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Abstract. The problem of determination of a change point
in the properties of autoregressive sequences with unknown distri-
bution is analysed. Two robust algorithms for the estimation of a
change point when the distribution is symmetric and asymmetric
are presented.
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1. Introduction. Measurements of operational regimes
in technical and biological systems in practical situations are
usually characterized by the presence of outliers, i.e., mea-
surements with large errors. It is characteristic not only of
independent but also correlated data. The values abruptly
differing among the observed ones influence the accuracy of
statistical inferences. The problem of robust estimation of au-
toregressive parameters is reflected in a great many of papers
(e.g., Martin, 1979, 1982; Heathcote, 1983). Our aim was to
determine the robust estimates of change points in the prop-
erties of autoregressive sequences with symmetric and asym-
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metric distribution and to compare their exactness with the
maximum likelihood estimates of the change points.

2. Statement of the problem. We have a sequence
{X:} expressed by the autoregressive equation

X+ aP X, =50V, (1)
Jj=1

where {V;} denotes the sequence of mutually independent
identically distributed variables with an unknown (symmet-
ric or asymmetric) distribution P(z). The parameters of the
sequence change at an unknown instant of time u as follows:

Ai = (agl),(] = 1" .. ap)a b(l)) =

_ Al, t=...,1,2,...,u (2)
o AQ, t=u+1,...,N,...

Given the realization {z;} (¢t =1,...,N) of the random se-
quence {X:}, it is required to find the estimate @ of a change
point u.

3. Solution of the problem. Telksnys (1973), Kligiene
(1973), Lipeika (1979) assumed the distribution of the se-
quence {V;} to be normal, the problem was to find the estimate
of u yielding minimal mean risk: that is, the maximum point
of the likelihood function (Kligiené, 1973; Lipeika, 1979) or
same of the aposteriori probability density (Telksnys, 1973).

In case the distribution P(z) is not known, the realiza-
tions {z;} of the sequence {X;} may yield outliers. Hence it
is natural to determine the estimate of a change point so as
to make the influence of abruptly differing values insignificant.
Here we must separate the cases of symmetric and asymmetric
distribution of the sequence {V;}. In the case of symmetric
distribution we may use an idea of M-estimates determined
for symmetric distribution (Martin, 1982).
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M-estimate @ of change point u. (The case of sym-
metric distribution). By analogy with (Martin, 1982) we
suggest to determine M-estimates of a change point u, using a
stabilizing loss function. By an M-estimate @ of a change point
u we mean the estimate which minimizes a general function
of prediction errors

N

Swy= Y p(V\), (3)

t=p+1

where

(i) _ j=1 . 1, t=p+1,...,u,
I/t ? Z_{Q’ t:u—l—l,...,N,

p(- ) denotes the stabilizing function of the prediction errors

Vt(z). The flexible choice of this function enables one to re-
duce the influence of outliers while computing the time when
properties change. Thus the estimate @ is defined as the mi-
nimal point of the function S(u) over all feasible times of
change u.

By definition (3),

N
S = 3 A= 3 ar) e 3 Av)
t=p+1 t=p+1 t=u+1
u N )
1 (2 2\
Su+1) =3 sV + VD + S sV = (VD).
t=p+1 t=u+1
S(u+1) = S(u) + p(VEY) = p(VE). (4)

Therefore, the computation of S(u) for all feasible times of
change u = p+ 1,...,N can be recursive. To determine



J.Lipeikiené 69

S(u + 1), it is sufficient to compute p(Vu(i_)l) and p(thi)l) and
to use formula (4).

The choice of estimation function p(-). As it was
mentioned above, the function p(- ) must reduce the influence
of outliers but generally the choice is free. Martin (1979) as-
sumed p(-) to be nonnegative, symmetric and twice differ-
entiable for the estimates of autoregressive parameters were
consistent and ast'mptotically normal. We tried to use a few
most popular functions and considered the influence of esti-
mation function p(- ) on the expctness of estimates 4. For this

purpose we have used the following functions:
Huber (1964)

v Vil <1
V) = 2 kX & 5

Beaton—Tukey (1974)

175 v v
_{EA-% 4+ %), wi<a
(Vi) = 2 ( a at ? 6
pp-r{h) {0, Viisa O
Andrews (1972)
1
_ J =g cos(Vild), [Vi| > bm,
PA(Vk-) {0, |Vk| > b?T, (7)
and the square function
VE ,
p(Vi) = ',—Zk', (8)

where the constants a, b, may be chosen.
Lipeikiené (1986) presented the investigation results on
the influence of estimation function p(-) on the exactness of
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a change point M-estimates . There were simulated real-
izations of autoregressive sequences with e-contaminated dis-
tribution P(z) = (1 — ¢)N(0,1) + eN(0,0%) and abruptly
changing parameters A4;(2). Mean square devitation A of the
estimate u -

1 n
= — — (k)2 9
A " k§=1(u ut®)?, (9)

where n is the number of generated realization, u is the change
point, @(® is the change-point M-estimate in the k-th realiza-
tion, was used as a measure of exactness. We considered the
situations, when a change of parameters was small, more sig-
nificant and large. In all these situations the best estimates
of a change point were obtained when Huber estimation func-
tion py, (5) was used. It must be noted that in the tables of
A (Lipeikiené, 1986) there is no great difference between the
least square estimates and M-estimates of a change-point. We
can see some gain of using M-estimates when contamination
is greater (e.g., when £ = 0.2,0.5). For the case of asymmetric
distribution the results are different.

Functional least square estimate of a change point.
(The case of asymmetric distribution). We use an idea of func-
tional least square estimates of the autoregressive parameters
(Heathcote, 1983), which are introduced for random sequences
with asymmetric distribution. Thus we define the functional
least square estimate u* of a change point v as a minimum
point of the functional

N )
LN(u,s):—szlogi(N— )Y explisV), (10)
t=p+1

where u = p+1,..., N and s-real parameter from an interval
S, which does not include the origin s = 0.
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Thus we must minimize the functional
Ly(u,s) = —s"2log{U%(u,s) + Vi(u,s)}, (11)

where

Un(u,s) { Z cossV( ) ¢ Z cos aV( )} (12)

j=p+1 j=u+1
1 u N
Vn(u,s) = —[ Z sinst(l)—i— Z sinst(m}, (13)
N-rti it j=utl

and compute Vj(l) from the equation (1):

X,—Zp: a{V X,_;
V(l) i= ll,i
using the parameters A before the adrmtted change point
v and the parameters A, after point u. Thus, computing
Ln(u, s) over all feasible change points u, we get a set {u*(s),
s € S} = argmin Ly(u,s) and it remains to choose an
u=p+1,.,N

optimal meaning s;. We shall discuss this question further.

The recurrent formulas reduce the amount of computa-

tion what follows from the definition of L x(u, s). Let us define

UN(U,S) =
! B (u S)
N\U,3)s

1
AN u,s),
( )

Vn(u,s) =

le.,
u N
An(u,s) = Z cos st(‘l) + Z cos SL'}(Z), (14)
J=p+1 J=u+l1
u N
By(u,s)= Y sinsVV4+ 3 sins¥P. (15)

j=p+1 j=uti
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Thus

An(u+1,s) = An(u, s’) + cos sVu(_li_)1 — cos SVu(-Q;—)r (16)
By analogy

Bn(u+1,s) = By(u,s) + sin SVIEi)l —sin thfi)l. (17)

Computing Ly(u,s) over all feasible v = p+1,...,N and
using formulas (16), (17), we reduce significantly the compu-
tation amount.

Recall that for computing An(u,s) and Bn(u,s) begin-
ning from v = p + 1 we must use real initial conditions

N .
An(p,s) = Z cos th(z), (18)
t=p+1
N
By(p,s)= Y sinsV? (19)
t=p+1

for the true computation of Ln(u,s).

The choice of parameter s. After determination of the
set {U*,s € S} we must choose s; from a set S. It is natural
to choose s; optimal in a sense of mean square deviation of
the estimate u = u*(s;). To get an explicit expression of the
mean square deviation of the estimate %, we have used the
method of mathematical simulation. Namely, we simulated n
realizations of random sequences with parameters changing at
any point u; (parameters were assumed to be known). For
every realization we determine u*(s) for every s € S and, as
uy is known, we determine the optimal si, i.e., such s which
minimizes the deviation

A = Z(u,(s) —uyp)2. (20)
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Then we use s; to determine % in the realization investigated.

4. Simulation results. In order to investigate the per-
formance of both methods for the detection of a change point
(M-estimate and functional least square estimate), a simula-
tion study (100 replications) was performed for samples of the
size N = 1000. The samples were generated by the autore-
gressive model (1) with different symmetric and asymmetric
distributions. The exactness of estimates was investigated by
the calculation of the mean square deviation (9) of three es-
timates: M-estimates, functional least square estimates and
ordinary least square estimates. It is interesting to see the
behaviour of M-estimates in the cases of asymmetric distribu-
tion. Let us consider two typical examples.

Example 1. The samples were generated by the fourth-

order autoregressive model with the parameters 4; = (a(ll) =

1, oV = 1.06, a{) = 0.42, a{) = 0.2, b® = 1) before a
change moment v = -500, and with the parameters A, =
(@? =07, a? =1.02, a!® =0.2, a{¥ =0.32, b® =1)af
ter a change point. We simulated realizations with the follow-
ing distributions: normal x2 (k = 2,3,4), e-contaminated
0.9N(0,1) + 0.1N(10,10) and lognormal. In Table 1 you will
find our result on the meanings of deviation A of the three
estimates for all these distributions. M-estimates were com-
puted using Huber function (5). The meanings of A in Table 1
show functional least square estimates to be much better than
least square and M-estimates, though the results for normal
distribution are opposite.

Example 2. The samples were generated by the second-
order autoregressive model with the parameters 4; = (a(ll) =
0.9, a(21) = 0.7, b = 1) before a change moment u = 500,
and with the parameters A, = (a(lz) = 0.7, ag2) =0.7, b =
1) after a change point u. The simulation study was the same.
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Table 1. Meanings of deviation A

A
Distribution 81 of of least |of functional
|M-estimates | square | last square
estimates | estimates
Normal 1 28 22 25
Normal 0.5 28 22 23
Normal 0.05 28 22 22
% 0.5 22 29 17
% 0.5 32 23 20
X2 0.2 40 24 21
c-contaminated
0.9N(0, 1)+ |1 15 31 7
0.1N(10,10)

Lognormal |1 20 31 11

The results are presented in Table 2. According to them,
we can make similar conclusions: in the presence of asym-
metric error distribution a functional least square estimate
performs much better than an ordinary least square estimate
or an M-estimate.

s1 was chosen according to the simulation method de-
scribed in §3. The interval S from whi¢h we choose s; was
(0.05,3). The simulation investigation showed that the best
interval S for searching the optimal s; is S = [0.05,1.5] be-
cause A considerably increases if s; takes meanings outside
this interval.

Similar results were obtained in all the investigated situ-
ations.

5. Conclusions. The introduced method of determin-
ing a change point in the properties of autoregressive sequen-
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Table 2. Meanings of deviation A

A
Distribution S1 of of least |of functional
M-estimates | square | last square
estimates | estimates
Normal 1 50 43 57
Normal 0.5 50 43 57
X3 1 43 39 31
% 0.75 79 65 42
X3 0.35 43 39 31
e-contaminated
0.9N(0,1)+ |1 18 59 12
0.1N(10,10)

Lognormal 1 32 48 18

ces extend the opportunities of the autoregressive model for

the solution of practical problems. The simulation results
showed least square estimates to be not very sensitive to a
small number of outliers when the distribution of a sequence is
symmetric. However, the use of robust functional least square
estimates for the determination of a change point in the prop-
erties of autoregressive sequences with asymmetric distribu-
tion is evident.
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