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Abstract. This paper presents several results associated with the Wright’s generalized hyperge-
ometric function, depicting their interesting characterization properties. Special cases are also
pointed out.
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1. Introduction and Preliminaries

Let E be the class of functions of the form

f(z) = z +
∞∑
n=2

anz
n, (1.1)

which are regular and univalent in the open unit disk U = {z: |z| < 1}. Let S(A,B)

represent the class of functions f(z) ∈ E satisfying the inequality∣∣∣∣
(
zf ′(z)/f(z)

)
− 1

A−B
(
zf ′(z)/f(z)

)∣∣∣∣ < 1 (z ∈ U), (1.2)

where −1 6 B < A 6 1, and−1 6 B 6 0.
Also, a function f(z) ∈ E is in the class K(A,B), if and only if zf ′(z) ∈ S(A,B).

One may refer to Srivastava and Shigeyoshi Owa (1992) for aforecited definitions and
other related details. The Wright’s generalized hypergeometric function (Srivastava and
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Manocha, 1984) is defined by

·pΨq[z] = pΨq

[
(λ1, A1), . . . , (λp, Ap);

(µ1, A1), . . . , (µq, Bq);
z

]
=
∞∑
n=0

{ p∏
i=1

Γ(λi +Ain)

}{ q∏
j=1

Γ(µj +Bjn)

}−1
zn

n!
, (1.3)

where the coefficientsAi (i = 1, . . . , p) and Bj (j = 1, . . . , q) are positive real numbers
such that

1 +

q∑
j=1

Bj −
p∑
i=1

Ai > 0.

The function ·pΨq[z] reduces to the generalized hypergeometric function pFq[z] when
Ai = 1 (i = 1, . . . , p) and Bj = 1 (j = 1, . . . , q) in (1.3).

An integral operator Jγ(f) is defined by Bernardi (1969)

Jγ(f) =
γ + 1

zγ

∫ z

0

tγ−1f(t) dt (γ > 0). (1.4)

A generalization of (1.4) was introduced in (Jung et al., 1993) and is defined by

φαγ f(z) =

(
α+ γ

γ

)
α

zγ

∫ z

0

(
1− t

z

)α−1

tγ−1f(t) dt, (α > 0, γ > 0). (1.5)

The linear operator TAC (a, c) studied by Raina (1997) (which is a generalization of
Carlson–Shaffer’s linear operator (Carlson and Shaffer, 1984)) defined by means of the
usual convolution ∗ as

TAC (a, c)f(z) = θAC(a, c; z) ∗ f(z) (f ∈ E), (1.6)

where

θAC(a, c; z) =
Γ(c)

Γ(a)
z 2Ψ1

[
(a,A), (1, 1);

(c, C);
z

]
.

The operator L(a, c) is defined by Carlson and Shaffer (1984)

L(a, c)f(z) = θ1
1(a, c) ∗ f(z) = T 1

1 (a, c)f(z). (1.7)

It is easy to verify that the functionsK(A,B) and S(A,B) are connected by the relation

K(A,B) = T 1
1 (1, 2)S(A,B). (1.8)

In this paper we present various results involving the Wright’s generalized hypergeomet-
ric function and study some interesting characterization properties associated with certain
subclasses of analytic functions. Special cases of our results are also pointed out.
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2. Characterization Properties

We first state the following results due to Raina (1996), which shall be used in the sequel.

Lemma 1. Let the Wright’s generalized hypergeometric function pΨq[z] defined by (1.3)
satisfy the condition∣∣∣∣∣∣∣∣

zpΨ
′
q

[
(λi, Ai)1,p;

(µj , Bj)1,q;
z

]
·pΨq

[
(λi, Ai)1,p;

(µj , Bj)1,q;
z

]
∣∣∣∣∣∣∣∣ <

A−B
1 + |B| (z ∈ U), (2.1)

for −1 6 B < A 6 1, −1 6 B 6 0. Then z∆ pΨq[z] ∈ S(A,B), where

∆ =

{ p∏
i=1

Γ(λi)

}−1{ q∏
j=1

Γ(µj)

}
. (2.2)

Lemma 2. Let the Wright’s generalized hypergeometric function pΨq[z] defined by (1.3)
satisfy the condition (2.1) for z ∈ U , and −1 6 B < A 6 1, −1 6 B 6 0. Then

z∆ p+1Ψq+1

[
(λi, Ai)1,p, (1, 1);

(µj , Bj)1,q, (2, 1);
z

]
∈ K(A,B), (2.3)

where ∆ is given by (2.2).

Lemma 3. Let f(z) be defined by (1.1), satisfy the condition

∣∣∣∣zf ′(z)

f(z)
− 1

∣∣∣∣1−h ∣∣∣∣zf ′′(z)

f ′(z)

∣∣∣∣ < (A−B)(2 +A+A2)h

(1 + |B|)(1 +A)2h
(z ∈ U), (2.4)

for fixed constantsA, B and h, such that−1 6 B < A 6 1, −1 6 B 6 0, h > 0. Then
f(z) ∈ S(A,B).

Now we establish the following results depicting the characterization properties of the
function pΨq[z] defined by (1.3).

Lemma 4. Let the Wright’s generalized hypergeometric function pΨq[z] defined by (1.3)
satisfy the condition∣∣∣∣∣∣∣∣∣

zpΨ
′′
q

[
(λi, Ai)1,p;

(µj , Bj)1,q;
z

]
·pΨ′q

[
(λi, Ai)1,p;

(µj , Bj)1,q;
z

]
∣∣∣∣∣∣∣∣∣ <

(A−B)(2 +A+A2)

(1 + |B|)(1 +A)2
(z ∈ U), (2.5)
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for −1 6 B < A 6 1, −1 6 B 6 0. Then

z∇ p+1Ψq+1

[
(λi +Ai, Ai)1,p, (1, 1);

(µj +Bj , Bj)1,q, (2, 1);
z

]
∈ S(A,B), (2.6)

where

∇ =

{ p∏
i=1

Γ(λi +Ai)

}−1{ q∏
j=1

Γ(µj +Bj)

}
. (2.7)

Proof. Consider the function P (z) defined by

P (z) =
{
· pΨq[z]−∆−1

}
∇.

It follows then that P (z) ∈ E and satisfies∣∣∣∣zP ′′(z)

p′(z)

∣∣∣∣ =

∣∣∣∣zpΨ′′q [z]

·pΨ′q[z]

∣∣∣∣ < (A−B)(2 +A+A2)

(1 + |B|)(1 +A)2
(z ∈ U).

Using Lemma 3, it follows then that P (z) ∈ S(A,B).
That is∫ z

0

p(t)

t
dt ∈ K(A,B)

=⇒∇
∫ z

0

t−1
{
· pΨq[t]−∆−1

}
dt ∈ K(A,B)

=⇒ T 1
1 (1, 2)

{
∇ zp+1Ψq+1

[
(λi +Ai, Ai)1,p, (1, 1);

(µj +Bj , Bj)1,q, (2, 1);
z

]}
∈ K(A,B).

Applying the inverse operator T 1
1 (2, 1) on both sides, then by virtue of the relation (1.8),

we arrive at the desired result of Lemma 4.

Lemma 5. Let f(z) be defined by (1.1), and f(z) ∈ S(A,B). Then

φαγ f(z) ∈ S(A,B), for α > 0, γ > −1. (2.8)

Proof. Let f(z) ∈ S(A,B). Then∣∣∣∣∣
(
zf ′(z)/f(z)

)
− 1

A−B
(
zf ′(z)/f(z)

)∣∣∣∣∣ < 1.

It then follows that

∞∑
n=2

{
(n− 1)− (A−Bn)

}
an 6 (A−B). (2.9)
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We have from (1.1) and (1.5) that

φαγ f(z) = z +
∞∑
n=2

σ(n)anz
n (z ∈ U),

where

σ(n) =
(1 + γ)n−1

(1 + α+ γ)n−1
(n > 2). (2.10)

In order to show that φαγ f(z) ∈ S(A,B), it is sufficient to show that (in view of (1.2))

∣∣∣∣∣∣∣∣
[(
z
d

dz
φαγ f(z)

)
/
(
φαγ f(z)

)]
− 1

A−B
[(
z
d

dz
φαγ f(z)

)
/
(
φαγ f(z)

)]
∣∣∣∣∣∣∣∣ < 1.

That is

∞∑
n=2

{
(n− 1)− (A−Bn)

}
anσ(n) 6 A−B. (2.11)

We observe that for α > 0, γ > −1, the function σ(n) is a decreasing function of
n (n > 2), and it follows that

0 < σ(n) 6 σ(2) < 1. (2.12)

The assertion (2.11) follows easily from (2.9) and (2.12), and the proof is complete.

Lemma 6. Let f(z) be defined by (1.1), and f(z) ∈ K(A,B). Then

φαγ f(z) ∈ K(A,B), for α > 0, γ > −1. (2.13)

Proof. Let f(z) ∈ K(A,B), then zf ′(z) ∈ S(A,B). Using Lemma 5, we have then
φαγ (zf ′(z)) ∈ S(A,B). It is easy to verify that

z
d

dz

(
φαγ f(z)

)
= φαγ

(
zf ′(z)

)
=⇒ z

d

dz

(
φαγ f(z)

)
∈ S(A,B)

=⇒ φαγf(z) ∈ K(A,B),

which proves Lemma 6.
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3. Further Characterization Properties

Our characterization theorem for a class of Wright’s generalized hypergeometric func-
tions is contained in the following.

Theorem 1. Let the Wright’s generalized hypergeometric function pΨq[z] defined by
(1.3) satisfy the condition (2.1) for z ∈ U . Then

z∆1 · p+1Ψq+1

[
(λi, Ai)1,p, (γ + 1, 1);

(µj , Bj)1,q, (γ + α+ 1, 1);
z

]
∈ S(A,B) (3.1)

for α > 0, γ > −1, where

∆1 =
∆ Γ(1 + α+ γ)

Γ(1 + γ)
, (3.2)

and ∆ is given by (2.2).

Proof. In view of Lemma 1, we have z∆ pΨq[z] ∈ S(A,B). Then, we find that

φαγ
(
z∆ pΨq[z]

)
= ∆

(
α+ γ

γ

)
α

zγ

∫ z

0

(
1− t

z

)α−1

tγpΨq[t] dt.

Evaluating the integral (by using the definition (1.3)), we obtain

φαγ (z∆pΨq[z]) = z∆1 · p+1Ψq+1

[
(λi, Ai)1,p, (γ + 1, 1);

z
(µj , Bj)1,q, (γ + α+ 1, 1);

]
,

where ∆1 is given by (3.2). Applying Lemma 5 to z∆pΨq[z], we arrive at once to the
assertion (3.1) of Theorem 1.

REMARK 1. If A = 1− 2ρ, and B = −1, then the class of functions

S(A,B) = S(1− 2ρ,−1) = S∗(ρ), (3.3)

represents the class of functions in E which are starlike of order ρ (0 6 ρ < 1). By
setting the parameters in (1.3) as

Ai = 1 (i = 1, . . . , p), Bj = 1 (j = 1, . . . , q), (3.4)

and noting that

· pΨq

[
(λ1, 1), . . . , (λp, 1);

z
(µ1, 1), . . . , (µq, 1);

]
= ∆pFq[z], (3.5)
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where ∆ is given by (2.2), then by virtue of the specializations (3.3) with (ρ = 0), (3.4),
(3.5) and α = 1, Theorem 1 corresponds to the known result (Srivastava and Owa, 1985,
p. 200, Theorem 1).

For γ = 0, α = 1, Theorem 1 gives the following result.

COROLLARY 1. Let the Wright’s generalized hypergeometric function pΨq[z] defined by
(1.3) satisfy the condition (2.1) for z ∈ U . Then

z∆ p+1Ψq+1

[
(λi, Ai)1,p, (1, 1);

z
(µj , Bj)1,q, (2, 1);

]
∈ S(A,B), (3.6)

where ∆ is given by (2.2).

Next we prove the following.

Theorem 2. Let the Wright’s generalized hypergeometric function pΨq[z] defined by
(1.3) satisfy the condition (2.1) for z ∈ U . Then

z∆1 · p+2Ψq+2

[
(λi, Ai)1,p, (γ + 1, 1), (1, 1);

z
(µj , Bj)1,q, (γ + α+ 1, 1), (2, 1);

]
∈ K(A,B), (3.7)

for α > 0, γ > −1, where ∆1 is given by (3.2).

Proof. In view of Lemma 2, we have

z∆ p+1Ψq+1

[
(λi, Ai)1,p, (1, 1);

z
(µj , Bj)1,q, (2, 1);

]
∈ K(A,B).

Then

φαγ

{
z∆ p+1Ψq+1

[
(λi, Ai)1,p, (1, 1);

z
(µj , Bj)1,q, (2, 1);

]}

= ∆

(
α+ γ

γ

)
α

zγ

∫ z

0

(
1− t

z

)α−1

tγ p+1Ψq+1[t]dt.

Evaluating the integral (by using the definition (1.3), we obtain

φαγ

{
z∆p+1Ψq+1

[
(λi, Ai)1,p, (1, 1);

z
(µj , Bj)1,q, (2, 1);

]}

= z∆1· p+2Ψq+2

[
(λi, Ai)1,p, (γ + 1, 1), (1, 1);

z
(µj , Bj)1,q, (γ + α+ 1, 1), (2, 1);

]
,
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where ∆1 is given by (3.2).

Applying Lemma 6 to z∆ p+1Ψq+1

[
(λi, Ai)1,p, (1, 1);

z
(µj , Bj)1,q, (2, 1);

]
, we are lead to the as-

sertion (3.7) of Theorem 2.
For γ = 1, α = 1, Theorem 2 gives the following result.

COROLLARY 2. Let the Wright’s generalized hypergeometric function pΨq[z] defined by
(1.3) satisfies the condition (2.1) for z ∈ U . Then

z∆ p+1Ψq+1

[
(λi, Ai)1,p, (1, 1);

z
(µj , Bj)1,q, (3, 1);

]
∈ K(A,B), (3.8)

where ∆ is given by (2.2).

REMARK 2. In view of the parametric substitutions (3.4), and the fact that forA = 1−2ρ

and B = −1, the class of functions

K(A,B) = K(1− 2ρ,−1) = K∗(ρ), (3.9)

represents the class of all convex functions f(z) ∈ E, of order ρ (0 6 ρ < 1), then Corol-
lary 2 on using (3.5) and (3.9) (with ρ = 0) corresponds to the known result (Srivastava
and Owa, 1985, p. 201).

Finally, we prove the following characterization theorem.

Theorem 3. Let the Wright’s generalized hypergeometric function pΨq[z] defined by
(1.3) satisfy the condition (2.5) for z ∈ U . Then

z∇p· p+2Ψq+2

[
(λi +Ai, Ai)1,p, (γ + 1, 1), (1, 1);

z
(µj +Bj , Bj)1,q, (γ + α+ 1, 1), (2, 1);

]
∈ S(A,B), (3.10)

for α > 0, γ > −1, where

∇1 =
∇Γ(1 + α+ γ)

Γ(1 + γ)
, (3.11)

and∇ is given by (2.7).

Proof. In view of Lemma 4, we have

z∇ · p+1Ψq+1

[
(λi +Ai, Ai)1,p, (1, 1);

z
(µj +Bj , Bj)1,q, (2, 1);

]
∈ S(A,B).
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Then we find that

φαγ

{
z∇ p+1Ψq+1

[
(λi +Ai, Ai)1,p, (1, 1);

z
(µj +Bj , Bj)1,q, (2, 1);

]}

= ∇
(
α+ γ

γ

)
α

zγ

∫ z

0

(
1− t

z

)α−1

tγ p+1Ψq+1[t]dt.

Evaluating the integral (by using the definition (1.3)), we obtain

φαγ

{
z∇ p+1Ψq+1

[
(λi +Ai, Ai)1,p, (1, 1);

z
(µj +Bj , Bj)1,q, (2, 1);

]}

= z∇1 · p+2Ψq+2

[
(λi +Ai, Ai)1,p, (γ + 1, 1), (1, 1);

z
(µj +Bj , Bj)1,q, (γ + α+ 1, 1), (2, 1);

]
,

where∇1 is given by (3.11).

Applying Lemma 5 to the function z∇ p+1Ψq+1

[
(λi +Ai, Ai)1,p, (1, 1);

z
(µj +Bj , Bj)1,q, (2, 1);

]
, we

get the assertion (3.10) of Theorem 3.

For Ai = 1 (i = 1, . . . , p), Bj = 1 (j = 1, . . . , q) in Theorem 3, and using (2.7) and
(3.5), we have the following result.

COROLLARY 3. Let the generalized hypergeometric function pFq[z] satisfy the condition∣∣∣∣zpF ′′q [z]

pF ′q[z]

∣∣∣∣ < A− B
1 + |B| (z ∈ U). (3.12)

Then

zp+2Fq+2 [λ1 + 1, . . . , λp + 1, γ + 1, 1;µ1 + 1, . . . , µq + 1, γ + α+ 1, 2; z]

∈ S(A,B). (3.13)

The special case of Corollary 3 (when α = 0; and the class of functions S(A,B)

reduces to S∗(0) by taking A = 1, B = −1) corresponds to the known result (Srivastava
and Owa, 1985, p. 199).

4. Concluding Remarks

Due to the generality of the class of functions ·pΨq[z], the results obtained in Sections
2–3 can be applied to various special functions, including the functions like the Bessel-
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Maitland and Mittag-Leffler functions. By noting the relationships

·1Ψ1

[
(1, 1);

z
(β, α);

]
=
∞∑
n=0

zn

Γ(β + αn)
= z

1−β
α Eα,β(z), (4.1)

and

·0Ψ1

[
(1 + ν, µ);

; z

]
=
∞∑
n=0

zn

n!Γ(1 + ν + µn)
= Jµν (−z), (4.2)

where Eα,β(z) and Jµν denote the Mittag-Leffler and Bessel-Maitland functions, respec-
tively, the results presented in Section 2 (Lemmas 4–6), and those in Section 3 (Theorems
1–3) can be applied to these functions defined by (4.1) and (4.2) above. These conse-
quences of Lemmas 4–6 and Theorems 1–3 being straightforward, further results in this
regard are hence omitted.
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Raito (Wright’s) apibendrint ↪uj ↪u hipergeometrini ↪u funkcij ↪u, turinči ↪u
analizini ↪u funkcij ↪u poklasius, kai kuri ↪u charakteristik ↪u klausimu

Ravinder Krishna RAINA, Tej Singh NAHAR

Nagrinėjamos Raito (Wright’s) apibendrintosios hipergeometrinės funkcijos. ↪Irodomos kai
kuri ↪u j ↪u charakteristik ↪u savybės. Apibrėžiamos atskiros analizini ↪u funkcij ↪u klasės, sudarančios
nagrinėjam ↪u hipergeometrini ↪u funkcij ↪u poklasius.


