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Abstract. The problem of determination of a change point 

in the properties of autoregressive sequences with unknown distri
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1. Introduction. Measurements of. operational regimes 
in technical and biological systems in practical situations are 
usually characterized by the presence of outliers, i.e., mea
surements with large errors. It is characteristic not only of 
independent but also correlated data. The values abruptly 
differing among the observed ones influence the accuracy of 
statistical inferences. The problem of robust estimation of au
toregressive parameters is reflected in a great many of papers 
(e.g., Martin, 1979, 1982; Heathcote, 1983). Our a.im was to 
determine the robust estimates of change points in the prop
erties of autoregressive sequences with symmetric and asym-
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metric distriQution and to compare their exactness with the 
maximum likelihood estimates of the change points. 

2. Statement of the problem. We have a sequence 
{Xt} expressed by the autoregressive equation 

p 

X + '" (i)X - b(i)TT t ~aj t-j - Vt, (1) 
j=l 

where {lit} denotes the sequence of mutually independent 
identically distributed variables with an unknown (symmet
ric or asymmetric) distribution P(z). The parameters of the 
sequence ch~nge at an unknown instant of time u as follows: 

A · - ( (i) (. - 1 ) b( i») -z - a j , J - , ... ,p, -

{ AI, t = ... ,1,2, ... ,u 
= A2 , t = u + 1, ... , N, ... 

(2) 

Given the realization {xt} (t = 1, ... , N) of the random se
quence {Xt}, it is required to find the estimate u of a change 
point u. 

3. Solution of the problem. Telksnys (1973), Kligiene 
(1973), Lipeika (1979) assumed the distribution of the se
quence {lit} to be normal, the problem was to find the estimate 
of u yielding minimal mean risk: that is, the maximum point 
of the likelihood function (Kligiene, 1973; Lipeika, 1979) or 
same of the aposteriori probability density (Telksnys, 1973). 

In case the distribution P( z) is not known, the realiza
tions {xt} of the sequence {Xt} may yield outliers. Hence it 
is natural to determine the estimate of a change point so as 
to make the influence of abruptly differing values insignificant. 
Here we must separate the cases of symmetric and asymmetric 
distribution of the sequence {lit}. In the case of symmetric 
distribution we may use an idea of M-estimates determined 
for symmetric distribution (Martin, 1982). 
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M-estimate u of change point u. (The case of sym
metric distribution). By analogy with (Martin, 1982) we 
suggest to determine M-estimates of a change point u, using a 
stabilizing loss function. By an M-estimate u of a change point 
u we mean the estimate which minimizes a general function 
of prediction errors 

where 

N 

S(u) = L p(~(i»), 
t=p+l 

. {I, 
z = 2 , 

t=p+1, ... ,u, 
t=u+1, ... ,N, 

(3) 

p(. ) denotes the stabilizing function of the prediction errors 
~(i). The flexible choice of this function enables one to re
duce the influence of outliers while computing the time when 
properties change. Thus the estimate u is defined as the mi
nimal point of the function S( u) over all feasible times of 
change u. 

By definition (3), 

NuN 

S(u) = L p(Vt(i») = L p(~(l») + L p(VP»), 
t=p+l t=p+l t=u+l 

u N 

S(u + 1) = L p(l~(l») + P(V~~l) + L p(VP») - P(V~~lY' 
t=p+l t=u+l 

Therefore, the computation of S( u) for all feasible times of 
change u = p + 1, ... 1 N can be recursive. To determine 
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S(u + 1), it is sufficient to compute P(V~~l) and P(V~~l) and 
to use formula (4). 

The choice of estimation function p(.). As it was 
mentioned above, the function p(. ) must reduce the influence 
of outliers but generally the choice is free. Martin (1979) as
sumed p(.) to be nonnegative, symmetric and twice differ
entiable for the estimates of autoregressive parameters were 
consistent and as3'mptotically normal. We tried to use a few 
most popular functions and considered the influence of esti
mation function p(. ) on the exfdness of estimates U. For this 
purpose we have used the following functions: 
Huber (1964) 

Beaton--Tukey (1974) 

Andrews (1972) 

and the square function 

IVkl ~ 1, 
IVkl > 1, 

IVkl ~ a, 
IVkl > a, 

IVkl ~ b7r, 
IVkl > b-rr, 

where the constants a, b, 1 may be chosen. 

(5) 

(6) 

(7) 

(8) 

Lipeikiene (1986) presented the investigation results on 
the influence of estimation function p(. ) on the exactness of 
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a change point M-estimates U. There were simulated real
izations of autoregressive sequences with E-contaminated dis
tribution P(z) = (1 - e:)N(O, l) + e:N(0,a2 ) and abruptly 
changing parameters Ai(2). Mean square devitation ~ of the 
estimate u 

~= (9) 

where n is the number of generated realization, 1l is the change 
point, u(k) is the change-point M-estimate in the k-th realiza
tion, was used as a measure of exactness. We considered the 
situations, when a change of parameters was small, more sig
nificant and large. In all these situations the best estimates 
of a change point were obtained when Huber estimation func
tion PHu (5) was used. It must be noted that in the tables of 
~ (Lipeikiene, 1986) there is no great difference between the 
least square estimates and M-estimates of a change-point. We 
can see some gain of using M-estimates when contamination 
is greater (e.g., when e: = 0.2,0.5). For the case of asymmetric 
distribution the results are different. 

Functional least square estimate of a change point. 
(The case of asymmetric distribution). We use an idea offunc
tionalleast square estimates of the autoregressive parameters 
(Heathcote, 1983), which are introduced for random sequences 
with asymmetric distribution. Thus we define the functional 
least square estimate 1l* of a change point 1l as a minimum 
point of the functional 

N 

LN(1l,S)=-S210g j(N-p)-1 L exp(isVt(i»)j2, (10) 

t=p+l 

where u = p + 1, ... , Nand s-real parameter from an interval 
S, which does not .include the origin s = O. 
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Thus we must minimize the functional 

where 

u N 

VN(U,S) = N ~ [L sinsVj(I) + L sinsVp)], (13) 
P j=p+1 j=u+1 

and compute VP) from the equation (1): 
..f':... (i) 

X t - L.J aj Xt-j 

V(i) __ ---'J:...." =-:-1.,...,.,-__ 
j - . b(i) , 

using the parameters Al before the admitted change point 
u and the parameters A2 after point u. Thus, cOIl'lputing 
LN(U,.s) over all feasible change points u, we get a set {u*(s), 
s E S} = argmin LN(U,S) and it remains to choose an 

u=p+I, ... ,N 
optimal meaning 81. We shall discuss this question further. 

The recurrent formulas reduce the amount of computa
tion what follows from the definition of L N ( u, s). Let us define 

l.e., 
u N 

AN(u,s) = E cos 8VP) + L cos 8VP), (14) 
j=p+l j=u+l 

u N 
BN(U~ s) = L sin .sV;{lj + E sin sVj(2). (15) 

j=p+l j=a+l 
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Thus 

AN(U + 1,8) = AN(U,8') + cos SV~~l - cos SV~~l. (16) 

By analogy 

B ( 1) - B ( ) . V(l) . 'V(2) N U + ,8 - N U,S + sm s u+1 - sm 8 u+1· (17) 

Computing LN(U,S) over all feasible U = P + 1, ... ,N and 
using formulas (16), (17), we reduce significantly the compu
tation amount. 

Recall that for computing AN( U, s) and B N( U, s) begin
ning from U = P + 1 we must use real initial conditions 

N 

AN(p,s) ~ L cos sVP), 
t=p+1 

N 

BN(p, s) = L sin sVP) 
t=p+1 

for the true computation of LN(U,S). 

(18) 

(19) 

The choice of parameter s. After determination of the 
set {U*, 8 E S} we must choose 81 from a set S.· It is natural 
to choose 81 optimal in a sense of mean square deviation of 
the estimate u = U*(Sl). To get an explicit expression of the 
mean square deviation of the estimate U, we have used the 
method of mathematical simulation. Namely, we simulated n 
realizations of random sequences with parameters changing at 
any point U1 (parameters were assumed to be known). For 
every realization we determine u*(s) for every s E S and, as 
U1 is known, we determine the optimal Sl, i.e., such s which 
minimizes the deviation 

n 

~= L(Ui(S)-U1)2. (20) 
i=l 
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Then we use Sl to determine u in the realization investigated. 

4. Simulation results. In order to investigate the per
formance of both methods for the detection of a change point 
(M-estimate and functional least square estimate), a simula
tion study (100 replications) was performed for samples of the 
size N = 1000. The samples were generated by the autore
gressive model (1) with different symmetric and asymmetric 
distributions. The exactness of estimates was investigated by 
the calculation of the mean square deviation (9) of three es
timates: M-estimates, functional least square estimates and 
ordinary least square estimates. It is interesting to see the 
behaviour of M-estimates in the cases of asymmetric distribu
tion. Let us consider two typical examples. 

Example 1. The samples were generated by the fourth
order autoregressive model with the parameters Al = (ail) = 
1, a~1) = 1.06, a~1) = 0.42, ail) ~ 0.2, b(l) = 1) before a 
change moment u = ·500, and with the parameters A2 = 
(ai2) = O. 7, a~2) = 1.02, a~2) = 0.2, ai2) = 0.32, b(2) = 1) "af
ter a change point. We simulated realizations with the follow
ing distributions: normal X~ (k = 2,3,4), c;-contaminated 
0.9N(0, 1) + 0.lN(10, 10) and lognormal. In Table 1 you will 
find our result on the meanings of deviation .6. of the three 
estimates for all these distributions. M-estimates were com
puted using Huber function (5). The meanings of .6. in Table 1 
show functional least square estimates to be much better than 
least square and M-estimates, though the results for normal 
distribution are opposite. 

Example 2. The samples were generated by the second
order autoregressive model with the parameters Al = (ail) = 

0.9, a~1) = 0.7, b(l) = 1) before a change moment u = 500, 

and with the parameters A2 = (ai2) = O. 7, a~2) = 0.7, b(2) = 
1) after a change point u. The simulation study was the same. 



74 RobtiSt estimation of a change point 

Table 1. Meanings of deviation .6. 

.6. 

Distribution S1 of of least of functional 
M -estimates square last square 

estimates estimates 
Normal 1 28 22 25 
Normal 0.5 28 22 23 
Normal 0.05 28 22 22 

X~ 0.5 22 29 17 

X~ 0.5 32 23 20 

X~ 0.2 40 24 21 
c;-contaminated 

0.9N(0,1)+ 1 15 31 7 
0.IN(10, 10) 
Lognormal 1 20 31 11 

The results are presented in Table 2. According to them, 
we can make similar conclusions: in the presence ofasym
metric error distribution a functional least square estimate 
performs much better than an ordinary least square estimate 
or an M -estimate. 

S1 was chosen according to the simulation method de
scribed in §3. The interval S from which we choose S1 was 
(0.05,3). The simulation investigation showed that the best 
interval S for searching the optimal S1 is S = [0.05,1.5] be
cause .6. considerably increases if 81 takes meanings outside 
this interval. 

Similar results were obtained in all the investigated situ
ations . 

.5. Conclusions. The introduced method of determin
ing a change point in the properties of autoregressive sequen-
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Table 2. Meanings of deviation ~ 

~ 

Distribution S1 of of least of functional 
M -estimates square last square 

estimates estimates 
Normal 1 50 43 57 
Normal 0.5 50 43 57 

X~ 1 43 39 31 
X~ 0.75 79 65 42 
X~ 0.35 43 39 31 

c-contaminated 
0.9N(0,1)+ 1 18 59 12 
0.lN(10, 10) 
Lognormal 1 32 48 18 

ces extend the opportunities of the autoregressive model for 
the solution of practical problems. The simulation results 
showed least square estimates to be not very sensitive to a 
small number of outliers when the distribution of a sequence is 
symmetric. However, the use of robust functional least square 
estimates for the determination of a change point in the prop
erties of autoregressive sequences with asymmetric distribu
tion is evident. 
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