 0.64

Lung N=132 0.07 0.56 0.79 0.77 0.64 0.69 0.68 0.69 0.69 0.69 1.90

Phonetic N=32 0.02 1.03 0.73 0.63 1.08 0.78 0.92 0.8 0.89 0.76 0.38

Phonetic N=48 0.02 1.13 0.92 0.76 1.38 0.92 1.18 0.87 1.12 0.85 0.10

Phonetic N=80 0.02 1.03 0.83 0.88 1.35 0.95 1.14 0.95 1.03 0.95 0.46

Stock N=31 0.27 0.68 1.52 1.38 0.69 0.69 0.68 0.68 0.68 0.67 0.87

Stock N=46 0.22 0.62 1.57 1.43 0.62 0.62 0.62 0.62 0.62 0.60 0.68

Stock N=184 0.10 0.44 1.34 1.01 0.44 0.44 0.43 0.43 0.42 0.40 1.41
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Table 5

Mean generalization error EPRDAN of standard RDA and the relative efficacies ν =
PRDAV

P classiifer
N

of SLP,

trained in the transformed feature space using CM structured by BD model of a general form, BD model with
blocks structured by the process type models, BD Markov model (I – EPRDA, II – νSLPinTFSbyTBD ,
III – νSLPinTFSbyTBD&circular

, IV – νSLPinTFSbyTBD&Toeplitz
, V – νSLPinTFSbyTBD&AR1

,
VI – νSLPinTFSbyTBD&AR4

, VII – νSLPinTFSbyTBD&MA1
, VIII – νSLPinTFSbyTBD&MA2

, IX –
νSLPinTFSbyTBD&ARMA1,1

, X – νSLPinTFSbyTBD&ARMA2,2
, XI – νSLPinTFSbyTBD&Markov

)

Classif. method I II III IV V VI VII VIII IX X XI
Data

Mammo N=10 0.18 0.68 0.85 0.78 0.89 0.85 0.90 0.88 0.90 0.88 –

Mammo N=20 0.09 0.56 1.16 1.03 1.23 1.23 1.12 1.12 1.08 1.14 –

Mammo N=25 0.07 0.92 1.29 1.18 1.36 1.26 1.32 1.29 1.29 1.30 –

Thyroid N=6 0.05 0.47 0.78 0.74 0.83 0.53 0.61 0.63 0.60 0.58 –

Thyroid N=9 0.04 0.68 0.90 0.77 0.85 0.54 0.66 0.64 0.67 0.59 –

Thyroid N=36 0.03 1.61 1.84 1.75 1.69 0.83 1.34 1.22 1.33 1.01 –

Lung N=22 0.24 1.36 1.05 1.02 1.06 1.02 1.04 1.03 1.03 1.01 1.38

Lung N=33 0.23 1.62 1.11 1.10 1.08 1.06 1.07 1.07 1.06 1.06 1.64

Lung N=132 0.07 2.05 0.80 0.84 0.69 0.69 0.72 0.71 0.67 0.60 1.90

Phonetic N=32 0.02 1.01 1.53 1.38 1.64 0.74 1.14 0.88 1.07 0.71 0.42

Phonetic N=48 0.02 0.85 1.22 0.95 1.21 0.65 1.05 0.90 0.95 0.75 0.47

Phonetic N=80 0.02 1.68 1.47 1.31 1.68 1.02 1.40 1.16 1.27 1.02 0.64

Stock N=31 0.27 0.91 0.72 0.73 0.69 0.69 0.68 0.69 0.69 0.69 0.55

Stock N=46 0.22 1.00 0.65 0.65 0.61 0.62 0.60 0.62 0.61 0.62 0.44

Stock N=184 0.10 1.30 0.50 0.50 0.45 0.45 0.43 0.45 0.43 0.44 0.21

In our experiments, we used the optimal RDA regularization parameter λ and the opti-
mal stopping moment of SLP training which were determined using the test set. Therefore
we have adjusted to the test set, and both RDA and SLP results presented in Tables 4 and 5
are optimistically biased. Nevertheless, we have adjustment for both competing methods,
the RDA and SLP. Due to the significant reduction in the generalization error obtained for
some data types in 25 independent experiments one may hope that the proposed method
is an efficient tool to be used and to be studied in a further research.

5. Conclusions

In this paper we considered a usefulness of the process type and the Block-diagonal type
covariance matrix structurization to reduce the generalization error of the statistical linear
classifiers and the single layer perceptron. While applying the structurization methodol-
ogy to solve ten multidimensional real world pattern classification problems by means of
the modified liner discriminant analysis, in most cases we did not achieve a significant
gain (except for one data set with one model). For some cases only slightly worse re-
sults were obtained in comparison with RDA with an optimal regularization parameter λ.
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The efficacy of the structurization increases if the structurized matrix estimates are used
to transform the data into the spherical one, and the optimally stopped SLP is applied
afterwards. This is a new way to incorporate the statistical knowledge in SLP training
process.

In the training process, the single layer perceptron can correct crude hypothesis on the
data normality, common covariance matrix of the populations, the structurization model
– the factors that cause the low generalization accuracy of LDA. Typically, the efficacy
of the structurization increases with an increase in the learning-set size as the accuracy of
the estimated model parameters becomes higher.

The standard problem that arises while applying the structurization methodology in
the classifier design is the selection of the model to structurize the covariance matrix.
The are several arguments which do not allow to use the simplified analytical expressions
of the asymptotic PMC of Fisher LDA with the structured covariance matrix to select
the right model. Main arguments are: the formulae are derived for Gaussian populations
with common covariance matrix and the real parameters of the data are unknown to the
researcher. In general case an expression of expected PMC, suitable for all models, is not
available (yet). Moreover, it would be inaccurate for non-Gaussian case. Therefore, the
most suitable structurization model can be chosen on the basis of a priori information on
the data and the cross validation error estimation method. In reality, however, there exists
data for which no one of 18 models considered in this paper results the improvement in
the generalization accuracy. More models to structurize the covariance matrix should be
developed and investigated.

One more problem is associated with the determination of the optimal stopping mo-
ment in the SLP training. In the present paper we used the test set for this purpose as
well for the estimation of the optimal RDA regularization parameter λ. In practical work,
an additional validation set should be chosen to decide when to stop to train the SLP
classifier, and which structurization method to choose.

In this paper we used a simple, possibly statistically inefficient, statistical procedures
to estimate unknown parameters of the process and block type models. In principle, more
accurate optimal algorithms are possible, probably leading to an increase in the efficacy
of the structurization, however demanding more computer time.

In principle our simulation studies show the applicability of the structurization tech-
nique in the classifier design to solve the real world pattern classification problems. A
proper choice of the validation-set and an extension of the new methodology to multi-
category case are subjects for future research.
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Kovariacinės matricos struktūrizavimas pagal proces ↪u tipo ir
blokinius-diagonalinius modelius

Aušra SAUDARGIENĖ

Straipsnyje nagrinėjama imties kovariacinės matricos struktūrizavimo ↪itaka statistini ↪u
tiesini ↪u klasifikatori ↪u ir optimaliai apmokyto vienasluoksnio perceptrono maž ↪u mokymo
imči ↪u savybėms. Analizuojama struktūrizavimo modelio parinkimo problema. Aprašyti
proces ↪u tipo bei blokiniai diagonaliniai modeliai, pritaikyti dešimčiai reali ↪u klasifika-
vimo uždavini ↪u spr ↪esti. Nauja klasifikatori ↪u sudarymo metodika – kovariacinės matri-
cos struktūrizavimas, duomen ↪u transformavimas ↪i sferinius ir vienasluoksnio perceptrono
panaudojimas – daugumoje atvej ↪u leido gauti žym ↪u klasifikavimo klaidos sumažėjim ↪a.


