
INFORMATICA, 1999, Vol. 10, No. 2, 161–170 161
 1999 Institute of Mathematics and Informatics, Vilnius

Hyper-Rectangle Selection and Distribution
Algorithm for Parallel Adaptive Numerical
Integration

Raimondas ČIEGIS
Institute of Mathematics and Informatics, Akademijos 4, 2600 Vilnius, Lithuania
Vilnius Gediminas Technical University, Saulėtekio 11, 2054 Vilnius, Lithuania
e-mail: rc@fm.vtu.lt

Ramūnas ŠABLINSKAS
Vytautas Magnus University, Vileikos 8, 3035 Kaunas, Lithuania,
Vilnius Gediminas Technical University, Saulėtekio 11, 2054 Vilnius, Lithuania
e-mail: ramas@omnitel.net

Received: February 1999

Abstract. In this paper we consider parallel numerical integration algorithms for multi-dimensional
integrals. A new hyper-rectangle selection strategy is proposed for the implementation of globally
adaptive parallel quadrature algorithms. The well known master-slave parallel algorithm prototype
is used for the realization of the algorithm. Numerical results on the SP2 computer and on a cluster
of workstations are reported. A test problem where the integrand function has a strong corner
singularity is investigated. A modified parallel integration algorithm is proposed in which a list of
subproblems is distributed among slave processors.

Key words: parallel adaptive integration, distributed-memory parallel computers, load-balancing,
redistribution of tasks.

1. Introduction

The problem considered in this paper is the numerical approximation of the multi-
dimensional integral

I(f,Ω) =

∫
Ω

f(x) dx (1)

to some given accuracy ε, where Ω = [a1, b1]× [a2, b2] · · · [an, bn] is the range of integra-
tion and f(x) is the integrand function. We are interested in implementing globally adap-
tive integration algorithms on distributed memory parallel computers. The algorithms of
this paper are targeted at clusters of workstations with standard message passing inter-
face. We use PVM in our numerical experiments. The important features of such parallel



162 R. Čiegis and R. Šablinskas

computers are heterogeneity of the cluster and unfavorable ratio between computation
and communication rates.

Numerical integration algorithms attempt to approximate I(f,Ω) by the sum

SN (f) =
N∑
i=1

wif(xi). (2)

The numberswi are called weights, and the xi are called knots. Efficient numerical algo-
rithms are adaptive and some strategy for selection of hyper-rectangles for further sub-
division is included into the algorithm. We use the cubature rule pair, which was pro-
posed by Genz and Malik (1980). Parallel adaptive algorithms were investigated in many
papers (Bull and Freeman, 1995; Keister, 1996; Miller and Davis, 1992). Mostly these
algorithms are targeted at shared memory computers.

In our previous paper (see Čiegis et al. (1997)) we have investigated various algo-
rithms for static subdivision of the whole task. These smaller subtasks are solved in
parallel by different processors. The main result of Čiegis et al. (1997) is that parallel
static subdivision algorithms are efficient if numbers of subdivisions required within the
different subregions vary only moderately. The situation is different when the integrand
function f has strong singularities. The load balancing of the static subdivision – dy-
namic distribution algorithm becomes very poor and the quality of the parallel adaptive
algorithm also degrades seriously.

In this paper we develop a new hyper-rectangle selection algorithm. The quality of
the parallel adaptive cubature method is improved considerably, but additional costs of
communications are also increased since a more fine-grain subdivision of the integra-
tion region Ω is implemented. This parallel algorithm attempts to calculate the multi-
dimensional integral faster when we use p processors. The second important goal in par-
allel computing is to solve a larger problem. In our case the more accurate approximation
of the integral requires to use a larger list of subproblems. Hence we propose a parallel
integration algorithm in which the list of subproblems is distributed among processors.

We summarize the remainder of this paper. In Section 2 we review the Static Sub-
division – Dynamic Distribution (SSDD) algorithm. The analysis is given for the case
when the integrand function f has a strong corner singularity. Section 3 describes the
new hyper-rectangle selection algorithm. Numerical results for the SP2 computer and for
a cluster of workstations are presented in Section 4. The new master–slave algorithm with
the distributed list of tasks is described in Section 5.

2. Static Subdivision – Dynamic Distribution Algorithm

We describe very briefly the parallel algorithm for multi-dimensional cubature that is
based on a static initial subdivision of the integration region Ω. Such algorithms are in-
vestigated in (Čiegis et al., 1997).

We use the well known parallel algorithm prototype: master–slave algorithm. The
pool of tasks Pj , j = 1, 2, . . . ,M is formed from subproblems I(f,Ωj), where we make



Parallel Adaptive Numerical Integration 163

partitioning of the region Ω = Ω1

⋃
Ω2

⋃
· · ·
⋃

ΩM . The error tolerance εj for each
subregion is chosen proportional to the volume of the subregion. The master process
dynamically redistributes unsolved subtasks to slaves and collects the results. Slave pro-
cesses calculate the approximation of the integral over the given subregion and return the
result to the master process.

REMARK 1. At the end of computations the same unsolved subproblems are sent to sev-
eral different slaves which finished their main tasks. This modification is important for
heterogeneous clusters of workstations since it reduces the dependence of the computa-
tion time on the slow processors.

Numerical results given in (Čiegis et al., 1997) lead to a conclusion that the SSDD
algorithm is efficient for integrals with the integrand function f which has no strong
singularities. It is important to note that the SSDD method is well adapted to the variations
of workload on workstations during computations.

Now we investigate the SSDD algorithm in the case when the integrand function f has
strong singularities. Let consider the following test problem (Bull and Freeman, 1995)

∫ 1

0

∫ 1

0

∫ 1

0

(x1x2x3)−0.9 dx1 dx2 dx3, (3)

where the integrand function has a strong corner singularity.
We compute a numerical approximation of the integral (3) to the relative accuracy

ε = 0.003. Table 1 summarizes the performance of the SSDD method. Here M denotes
the number of subregions Ωj , NM is the total number of required subdivisions

NM = n1 + n2 + · · ·+ nM , (4)

where nj is the number of subdivisions required for the numerical approximation of the
integral I(f,Ωj), Q is the quality of the algorithm, which is defined as

Q =
NM
N1

, (5)

Table 1

Numerical results for the SSDD algorithm

M Number of subdivisions NM Quality Q Load balancing L

2 163249 1.524 0.98

4 213123 1.990 0.94

8 255345 2.384 0.91



164 R. Čiegis and R. Šablinskas

In order to investigate the load balancing property of the SSDD algorithm we define
the parameter L:

L =
maxj nj
NM

. (6)

From the Table 1 we see that the quality of the parallel adaptive integration algorithm
decreases whenM becomes larger. The load balancing of this algorithm is also bad since
only one process is involved in useful computations.

3. Hyper-Rectangle Selection Strategy

The numerical integration problem can be considered as a dynamic resource problem. If
our parallel computer is a cluster of multi-user workstations then the available processing
capacity per node may change during computations, hence we have a dynamic resource
computer. The load balancing problem can be considered as the mapping of a dynamic
resource problem onto a dynamic resource computer. The algorithm must include some
mechanism for the migration of subproblems from over-loaded processes to under-loaded
processes at run-time.

We propose the following hyper-rectangle selection algorithm.

Hyper-Rectangle Selection Algorithm (HRS)

The master part of the algorithm is given by the following code:

1. Form the task-list of hyper-rectangles Pj , j = 1, 2, . . . , s,
ranked by error estimates so that ε1 < ε2 < . . . < εs.

2. Send the initial data portions to slaves.
3. do while (ε is greater than required accuracy ε0)

receive from a slave the ranked list of Rrecv hyper-rectangles;
put these results to the main ranked list of hyper-rectangles P ;
update the integral approximation and error estimates ε;
send to the slave Rsend hyper-rectangles with the largest errors.

end do

The slave part of the algorithm is given by the following code:

1. Receive a job list from the master process.
2. Apply the adaptive numerical integration algorithm and

make Rrecv −Rsend subdivisions. We use Rrecv = kRsend, k > 2.
3. Rank the obtained list of hyper-rectangles according

to their error estimates and send the result to the master process.

The algorithm contains two free parameters Rsend and Rrecv. The optimal values
of these parameters depend on the dimension of the integral and on the ratio between
computation and communication rates of a parallel computer.



Parallel Adaptive Numerical Integration 165

REMARK 2. The quick-sort method is used by slave processes to rank the list of sub-
problems.

4. Numerical Results

In this section we investigate the performance of the proposed hyper-rectangle selec-
tion algorithm. We calculate the multi-dimensional integral (3) to the relative accuracy
ε = 0.002. The SP2 computer and a cluster of RS6000 workstations were used in com-
putations.

We define the speed-up Sp as

Sp =
Ts
Tp
, (7)

where Tp is the time used to solve the given problem on p processors, Ts represents the
time for the sequential globally adaptive algorithm.

Table 2 presents the numbers of subdivisions Np, timings Tp in seconds, speed-ups
Sp and the efficiencyEp on the SP2 computer. We set the following values of parameters
Rsend = 200 , Rrecv = 700.

Table 3 gives analogous information for the cluster of workstations RS6000. We wish
to test the quality of the proposed algorithm, therefore we choose to add appropriate
delays in the evaluation of integrand function. A dummy loop is incorporated into the
code and it is repeated 5 times.

From the the results given in Table 3 we see that the quality of the proposed algorithm
degrades only slightly when the number of processors is increased. Next we investigated
the sensitivity of the algorithm to the selection of parameters Rsend and Rrecv. Numer-
ical experiments show that the algorithm is not very sensitive to the selection of these
parameters and the time of computations varies by about ten percents for a large range
of values of Rsend and Rrecv. Table 4 presents the dependency of computation time and
computation efficiency from parameters Rsend and Rrecv. The computations were car-
ried out on the cluster of five RS6000 workstations. A dummy loop is again incorporated
into the code.

Table 2

Numerical results on the SP2 computer

p Number of subdiv. Np Time Tp Speed-up Sp Efficiency Ep

1 217698 77.9 0.957 0.957

2 217897 39.8 1.874 0.937

4 219295 20.8 3.586 0.896

7 220392 12.7 5.873 0.839

15 226984 7.4 10.080 0.672



166 R. Čiegis and R. Šablinskas

Table 3

Numerical results on the cluster of workstations

p Number of subdiv. Np Time Tp Speed-up Sp Efficiency Ep

1 217698 313.3 0.945 0.945

2 217897 167.4 1.768 0.884

3 218596 117.7 2.515 0.838

4 219295 92.0 3.217 0.804

5 219494 74.5 3.973 0.795

6 220193 64.0 4.625 0.771

7 220392 57.8 5.121 0.732

Table 4

The influence of Rsend and Rrecv to the computation time Tp

Rsend Rrecv Number of subdivisions Np Time Tp Speed-up Sp

10 20 217204 281.7 1.051

10 100 218924 77.2 3.835

50 300 218744 72.6 4.078

50 700 223194 70.8 4.182

200 700 219494 74.5 3.973

400 2000 224394 74.7 3.963

As introduced in (Freeman and Phillips, 1997), the time of point-to-point communi-
cation between two processes can be estimated as

Tsend = α+ βn, (8)

where α is the latency (or start-up time) and β is the incremental time per data items
moved; its reciprocal is called bandwidth. The values of these parameters are α = 2ms,
β = 1s/MB for the public domain version of PVM using Ethernet, while PVMe on SP2
achieves α = 0.1ms, β = 0.03s/MB.

Table 5 presents the results of experiments carried out on the cluster of four RS6000
workstations when no additional delay in integral function is used. We still obtain a speed-
up of the parallel algorithm.

We also investigated the efficiency of the parallel integration algorithm when the dif-
ficulty of the problem was continuously increased. Table 6 gives the results obtained on
the SP2 computer with 16 processors for different values of the accuracy parameter ε. We
note that only one process per node can be run on SP2, hence one master process and 15
slave processes were used in computations.



Parallel Adaptive Numerical Integration 167

Table 5

Results of the experiments without additional delay

Rsend Rrecv Number of subdivisions Np Time Tp Speed-up Sp

10 50 217555 49.6 1.45

100 300 217795 35.4 2.03

100 900 221195 29.3 2.46

200 400 217795 43.9 1.64

200 1000 219995 31.3 2.30

Table 6

The influence of problem complexity to the efficiency of the computations

ε Number of subdivisions Np Time Tp Speed-up Sp

2.0 226984 7.4 10.080

1.0 332484 11.0 10.855

0.5 503984 15.3 11.774

5. The Parallel Algorithm with Distributed List of Tasks

So far we have been interested in the solution of the integration problem as fast as it was
possible. The parallel algorithms also enable us to solve larger problems as well. The HRS
algorithm was organized in such a way, that the task list was maintained by the master
process. Therefore the available master host memory defines the size of the task list. The
task list size determines the maximum accuracy ε we can reach. The HRS algorithm does
not utilize the memory of the slave processors. We propose a modified algorithm which
utilizes the slave memory. Hence we can solve the larger problem than it is possible to
solve with one computer. This is our primary goal. At the same time we demand that the
quality and efficiency of the new algorithm must not degrade dramatically.

The Algorithm with Distributed List of Tasks (DLT)

The master part of the algorithm is given by the following code:

1. Get the information from slaves about the maximal sizes of the local job lists
Mk, k = 1, 2, . . . , p.

2. Form the initial task-list of hyper-rectanglesPj , j = 1, 2, . . . , s,
ranked by error estimates so that ε1 < ε2 < . . . < εs.

3. Send the initial data portions to slaves.



168 R. Čiegis and R. Šablinskas

4. do while (ε is greater than required accuracy ε0)
if (the master has a sufficient number of free memory blocks)
a) receive from the j-th slave the ranked list of Rrecv

hyper-rectangles, the integral approximation value Sj and
the estimated error of all hyper-rectangles kept in its local list errj ,

b) put the results into the main ranked list P ,
c) update the integral approximation S and error estimate ε,
d) send to the j-th slave Rsend hyper-rectangles with the

largest errors,
e) update the Sj and errj ;

else
f) find a set of slaves J which have free memory blocks:

J = {j|Mj > 0},
g) define the numbers of tasks Rdistr(j), j ∈ J that must

be distributed among the slaves,
h) for (j ∈ J)

implement steps a,b and c,
send to the j-th slave Rsend hyper-rectangles with the
largest errors and Rdistr(j) hyper-rectangles
with the smallest errors,
update the Sj , errj and Mj .
end for

end if
end do

The slave part of the algorithm is given by the following code:

1. Receive a job list from the master process.
2. Join the received job list with the local job list.
3. Take 2Rrecv −Rsend jobs with the largest error estimates

from the local job list and the apply quadratureRrecv −Rsend times.
4. Send the Rrecv jobs with the largest errors to the master process.
5. Put the remaining jobs from the result list into the local job list.

We can observe, that the DLT algorithm is very similar to HRS algorithm. If we as-
sume that the size of slave’s local list of tasks is equal to zero, we will have the HRS
algorithm. On the other hand, if memory allocation condition in the Step 3 of the master
algorithm does not fail, we will also have the HRS algorithm. This is likely to appear
when the master process has a sufficient amount of memory to achieve the desired accu-
racy.

References

Bull, J.M., and T.L. Freeman (1995). Parallel globally adaptive algorithms for multi-dimensional integration.
Applied Numerical Mathematics, 19, 3–16.



Parallel Adaptive Numerical Integration 169

Freeman, T.L., and C. Phillips (1991). Parallel Numerical Algorithms. Prentice Hall, New York, London,
Toronto, Sydney, Tokyo, Singapore.

Čiegis, R., R. Šablinskas and R., Waśniewski (1997). Numerical integration on distributed memory parallel
systems. In M. Bubak, J. Dongarra, J. Waśniewski (Eds.), Recent Advances in PVM and MPI. Lecture Notes
in Computer Science, Vol. 1332. Springer-Verlag, Berlin Heidelberg New York, 329–336.

Genz, A.C., and A.A. Malik (1980). Remarks on algorithm 006: an adaptive algorithm for numerical integration
over an N -dimensional rectangular region. J. Comput. Appl. Math., 6, 295–302.

Keister, B.D. (1996). Multi-dimensional quadrature algorithms. Computers in Physics, 10, 119–122.
Miller, V.A., and G.J. Davis (1992). Adaptive quadrature on a message passing multiprocessor. J. Parallel

Distributed Comput., 14, 417–425.

R. Čiegis has graduated from the Vilnius University (Faculty of Mathematics) in 1982,
received the degree of Doctor of Physical and Mathematical Sciences from the Institute of
Mathematics of Byelorussian Academy of Sciences in 1985 and degree of Habil. Doctor
of Mathematics from the Institute of Mathematics and Informatics, Vilnius in 1993. He is
a senior researcher at the Numerical Analysis Department, Institute of Mathematics and
Informatics. R.Čiegis is also a head of Mathematical Modeling Department of Vilnius
Gediminas Technical University. His research interests include numerical methods for
nonlinear PDE, parallel numerical methods and numerical modeling in nonlinear optics,
biophysics, ecology.
R. Šablinskas was born in 1971. After receiving his master’s degree in VMU he has
been admitted as an network administrator in telecommunications company Omnitel. In
1995 he has been admitted as a PhD student in Kaunas Vytautas Magnus University. His
research interests cover distributed and parallel computing, optimization, neural network
models.



170 R. Čiegis and R. Šablinskas

Adaptyviojo skaitinio integravimo metodo užduočiu̧ parinkimo ir
paskirstymo algoritmas

Raimondas ČIEGIS, Ramūnas ŠABLINSKAS

Šiame darbe nagrinėjami skaitiniai adaptyvūs integravimo algoritmai daugiamačiams integra-
lams skaičiuoti. Šie algoritmai skirti lygiagretiesiems kompiuteriams su paskirstyt ↪aja atmintimi
arba virtualiesiems lygiagretiesiems kompiuteriams, sudarytiems iš grupės kompiuterini ↪u stoči ↪u.
Pateiktas naujas užduoči ↪u parinkimo algoritmas, leidžiantis geriau išbalansuoti darb ↪a tarp proce-
sori ↪u.

Skaičiavimuose naudotos PVM ir MPI bibliotekos. Pateikti skaičiavimo eksperimento rezul-
tatai. Sudaryta algoritmo modifikacija, kurioje užduoči ↪u s ↪arašas paskirstomas tarp procesori ↪u, juo
išsprendžiame didesn ↪i uždavin ↪i nei nuosekliu algoritmu.


