
INFORMATICA, 1999, Vol. 10, No. 1, 109–126 109
 1999 Institute of Mathematics and Informatics, Vilnius

Data Conversion Development: A Tool-Supported
Approach

Janis PLUME
Riga Information Technology Institute
Kuldigas iela 45, LV-1083, Riga, Latvia
e-mail: janis.plume@dati.lv

Received: December 1998

Abstract. This article provides a brief introduction to an approach toward data conversion devel-
opment. The article discusses activities in the area of conversion software development, as well as
a model for the life cycle of this development process. Also analyzed is a possible method of tool
support for the development process.

Key words: software tools, data conversion, software engineering processes.

1. Introduction

It is a well-accepted fact that the quality of a software product is largely determined by
the quality of the processes that are used to develop and maintain it (Kellner and Hansen,
1988). Software tools are often used to improve these processes (development, mainte-
nance, etc.). When using software tools, it must be remembered that the main aspect is
the process, and tool support must be adjusted to the software process. This means that
tools cannot bring any significant contribution to software development productivity and
quality if the overall project is undisciplined or chaotic (Paulk et al., 1993). There should
be a clear understanding in advance about the way in which the tool will be used, as well
as about the role which the tool will play in the entire process.

Software development can be performed in many different ways, and tools usually
support one particular method of software development, one particular kind of a process.
This is frequently the reason why software tools with excellent functionality are used suc-
cessfully on some sites, but do not bring the same benefits to others. Others use different
software processes, and thus they cannot take full advantage of the tool’s features. The
real benefit from the use of a tool highly depends on whether the tool has adequately been
integrated into the entire software process.

The extent to which a process can be supported by a tool differs from case to case.
One approach is to understand that each tool is designed to perform a single activity, and
an entire process, then, is supported by a set of small tools. Integration of such a set of
interrelated tools is another approach. In this case, you obtain a “bigger” tool, one which
automates a larger part of the software process.



110 J. Plume

The aim of this paper is to provide a short introduction to one approach toward data
conversion software development, showing how the approach is transformed into a pro-
cess that is supported by tools.

The conversion software development approach that is described here is supported by
a set of small tools which are not highly integrated among themselves. The advantage
of this is that each tool can be improved, or replaced by something different, without
affecting the other tools that are involved in the process. In this case it is also easier to
change the software process that is being supported. It is possible, moreover, to avoid
the use of one of the tools altogether if it is felt that the respective activity can better be
performed by hand.

Our approach toward data conversion software development is described in the first
section of the paper. After that we will describe the process of developing data conver-
sion software (i.e., a data converter) by using this approach. The final section contains a
description of the tools that used in the conversion development process.

2. The Metamodeling Approach in Conversion Software Development

2.1. Overview

This approach is fundamentally based on what are known as metamodels (EIA/PN-2387,
1993). Metamodels are used to describe the information structure. Although this approach
originally comes from data bases in which metamodels are used to describe the structure
of the data base, the fact is that the method can be extended. Metamodels can be taken
as a description of the abstract syntax of data. Thus very different kinds of data can be
described through the use of metamodels.

In this paper we will devote specific attention to the “non-traditional” applications of
data conversion, i.e., CASE tool data conversion, reverse engineering and code gener-
ation, as opposed to the application data conversion. The conversion process is usually
file-based in these non-traditional applications of data conversion. This means that the
conversion involves taking a file that is in one format as input, and then generating the
file in another format (e.g., the import-export format of a CASE tool).

The basics of the approach that is described here line in the fact that any data format
with a fixed syntax can be described by a metamodel (not unique). A metamodel can
be more abstract, reflecting the logical contents of the information, or it can be more
“technical”. This means that the metamodel very much reflects the syntax of the file
format.

There is an essential advantage in using an abstract description of information in data
conversion software development. It allows one to refrain from thinking about the repre-
sentation of data while the conversion software is being developed. Thus the main effort
can be concentrated on the logical implementation of the conversion. This is of particular
importance if the source and target file formats (and the logical contents of the files) are
completely different.



Data Conversion Development: A Tool-Supported Approach 111

In this approach, the following basic functions of file-based data conversion software
are separated out:

1) Data import. This function represents the first step in the data conversion process,
where the information from the source data file is imported into the internal data
store of the conversion software.

2) Data conversion. This function represents the logical data conversion which is
performed in the internal data store.

3) Data export. This function represents a generation of the information in a form
that can be read in the target environment.

It is reasonable to implement all of these functions in different modules or components
of the conversion software. Thus, three major components in the data converter can be
identified: the importer, the converter and the exporter.

If all of these components are to operate together, there must be an interface, and this
interface is provided by a common data store for all components (internal data store).
As the conversion data must be accessible from the internal store during the conversion
runtime only, it is reasonable to implement the data store in the main memory.

This approach was invented and implemented for CASE data conversion, reverse en-
gineering and code generation areas (Plume et al., 1998). Actually, there is no essential
problem in using this approach for application data conversion, but in that case there are
some differences that must be considered:

• application data conversion is characterized by a larger amount of information,
and the internal data store cannot be implemented in the main memory;

• it can be more convenient not to implement application data conversion in a
file-based way, but rather to use direct access to the data base.

2.2. Converter Components

On the basis of all of this, the following scheme can be drawn to illustrate (Fig. 1) the
data conversion process:

The development of this kind of conversion software can be supported by two major
methods:

• standard components that may be included unchanged (or parameterized) in data
conversion software;

• software tools that support the development of some (conversion-specific)
conversion software components.

Let us turn to a brief description of the components in data conversion software (both
standard and conversion-specific). The latter sections of the paper will focus on the de-
velopment of conversion-specific components.

2.2.1. The Data Importer
Data import is the first step in a data conversion process, and it is responsible for the
following functions:



112 J. Plume

Fig. 1. The components of a simple converter.

• parsing of the source data file;
• storing information in the internal data store, according to the metamodel of the

source data.

Data import functions are encapsulated in one component – the data importer. This is
a pure, conversion-specific component of the conversion software, because it depends on
the syntax of the source file and the metamodel of the source data.

2.2.2. The Converter
This is a component of data conversion which performs the essential step of the data con-
version process – it converts the source metamodel instances into the target metamodel
instances. This is a conversion-specific component because it depends on the metamodel
of the source and target environment. From here on, we shall refer to this component of
the conversion software as a “logical converter” or a “converter”.

2.2.3. The Data Exporter
The data exporter is responsible for the export of target model data that have been pro-
duced during the logical conversion. The data exporter is aware of the syntax of the target
data format and generates an appropriate export file.

2.2.4. A Metamodel-Based Internal Data Store
A common data store (repository) is necessary in order to implement the converter pro-
cess that was described in the previous section. This repository is used to store the data
that are produced during the conversion runtime.

The internal data store is a component which is common to all conversions that are
developed on the basis of this approach. Thus the repository must support multiple meta-
models for data storage of different conversions.

In general, an internal data store in a metamodel based data converter must support
two kinds of information store:

• metadata
• data



Data Conversion Development: A Tool-Supported Approach 113

A metamodel can be used to maintain the transparency of the internal data store. The
metamodel consists of two basic parts – one to store the metadata, the other to store the
data. Both metamodels are loaded into the internal data store before the data import pro-
cess is begun. Both models are created in an internal data store during the conversion
process and are consistent with the corresponding metamodels. An example of a reposi-
tory metamodel is given in source (Plume et al., 1998).

2.2.5. The Conversion Engine
All of the conversion process is conducted by a central component known as the con-
version engine. The conversion engine is a standard component that is adapted for the
particular conversion through the process of parameterization.

There is also an important concept that can be called a “conversion package”, or
a “conversion software package”. Sometimes it makes sense to collect more than one
type of data conversion in a single tool, and such a facility is the responsibility of the
conversion engine. In this aspect, parameterization includes specifying the conversions
that will be present in a conversion package.

A conversion engine contains all of the user interfaces of the conversion software. The
conversion engine also contains all of the application programming interfaces (API) that
are used by the data importer and the data exporter.

The following is the data conversion process from the point of view of the conversion
engine:

• the engine loads both the source and the target metamodels into the internal data
store;

• the engine starts the data importer.
• the engine starts the data converter.
• the engine starts the data exporter.

3. The Converter Development Process

3.1. Conversion Development Activities

The main conversion development activities are the described in this section, and the
description is performed on the basis of two major concepts in software development
activities (IEEE, 1991):

1) The entry condition. This is a description of the conditions which must be
satisfied in order to perform the activity. Usually the entry condition is
characterized by the readiness of some intermediate results or the results of the
previous phases of the development life cycle.

2) Output. This describes the products that must be developed as a result of the
activity. Usually products are software programs, data necessary for a program to
operate, or documents describing the data or program.



114 J. Plume

In the following sections, an informal description of activities is provided. Activities
are divided up into smaller tasks where this is possible and reasonable.

3.1.1. Metamodel Development
The initial activity that is necessary in developing metamodel-based data conversion soft-
ware, of course, is the development of the metamodels of the source and the target data.
This can be done in two steps:

1) logical understanding of the data;
2) development of the metamodel using the description in the form of an

ER-diagram.

It is very often necessary to become familiar with the environment (the CASE tool)
before proceeding with the first step in this activity. If the developer of the metamodel is
an experienced person in this area, the activity may require very little time. This may also
prove that the tool has already explicitly defined the metamodel in the documentation of
the tool (environment) that is to be processed. For instance, more and more CASE tools
are using relational data bases as repositories. In such cases the data base structure can
serve as a metamodel for the CASE tool’s data.

The second step very much depends on the level of transparency in the tool. Very often
a metamodel can be obtained easily if the tool’s data store (repository) is built through
an explicit use of the metamodel. It is creative work to develop a metamodel for a data
format that is not explicitly based on metamodels.

Entry condition: source and target tools (or data formats) available;
Output: metamodel descriptions.

3.1.2. The Converter Description
After both metamodels are ready, the development of a conversion description can be
begun. The result of this activity is the converter component of the conversion software.
This activity, too, can be performed in two steps:

1) logical design of the converter, using the source and the target metamodel.
2) implementation of the converter.

The logical design of the converter must be performed in line with the requirements
of the customer. It may turn out that the requirements cannot be fulfilled with adequate
efficiency. In that case the metamodels must be redesigned.

In the next section we will present a tool which allows one to obtain a ready converter
from the high-level logical description of the conversion.

Entry condition: source and target metamodels available;
Output: converter description.

3.1.3. Importer Development
After the source metamodel is developed, the next step is to develop the importer compo-
nent. The importer is responsible for shipping the data from the source environment data



Data Conversion Development: A Tool-Supported Approach 115

format to the internal data store. The conversion development framework offers an appli-
cation programming interface (API) for such purposes. Thus the importer development
splits up into two steps:

1) parser development;
2) extension of the parser with the API calls, which performs data shipping in the

internal data store.

Parser development has been discussed extensively in the literature (Aho et al., 1986).
There are several tools that support the development process, among the most popular
being the lexical analyzer generator LEX and the parser generator YACC (Levine et al.,
1992). LEX uses regular expressions to generate the lexical analyzer. YACC uses the
description of the grammar to generate the parser. The restriction is that YACC needs the
description of the grammar in the form of LALR (1). LEX and YACC work together very
well, however.

Importers vary very greatly in terms of the effort that is necessary to develop them.
The level of effort, in turn, depends on the complexity of the language that is to be pro-
cessed. Most CASE tools have an import/export format with a very simple syntax, and in
such cases there is no need to use YACC. The situation is very complex, however, when
it comes to reverse engineering. In such cases a full syntax analysis of the processed lan-
guage is necessary. Experience shows that it is very difficult to tune up large grammar to
be in the form of LALR (1). In order to reduce the complexity of the parsing, it is neces-
sary to restrict the syntax description in terms of the level of detail. Only those constructs
of the language are processed which present relevant information for the further steps
(converter, exporter).

Entry condition: source metamodel available and source data file syntax available;
Output: importer component of the conversion.

3.1.4. Exporter Development
After the metamodel of the target data is ready, the exporter component can be developed.
Exporter development means producing the component that reads information from the
internal data store and generates an output file.

An exporter is produced by using the standard exporter API. The exporter API func-
tions are allowed to access only target model data, i.e., only that information which is
produced by the conversion component.

Entry condition: target metamodel and target data file syntax available;
Output: exporter component of the conversion.

3.1.5. Integration
Once all of the conversion components are ready, they can be integrated together amongst
themselves, and with the conversion engine. As the interface among the components is
standardized, the integration means just arranging the right components in the right se-
quence. This is done by parameterization of the conversion engine.

The following are the main features that can be obtained through parameterization of
the conversion engine:



116 J. Plume

• Registration of the converter components, which will assist in the conversion
process (importers, exporters, converters). A conversion package usually contains
more than one type of conversion. For instance, customers usually need a data
converter that can convert data in two opposite directions. Sometimes customers
need “gateways” or “bridges” from their tool to more than one other tool. In such
cases all of those converters can be incorporated into a single package.
Registration means registering all of the conversion components that are present in
one conversion package and all of the metamodels that are going to be used.

• Simple (3-component) conversion definition.
• Compound conversion description. If the source and target metamodels are very

different, it is sometimes necessary to introduce an intermediate metamodel. In
such cases it is permissible to establish so-called “compound conversions”, where
more than one converter component goes to work before the data are exported.

This parameterization information must be stored in a file that can be read by the
conversion engine each time that it starts up. For instance, an “.ini” file can be used as the
place where the conversion parameters are stored.

This integration activity can be performed early on in the project in order to obtain
a conversion prototype. In this case some stubs for the conversion components must be
developed. Integration can also be performed late in the project, when all of the required
components have been tested.

Entry condition: stubs for the conversion software components or ready components
available;

Output: a conversion package prototype where all components are involved, or a
ready conversion package.

3.1.6. Debugging and Testing

3.1.6.1. Integration Testing
Integration testing involves checking that the conversion components have been ar-

ranged in the right sequence and that the correct metamodels are attached to the corre-
sponding components. This is usually a very small task, and it can be performed early
in the project. At early stages stubs must be used in place of the real data conversion
components.

Checking the interface among the conversion components implies checking that the
conversion components are using the correct metamodels to store data in the internal data
store.

Entry condition: conversion software prototype available;
Output: tested conversion prototype.

3.1.6.2. Component Testing
Although conversion software is strictly divided up into components, it is not all that

easy to test the components individually. What are the difficulties? First of all, importer
testing implies the following checks:



Data Conversion Development: A Tool-Supported Approach 117

Fig. 2. Testing of an importer.

1) Does the parser of the input data file work correctly?
2) Are the correct data imported into the internal data store?

Testing of the parser can be performed easily and independently. It is reasonable to
assume that the import files will be in the correct syntax, and that is why no complex
error processing and recovery are necessary with respect to the parser. The main task in
parser testing is to check that the parser will accept the files of the correct syntax. It is,
however, also reasonable to include a few error handling features in the parser in order to
make it easier to tune up the grammar.

To check the correctness of imported data, an additional component is necessary
which makes it possible to look into the internal data store. The most common way to
see the contents of the memory is to develop a so-called “memory dump” or universal ex-
porter. This is a component which is equivalent to the exporter and can print out a source
or target model. A universal exporter prints out all object instances that are present in the
internal data store.

This is the way in which the importer can be tested. It requires a re-parameterization
of the conversion engine in order to ensure that the universal exporter works immediately
after the importer and prints out the model that the importer has just imported (see Fig. 2).
If the imported data are correct, the printout of the imported data may serve as a standard
for further checks of the importer, using them to check the importer again in case there
are changes.

The same testing applies to the converter component. In this case it is important the
importer, which works before the converter, be tested first. The universal exporter can be
used for converter testing, too. It can be done by using the universal exporter instead of
the real data exporter. The printout of the universal exporter can be used as a standard for
the conversion testing in the event of changes in the converter component.

Exporter testing can be performed only after the other components in the conversion
process are tested. The sequence for component testing that has been described here can
differ when producing the conversion package with conversion from one tool to another,
and vice versa. For testing purposes, the following conversion can be produced: the im-
porter and exporter for the same environment are integrated together. The criterion for the
testing process is that the input and the output of such a “null-conversion” are equivalent.
This approach allows one to obtain tested components more quickly.



118 J. Plume

Entry condition: component ready for testing, and previous component tested;
Output: a tested component.

3.1.6.3. System Testing
Once the components are tested, system testing of the conversion can be started. This

activity does not differ very much from testing other kinds of software products. The
essential thing is the ability to run the conversion in a batch mode in which the test can be
run without assistance from a human being. It is also necessary to automate the checking
of the test results.

First of all, it is necessary to ensure that the conversion engine can work in the batch
mode. The solution lies in the fact that there are some script files which are interpreted
by the conversion engine. In those script files the user provides the necessary information
to run the tests automatically. The information includes:

1) the location of the test example;
2) the location of the results;
3) the type of conversion that must be performed, as the testing is performed with a

conversion package.

The result of the conversion is a text file, and an obvious way to check the results
of the conversion is to compare the file with the standard. Any simple file comparison
tool can be used here (e.g., the DOS command “fc”). There are, however, some problems
with automatic comparison, because the results may contain information that is depen-
dent upon, for example, the time when the conversion was performed. That is why some
human assistance may be necessary at this stage.

Entry criteria: all components tested;
Output: tested conversion software.

3.1.7. Documenting the Metamodel-Based Conversion
Two kinds of user documentation are necessary:

• the conversion description;
• the user manual.

In those instances when the conversion is complicated and meant for advanced users
of the software, documentation describing the conversion may be necessary. The docu-
ment should clearly define the issue of which concepts from the source data are to be
converted to which concepts in the target data. It is useful to develop this documentation
early on in the process and to validate it (Ince, 1995). If such a document is developed, it
may be treated as a kind of requirements specification. The document can also be used as
a basis for the development of conversion components. The main reason for developing
the document early is that it can be presented to the customer before the real implemen-
tation of the converter is started. One prerequisite for writing a document description
is that both metamodels must be developed. It can be agreed with the customer that he
approves the description first, and only then the work actually begins. This approach re-



Data Conversion Development: A Tool-Supported Approach 119

duces the need for additional work that occurs because the customer has not been clear
in his requirements.

This approach means that the customer or the potential user of the conversion soft-
ware must become accustomed to the metamodeling approach in general and with the
particular metamodels of the source and target environments. This may prove very dif-
ficult, especially if the user is not familiar with the basic concepts of data bases and ER
modeling.

Entry condition (conversion description): metamodels ready;
Output: conversion description.
Very little effort is needed to develop a user manual for the conversion software. As

the application of the data conversion software is clear and evident, the main mission of
a user manual is to describe the user interface of the conversion software, or user access
to the product (EIA/IEEE, 1995).

The user interface is very small, and it is standardized for all data conversions. In
general, the user of the data converter must deal with at least the following issues:

1) What type of conversion is it (i.e., what set of conversion components shall be
used)?

2) Where are the source data to be taken?
3) Where are the target data to be stored?

A user manual should contain illustrations of the screens via which these parameters
can be selected.

Entry condition (user manual): conversion prototype ready;
Output: user manual.

3.2. The Life Cycle Model of Converter Development

Development of a converter means producing the metamodels for the source and the
target data, and then developing the three conversion modules – the importer, the con-
verter and the exporter. The components and the entire converter must be tested, and
the software must be documented. Let us take a closer look at the usual sequence in the
production of these components.

Although the product that is obtained in this process is a very specific kind of software,
the development process as such generally contains the same phases as does traditional
software development.

The most desirable development process model may well be the one that is illustrated
in Fig 3. The model was obtained after considering the outputs and entry conditions of
the activities that were described in the previous sections.

The left side of the picture contains a description of the conversion development ac-
tivities. The rounded rectangles are the activities, while the arrows represent the sequence
of activities. The keyword “AND” inside an activity symbol means that the activity can-
not be started before all previous activities are completed. This notation is adopted from
(Barzdins et al., 1998; Infologistik, 1997).



120 J. Plume

Fig. 3. The life cycle of converter development.

The right side of the picture contains the names of the traditional waterfall or se-
quential software development life cycle model, and the way in which the conversion
development activities are grouped to correspond to the traditional software development
life cycle is demonstrated (Pressman, 1994).

It is worth pointing out that the process described in Fig. 3 has some features from
other software development life cycles, not just waterfall.

For example, the converter component is developed through a typical fourth-
generation technique approach, because the appropriate tool for this approach is available
in the framework. In Fig. 3 this is represented by the union of the design and the imple-
mentation in one single phase. Actually, real projects can very seldom be carried out via
a pure sequential development model. Although this is not seen in Fig. 3, the reality is
that in almost any activity may discover problems that can be solved only by making
changes in the results of the previous activities. For example, when we try to develop the
importer component, we may find that the importer cannot be implemented effectively
enough with the existing metamodel. In that case the source data metamodel must be
redesigned. This, in turn, involves changes in the conversion description, too. Generally
speaking, problems that are found in any phase or activity may involve a return to the
previous phase or activity.

3.3. Interaction with the Customer

There can be small modifications of the conversion development life cycle, depending
on the model of cooperation between the developer of the conversion and the customer.
There are two basic situations:

1) the customer needs a conversion tool to perform the data conversion himself;
2) the customer has data which he wants to have converted.

The main difference here lies in the fact that in the second case, the correctness of
the tool is measured on the basis of how correctly it works on the particular set of data.
This usually means a reduced testing phase. If a tool is to be delivered to the customer,



Data Conversion Development: A Tool-Supported Approach 121

however, it will always require more rigorous testing than is the case if the customer
merely wants to obtain converted data.

There is also a potential difference in the development process model, depending on
the clarity of the conversion rules or requirements. If the rules are strictly defined by the
customer from the very beginning, or if they are worked out by the developer early in the
process and approved by the customer, the life cycle model is more like a waterfall. If the
requirements are vague, some kind of evolutionary development model is more realistic.

The crucial aspect in keeping the data converter development under a precise time
frame is defining the conversion rules or requirements early on in the project. Actually,
this is true with any other kind of software, too; requirements are the key document in
any software project (Ince, 1995).

It is also possible that the customer may need a prototype of the data converter to be
developed early in the project. In that case, stubs of some sort must be developed instead
of real components, and integrated into a conversion package. This can easily be done
via this approach, because the integration activity (the parameterization of the conversion
engine) requires very little effort. What’s more, the effort hardly depends on the moment
at which the integration (parameterization) is performed, because the interfaces between
components are clear and standardized.

4. Conversion Development Framework for Converter Component Development

As was mentioned previously, there are a few software development tools that can support
the conversion development process. In this section we shall describe some tools that were
used in the approach that is described in Plume et al. (1998).

4.1. A Metamodel Development Tool

The converter uses a metamodel for the source and target data to perform a conversion.
Thus the converter needs the metamodels in a form that can be loaded into the internal
data store. On the other hand, it is useful to develop metamodels via some CASE tool,
which allows the graphical editing of the ER diagrams. There are many tools which sup-
port these kinds of diagrams, and we may ask which of these tools might be the best for
our purposes. There is no definite answer; it varies from case to case. The following are
merely the major criteria in selecting a CASE tool for metamodel description:

1) The similarity of the CASE tool’s metamodel to the metamodel of the internal
data store.

2) Graphical representation of metamodels. It is important to have a graphical
representation of both the source and the target metamodels of conversion. The
main reason for this is the readability of the metamodel. It also makes it easier to
make changes to the metamodel if necessary. The diagram is also very useful if
conversion documentation is to be developed. The diagram is a must in the
documentation if the conversion is described on the basis of metamodel concepts.



122 J. Plume

3) Convenient means for the export and import of data. A developed metamodel
cannot be used if it is stored only in the repository of the CASE tool. The
metamodel must be available during the conversion software runtime. This means
that the metamodel must be stored in a file format that can easily be loaded into
the internal data store at the beginning of the conversion process.

The first criterion looks very simple, at least at first glance. Although CASE tools
which support ER diagrams are similar, there are often very significant differences in
terms of the features of the ER modeling that they support. The main differences lie in
support for the following features:

• n-ary relationships. Very few CASE tools support this feature, because it can
easily be modeled using simple binary relationships. Support for n-ary
relationships means that the role concept must be introduced in the metamodel;

• attributed relationships. This is another feature that can easily be modeled by
using an additional (“associative”) entity and simple binary relationships;

• multiple inheritance. This construct comes from the object-oriented analysis and
can also be applied in the ER modeling area.

How complex do metamodels usually tend to be? Is there any need for the advanced
features that are discussed above? That very much depends on the situation. If the tool’s
data is stored in a repository that uses such advanced features, then it is reasonable to
use them in the metamodel, too. This allows you to preserve the real appearance of the
metamodel in the data conversion data store, too. On the other hand, these advanced
features are a rarity. Most CASE tools use relational data bases for repository and, due
to implementation restrictions, no advanced features are usually present. If there is no
data store of source or target data (i.e., a plain text file is used to store the data), the
development of the metamodel is up to the developer. Experience shows that in such
cases it is easy to avoid advanced modeling features.

When it comes to graphical representation of metamodels, two kinds of diagram-
ming can be used. The metamodels can be developed by using either simple ER-diagrams
(Martin and McClure, 1985) or object structure diagrams (Rumbaugh et al., 1991). It is
important that the entities (objects), relationships and attributes be present in the diagram.

After the development of the metamodel by the case tool, a model describing the
metamodel is stored in the repository of the CASE tool. Most CASE tools offer data ex-
port ability, and the metamodel can be exported and stored in a data file. These data are
of great interest in terms of the conversion runtime. The conversion development frame-
work must support data transformation from the CASE tool data export format to some
other format that can easily be imported by the conversion engine into the internal data
store. Hence the following illustration (Fig. 4) can be drawn, representing the workbench
of metamodel processing.

4.2. A Conversion Description Language Compiler

The conversion description compiler is one of the most powerful tools for data conversion
development in this approach. This tool allows us to use the fourth-generation technique



Data Conversion Development: A Tool-Supported Approach 123

Fig. 4. The metamodel development workbench.

(4GT) approach (Pressman, 1994) in the converter component development. For pur-
poses of data conversion description, the data conversion development framework offers
a special-purposes, non-procedural language (Conversion Description Language – CDL)
(Plume et al., 1998). The description of the conversion is written in the CDL language,
using metamodel concepts of both the source and the target data.

The language is compiled to the C language and further, using a standard C compiler
to the executable code. If the CDL language constructs are not adequate for conversion
description, C programming language fragments can extend the conversion description.
The illustration of the CDL compilation is shown in Fig. 5.

The language compiler takes as input the conversion description and the metamodels
for both source and target data, producing the C language text. The standard API calls are
used in this generated C language text to access the internal data store. Further, with the
help of a standard C compiler, executable code is produced. The C language is used here
as an example. Actually, any other procedural programming language can also be used
for the compilation.

The main concept in the conversion description language (CDL) is the rule. This con-
cept is very much similar to the concept of the Prolog language. The practice of using the
language compiler indicates that very seldom are more than 100 rules necessary in order
to develop a conversion description.

Fig. 5. Conversion description compilation.



124 J. Plume

The use of a language such as CDL is crucial to preserve the maintainability and
modifiability of the data conversion software. Through the language, the conversion de-
scription can be modified easily, and this is a very powerful way to deal with the changing
requirements of the customer.

5. Conclusion

This article has illustrated a systematic approach to the data conversion development pro-
cess. This approach is supported by software tools that are designed to perform specific
activities in the development process. Namely, conversion description development is
supported by a special-purpose language, while metamodel development is supported by
the metamodel development and processing tools.

As the tools have proven to be very effective, the next obvious step would be tool
integration. The possible consequences of such integration, however, must still be inves-
tigated in order to ensure that it is worth doing.

References

Aho, A.V., R. Sethi, J.D. Ullman (1986).Compilers, Principles, Techniques and Tools. Addison-Wesley.
Barzdins, J., J. Tenteris, E. Vilums (1998). Biznesmodelesanas valoda GRAPES-BM 4.0 un tas pielietosana,

Riga (In Latvian).
EIA/IEEE (1995). Software Life Cycle Processes. Software Development. Acquirer – Supplier Agreement. Stan-

dard for Information Technology, J-STD-016. The Institute of Electrical and Electronics Engineers, Inc.
EIA/PN-2387 (1993). The CDIF Framework for Modeling and Extensibility, Electronic Industries Association,

Washington.
IEEE (1991). Standard for Developing Software Life Cycle Processes, Std 1074. The Institute of Electrical and

Electronics Engineers, Inc.
Ince, D. (1995). Software Quality Assurance – A Student Introduction, McGraw-Hill.
GRADE version 4.0 (1997). Business Modeling Language Reference Manual. Infologistik GmbH.
Kellner, M.I., G.A. Hansen (1988). Software process modeling. Technical Report CMU/SEI-88-TR-9, Software

Engineering Institute, Carnegie Mellon University.
Levine, J.R, T. Mason, D. Brown (1992). LEX and YACC, O’Reilly & Associates.
Martin, J., C. McClure (1985). Diagramming Techniques for Analysts and Programmers. Prentice Hall, Engle-

wood Cliffs, N.J.
Paulk, M.C., B. Curtis, M.B. Chrissis, C.V. Weber (1993). Capability Maturity Model for Software, Version

1.1, Technical Report CMU/SEI93-TR-024, Software Engineering Institute, Pittsburgh.
Plume, J., J. Strods, I. Karlsons, U. Smilts, J. Smotrovs, G. Gavars, I. Stasko, M. Dancis (1998). Metamodel

Based Data Conversion. In J. Barzdins (Ed.), 3rd International Baltic Workshop on Databases and Informa-
tion Systems, Vol. 1, Latvian Academic Library, Riga. 175–186.

Pressman, R.S. (1994). Software Engineering. A Practicioner’s Approach, 4th ed., McGraw-Hill.
Rumbaugh, J., M. Blaha, W. Premerlani, F. Eddy, W. Lorensen (1991). Object-Oriented Modeling and Design.

Prentice Hall, Englewood Cliffs, N.J.



Data Conversion Development: A Tool-Supported Approach 125

J. Plume was born in Sigulda, Latvia, on 1972. He received a BS degree (1994) and a
master’s degree (1996) in computer science from the Faculty of Physics and Mathematics
of the University of Latvia. He is currently a doctorate student at the university. His
research interests focus on software process improvement. The research is being done
under the auspices of the Riga Information Technology Institute, a private non-profit
software research and engineering company.



126 J. Plume

Duomen ↪u konvertavimas: instrumentinis požiūris
Janis PLUME

Straipsnyje aptariamas instrumentinis požiūris ↪i duomen ↪u konvertavim ↪a. Išnagrinėtas
duomen ↪u konvertavimo proceso gyvavimo ciklo modelis ir kiekvienai jo stadijai
pasiūlytas instrument ↪u rinkinys, padedantis greičiau ir efektyviau atlikti toje stadijoje
atliekamus darbus.


