
INFORMATICA, 1999, Vol. 10, No. 1, 89–108 89
 1999 Institute of Mathematics and Informatics, Vilnius

Automatic Configuration of Structured Graphical
Documents: A Case Study in the Domain of
Electroplating Lines

Kristina LAPIN
Vilnius University, Department of Computer Science
Naugarduko 24, 2600 Vilnius, Lithuania
e-mail: Kristina.Lapin@maf.vu.lt

Received: January 1999

Abstract. In this paper we present a method for preparation of technical drawings in the domain of
electroplating lines. We treat the method as the combination of two tasks: configuration and doc-
ument preparation. The proposed method combines the basic concepts of these domains: generic
coding introduced in document preparation task and component oriented approach used in the con-
figuration task. We show how both concepts are implemented in our configurator SyntheCAD.

Key words: knowledge-based configuration, document preparation, silicon compilation.

1. Introduction

Document preparation involves two tasks: defining the content and structure of a docu-
ment, and generating the document from specification of its appearance. The first part is
usually called editing while the second, is known as formatting. Our aim is to characterize
both aspects of graphical document processing.

In order to discuss the document preparation, we use an object model of documents,
described in (Furuta et al., 1992). A document we understand as an object composed of a
hierarchy of more primitive objects. Each object is an instance of a class that defines the
possible constituents and representations of the instances. Some typical document classes
are books, articles, business letters, reports, papers for a journal or a conference, programs
in a given language, etc. Common lower-level classes include such document components
as sections, paragraphs, headings, footnotes, tables, equations, figures, etc. Objects futher
are classified as either abstract or concrete. To each abstract object, there corrensponds
one or more concrete objects. An abstract object is denoted by an identifier and the class
to which the object belongs. The term logical object is used as an informal synonym for
an abstract object. Concrete objects are defined over one or more two-dimensional page
spaces and represent the possible formatted images of an abstract object.

A lot of tools are developed for processing of textual documents. They maintain the
structure of logical objects and are not suitable for graphical documents. Graphical tools

90 K. Lapin

heavily support the structure of documents. Such documents are difficult to modify. We
try to solve these shortcomings in our tool SyntheCAD.

In the following section the problem domain of electroplating lines is outlined. We
give a hierarchy of drawings that we have to prepare. In the third section we deal with an
overview of methods that are integrated in our tool. The most detailed is the fourth sec-
tion which reports the conceptual model of SyntheCAD. The emphasis is on SyntheCAD
specification languages, functions performed by the formatter, and the integration of for-
matters with other document processing tasks. Finally, some conclusions are drawn.

2. Problem Domain

In this section we describe the domain of electroplating lines.

2.1. An Electroplating Line

An electroplating line is a conveyor-based array of processing units (Fig. 1). One or two
transporters move above the electroplating line.

The transporters put processed elements into a processing unit. After a certain time
segment the transporter takes the element and put into the next processing unit. The pro-
cessed element goes through all the processing units in the electroplating line.

All processing units are monitored by controllers. For example, a heater is turned
on, when the temperature of the solution in a bath is smaller than a certain value. The
controller turns the heater off, when the solution temperature reaches a required level.

An electroplating line has global attributes: type, width, number of transporters, etc. It
is configured from a fixed given set of typical components. Several components can be of
the same type. The component types in our domain are: processing units (baths, loaders,
stores, dryers), transformers, pumps, etc.

A bath is the major processing unit and has the following attributes:

• function (electromechanical, washing, etc.),
• characteristics (dimensions, material, etc.),

Fig. 1. Electroplating line.

Automatic Configuration of Structured Graphical Documents 91

• optionally attached equipment (temperature sensors, filtration units, agitation
device, pump, etc.),
• associated devices (subunits) (rectifier, reservoir, safety level sensors, heaters,

cooler, steam/water electrovalves, etc.).

Fig. 2. Information associated with processing units.

The knowledge associated with every processing unit is of three kinds (Fig. 2). A
function, characteristics and a list of optional equipment are the attributes of a process-
ing unit. The technical specification of an electroplating line specifies the types of all
processing units. The subunits are represented as child-nodes to bathes. A component is
shown on the drawings as a two-dimensional image.

The domain of electroplating lines developes constantly. New equipment and new
modifications of the processing units are developed. The graphical representation of the
existing equipment can also be changed. This change causes changing connections algo-
rithms. Therefore, the most frequent activities during design of technical drawings are as
follows:

• introducing new modifications of units,
• modifying the images of units,
• changing the algorithms of connections.

New versions of CAD tools are developed. Therefore, the user should have a possi-
bility easy to adapt an output for new needs.

2.2. Domain Decomposition

The natural decomposition is observed in the domain of electroplating lines. Fig. 3 shows
the structure of technical documentation. From the viewpoint of document preparation,
the technical drawings are structured documents. A set of technical documents is parti-
tioned into mechanical drawings and electrical ones. A set of electrical drawings consists
of the diagram of connections and the device layout. Mechanical drawings consists of the
assembly drawings, the piping plan, the framework and the fume ventilation plan.

Each subset is divided into pages. The components (processing units and etc.) are
shown in the context of a concrete diagram. For example, in the diagram of connections
the electrical connections of the baths are shown. In the piping diagram the piping of
baths is shown.

92 K. Lapin

Fig. 3. Structure of a drawing set of the electroplating line.

3. Overview of Used Methods

The proposed approach to synthesis of technical documentation is based on the concepts
of:

1. generic coding (separation of logical and layout aspects of the problem domain
concepts);

2. integration of variuos data representation methods:

• arrangement language for a SyntheCAD document in order to express a
hierarchy components with their attributes;
• high-level descriptive GCL language for representation of a knowledge of

technical specification and expert users. Knowledge is represented as in the
Generative Constraint Satisfaction Problem (Stumptner, 1997). Variables can
be generated as needed (to represent the adding of components to a
configuration). Introduced components are subject to a set of constraints
depending on the component type;
• a general purpose CAD tool for static layouts and the visualisation of drawings.

3.1. Generic Coding

The concept of generic coding gained prominence in the 1970s and was implemented in
Standard Generalised Markup Language (ISO-Standart 8879, 1986). Earlier, electronic
manuscripts contained control codes that caused the document to be formatted in a par-
ticular way. That was ‘specific coding’. In contrast, generic coding, which began in the
1960s, uses descriptive tags (‘section’ rather than ‘14 point Palatino’). Central to the con-
cept of generic coding is the separation of the information content of documents from the
format or the appearance of the content. An information content has a structure, then we
talk about logical structure of the document (Wilhelm and Heckman, 1996). The structure

Automatic Configuration of Structured Graphical Documents 93

of the appearance of a document we call layout structure. Eickel (1990) deals with the
logical and layout structures of documents. These concepts make background for Docu-
ment Style Semantics and Specification Language. The aim of separating the logical and
layout structures is to achieve the flexibility in the preparation of structured document.
By flexibility we mean multiple specification that may be applied to a given document to
yield various presentations of the same data.

Document processing consists of executing various operations to define, manipulate
and view abstract and concrete objects. For this purpose, we distinguish between ordered
and unordered objects.

In the drawings of electroplating lines we have ordered objects – processing units.
The one-dimentional order is defined by the user. The hierarchy of units forms a logical
structure of the document. The logical structure of an electroplating line consists of:

• the attributes of the whole line;
• processing units with their attributes and associated devices (subunits) with their

attributes.

The layout structure of an electroplating line is as follows:

• A drawing is divided into pages. Each page is partitioned into the areas for:

– global properties (attributes),
– controllers with cables (in the case of electrical drawings),
– transporters,
– associated devices,
– processing units. This in turn consists of smaller parts :

∗ static image,
∗ dynamic layout (cables, pipes).

We treat the document preparation as a configuration task.

3.2. Configuration of Technical Drawings

Configuration deals with assembling of complex systems from a set of simpler compo-
nents. A configuration system is expected to produce a new artefact. In the domain of
electroplating lines a new instance of an electroplating line is created from an individ-
ual order with unique customer requirements. The knowledge is taken directly from the
technical specification of the components (processing units) and is also derived from long
term experience with actual configurations. From the configuration point of view we show
the place of our approach in the classification (see Fig. 4) proposed in (Stumptner, 1997).

The area of configuration systems is divided into two major subgroups: representation
oriented and task oriented. We deal with representation oriented approach. The central is-
sue in this approach is finding the correct representation for expressing the structure and
properties of the problem domain. In first-generation expert systems knowledge repre-
sentation was based on production rules in the form IF condition THEN action. In struc-
ture based configuration the key component approach (Mittal and Frayman, 1989) was

94 K. Lapin

Fig. 4. Classification of configuration tasks according to Stumptner (1997).

defined. In this approach components are complex objects which can be connected in dif-
ferent ways. The key components are those components that are central to the architecture
of the system, and their choice is a basic decision in modelling a particular artefact. A
constraint satisfaction problem (CSP) is considered to be a formalism for describing ap-
plication specific configuration knowledge. This formalism is used in expressing expert
knowledge, that have been described as a result of actual experience. Dynamic CSP ex-
tends the restriction of CSP that postulates the existence of a fixed, enumerated set of
variables. The main goal of a configurator in the case of resource-based configuration is
to select a correct set of components, based on the functionality they provide. The number
of components in this case is not predefined. Component-oriented configuration attempts
to combine the advantages of structure-oriented and resource-oriented configuration. In-
stead of a fixed kit of individual components, we have the set of component types, with
each type determining the structure and constraints of its instances. So, an electroplating
line is configured from a fixed given set of component types. A component we understand
as a processing unit with a set of attributes which describe the behaviour of parts to be
assembled.

During the component-oriented configuration are performed three basic actions:
1. creating components;
2. choosing type for a component;
3. connecting two components.
According to the component oriented approach our task is to formalise the knowledge

of an expert user in the domain of electroplating lines.

3.3. Silicon Compilation

The term of silicon compilation was introduced by Dave Johannsen at the California Insi-
tute of Technology, where he used it to describe the concept of assembling parameterized
pieces of layout. In (Gajski and Thomas, 1988): “Silicon compilers are the programs

Automatic Configuration of Structured Graphical Documents 95

that generate layout data from some higher-level description. This higher-level descrip-
tion can be a symbolic layout, a circuit schematic, a set of boolean expressions, a logic
schematic, a behavioural description of a microarchitecture, an instructuin set, or just an
algorithm for signal processing. Silicon compilers contain knowledge of how to synthe-
size higher-level constructs from basic components and how to arrange components and
intersections on silicon. This knowledge is stored in the form of design rules that conform
to constraints imposed by the technology used.”

Silicon compilation helps resolving “hardware crisis”: the great difficulty encountered
in the generation new, custom integrated circuit microchips. The progress in single-chip
microprocessors technology brought great increase in the complexity of the design pro-
cess. The bottleneck involves the translation from the human intent, a behavioural de-
scription what the chip is supposed to do, into the chip “layout”, a complete geometrical
representation from which physical technologies can readely produce reliable, working
chips. The silicon compilers were introduced to deal with this increased complexity.

There are two focal points of concern in a silicon compiler:

• the source language: the language in which the user specifies desired function, or
behaviour, to be performed by the new integrated circuit chip;
• the target language: the capabilities of silicon, utilised in a very complex

two-dimensional colour picture called a layout.

Traditional methodologies require a designer to build a structure and define its be-
haviour with basic components such as gates, and then use it hierarchically to build high-
level structures. The silicon compilation method provides basic components which are
fine-tuned to the use’s specification at a higher level of abstraction, such as units, con-
trollers, etc.

Silicon compiler systems come in two varieties: they may be complete systems with
their own set of proprietary tools for complete integrated curcuit design or integrated into
a standart Common Application Environment workstation with most of the support tools
provided by the host workstation environment. The second approach offers a transition
from existing design methods and the possibility of reusing parts already designed. In
(Ayres, 1983) much more operations, such as process type are defined. Our domain does
not require the process concept.

Silicon compilation takes advantages in three areas:

• usability,
• quality,
• profitability.

Silicon compilation improves design quality through “correct by construction” capa-
bility. The design errors introduced by designer on more abstract levels are easier to detect
and correct. Instead if dealing with millions of polygones or transistors, the designer must
deal with only two dozen microarchitectural blocks.

A principles of silicon compilation are implemented in SyntheCAD formatter lan-
guage GCL (Section 4.2.2).

96 K. Lapin

Fig. 5. The conceptual model of SyntheCAD.

4. Conceptual Model of SyntheCAD

The conceptual model of SyntheCAD (Fig. 5) has much in common with the conceptual
model of DSSSL (ISO-Standart 10179, 1996). It has two distinct processes:

1. a transformation process, and
2. a formatting process.
Every SyntheCAD process is controlled by an appropriate SyntheCAD language. The

transformation language controls the transformation process. Likewise, the style language
controls aspects of formatting process.

A SyntheCAD document is specified by arrangement language (see Section 4.1). A
logical tree is formed by the logical parser-tree, which is decorated with synthesized
attributes. Parser-tree nodes represent components. The synthesised attributes represent
properties of the components.

We deal with the formatting process in Section 4.2.1.

4.1. The Arrangement Language

For describing of both the document type definition (DTD) (Maler and Andaloussi, 1996)
of a SyntheCAD document and a SyntheCAD document, a context-free language was
developed. SyntheCAD document specifies a logical structure of the technical drawings.
Comparing with a classical attribute grammar formalism our language allows to describe
the attributed tree shorter and without superfluous redundancy.

In configuration area, a document type definition play the role of Arrangement Tem-
plate (Čyras et al., 1993). A SyntheCAD document with a concrete logical structure
serves as an arrangement of an of electroplating line’s instance. The mentioned context
free language is called arrangement language. The syntax of the DTD of an electroplating
line might be shown as a grammar:

Automatic Configuration of Structured Graphical Documents 97

SyntheCAD_document→ head_component (attributes∗) [[component+]]

component → component id (attributes∗) [[component∗]]

attributes → positional_attribute∗ keyword_attribute∗

positional_attribute → type_id attribute_id
keyword_attribute → attribute_id < value_set > =? default_value?
attribute_id → string
component_id → string
value_set → value,∗ value
type_id → int | real | bool | string
default_value → int | real | bool | string

4.1.1. DTD – the Arrangement Template
The Arrangement Template represents a syntax of arrangement class. It describes arte-
fact’s model: the names and the “part of” hierarchy of nodes, field names, etc. An ar-
rangement in Section 4.1.2 corresponds to the following arrangement template:

PLATING LINE (string type, /* ID of line */

width <1120, 1500 >, /* Width: 1120 mm or 1500 mm */

tranporters <1, 2, 3, 4>=2, /* Number of transporters */

direction <direct, reverse>= direct /* Direction: */

) /* right to left or left to right */

[[BATH (string type, int position, drum <yes, no>)

[[LEVEL SENSOR

STEAM VALVE

RESERVOIR

RECTIFIER (string type)

]]

DRYER (string type, int position)

LOADER (string type, int position)

STORE (string type, int position)

]]

4.1.2. An Example of a SyntheCAD Document
A SyntheCAD document represents a domain-specific logical structure, termed arrange-
ment (Brown, 1997). In arrangement specific relationships are established. Specific re-
lationships, used in arrangement, will precisely locate one component with respect to
another or with respect to some reference location.

The main information contained in the arrangement is a sequence of baths. The do-
main matches the general definition of a configuration task as well as two assumptions
(Mittal and Frayman, 1989) “functional architecture” and “key component per function”.

Arrangement Language terms originated during analysis of the problem domain. The
purpose and properties of bath types and other components was analised. An example
below illustrates a sample customer’s order, i.e., an arrangement:

98 K. Lapin

PLATING LINE (443214.001 E4, 1120, transporters = 1, direction = reverse)

[[/* Type, position, drum */

LOADER (009 , 1) /* Load and unload */

STORE (057 , 2) /* Storing to wait */

DRYER (001 , 3) Drying with hot air */

BATH (002 , 4 , yes) /* Rinsing in hot water out*/

[[LEVEL SENSOR STEAM VALVE]]

BATH (001 , 5 , yes) /* Rinsing in cold water out*/

[[LEVEL SENSOR]]

BATH (006-01 , 6 , yes) /* Chemical treatment */

BATH (001 , 7 , yes) /* Rinsing in cold water out*/

[[LEVEL SENSOR]]

BATH (006-01 , 8 , yes) /* Chemical treatment */

BATH (001 , 9 , yes) /* Rinsing in cold water out*/

[[LEVEL SENSOR]]

BATH (006-01 , 10 , yes) /* Chemical treatment */

BATH (009-03 , 11 , yes) /* Electroplating */

[[RECTIFIER(TBPI-1600/12)]]

BATH (009-01 , 12 , yes) /* Electroplating */

[[RECTIFIER(TBPI-1600/12)]]

BATH (001 , 13 , yes) /* Rinsing in cold water out*/

[[LEVEL SENSOR]]

BATH (006-01 , 14 , yes) /* Chemical treatment */

BATH (001 , 15 , yes) /* Rinsing in cold water out*/

[[LEVEL SENSOR]]

BATH (002 , 16 , yes) /* Rinsing in hot water out*/

[[LEVEL SENSOR STEAM VALVE]]

BATH (008-01 , 17 , yes) /* Corroding */

[[RECTIFIER(”TBPI-800/12”)

LEVEL SENSOR

STEAM VALVE

RESERVOIR]]

BATH (008 , 18 , yes) /* Corroding */

[[RECTIFIER(”TBPI-1600/12”)

LEVEL SENSOR

STEAM VALVE

RESERVOIR]]

]]

4.1.3. The Transformation Process
During the transformation process (see Fig. 6), a SyntheCAD document is transformed
into a set of nodes with attributes (a logical tree). The obtained logical tree is used further
as input to the formatting process.

Automatic Configuration of Structured Graphical Documents 99

Fig. 6. The conceptual model of the transformation process.

All operations performed in the transformation process are independent of the for-
matting process. During the transformation process, syntax analysis of a SyntheCAD
document is performed. When a node type and types of the attributes accord with the
DTD, following operations are performed:

• creating nodes and attributes, according to user specification;
• creating the attributes, which are not mentioned in the user specification, but are

specified in arrangement template.
• creating given relations between the nodes.

4.2. The Style Language

The style language specifies the formatting process (see Fig. 7). The formatting process
applies presentation styles to source document content. The style language defines the
visual appearance of a formatted document in terms of formatting characteristics attached
to an intermediate tree.

Fig. 7. The conceptual model of formatting.

100 K. Lapin

The formatting process uses a style-specification, which may include construction
rules, page-model definitions and other application-defined declarations and definitions.

4.2.1. The Formatting Process
The formatting process consists of the following subprocesses:

• application rules to the objects in the logical tree;
• definition of the page geometry;
• the layout of the content based on the rules specified by the semantics of object

class and the values of the characteristics associated with these objects. Each
object (an instance of an object class) is formatted in order to produce a layout and
is positioned by a parent in the object tree.

The conceptual model consists of the formatting actions:
1. enrich the logical tree with semantic information;
2. apply construction rules to the component nodes;
3. calculate the layout structure;
4. make semantic analysis of layout structure, i.e., provide pagenumbering, make

piping, cabling, etc.;
5. prepare output code for a user-defined CAD system.

4.2.2. The GCL Language
High level declarative language GCL (Graphical Circuit Language) was developed for
specifying and creating layouts. According to the principles of silicon compilation, the
language serves for knowledge representation and 2D graphics. It has a syntax and 2D
graphics features of ICL, i.e., a silicon compilation language (Ayres, 1983). A GCL func-
tion is associated with each component type.

One way to create the layout is to specify it in a language which admits convenient
specification of geometric items and their combinations. All suitable languages for layout
specification have in common notations for specifying two-dimensional points. (Ayres,
1983) provide an introduction to the silicon compilation and the art of automatic chip
generation.

The following types come built in: INT, REAL, BOOL, TEXT, POINT. The types are
created and examined by obvious in other language’ operations. For a POINT type there
are also the following less obvious operations:

POINT \MAX POINT → POINT [e.g., (3#4) \MAX (6#2) is 6#4]
POINT \MIN POINT → POINT [e.g., (3#4) \MAX (6#2) is 3#2]
POINT = POINT → BOOL (the points are equal)
POINT <> POINT → BOOL (the points are not equal)
POINT < POINT → BOOL (the first point lies to the left

and below the second point)
POINT > POINT → BOOL (the first point lies to the right

and above the second point)

Automatic Configuration of Structured Graphical Documents 101

Fig. 8. Points in a parabola.

Example. An expresionA#A*A FOR A FROM 0 TO 1 BY 0.1 denotes 11 points:
0#0, 0.1#0.01, 0.2#0.04, 0.3#0.09, ...,1#1, which happen to trace
out the piece of parabola (Fig. 8).

Declaring New Types
To declare new types we use the “TYPE” statement:

TYPE name-of-new-datatype = a-type-expression

For data type COLOR the type declaration is

TYPE COLOR = TEXT;
then we can create the variables:

VAR RED: COLOR ;
RED := "RED" ;

It is possible to construct new data types of all sorts. A polygon type is represented as
an sequence of points:

TYPE POLYGON = { POINT };

Declaring, Creating, and Examining Lists
{ point ; point ; ... ; point } → POLYGON
{ layout ; layout ; ... ; layout } → LAYOUTS

Example:
{ 0#0 ; 3#5 ; 7#2 ; 4#1 } → POLYGON

We can also append and concatenate lists:

102 K. Lapin

element <$ list → list (i.e., left append)
string $> list → list (i.e., right append)
string $$ list → list (i.e., concatenation)
REVERSE (list) → list (i.e., reverses the order of a list)

The list examines quantifier (linguistic name for loop operator):
FOR variable $E list

We can also produce the list by writing
{ COLLECT element Quantifier }

For example,
{ COLLECT X#X*2 FOR X FROM 1 TO 5; }

(point) (quantifier)
is equivalent to { 1#2; 2#4; 3#6; 4#8; 5#10 }.

Records
We declare record data type by

[selector : type selector : type ... selector : type]
A new type BOX is declared by

TYPE BOX = [LOW: POINT HIGH: POINT];
For BOX we can define the function \TO:

DEFINE TO(A, B: POINT) = BOX : [LOW: A HIGH: B]
ENDDEFN

Thus, 0#0 \TO 1#1 also means a box with a lower-left corner 0#0 and upper-right
corner 1#1. So, we have two operations:

• one creates a box as a single polygon:
{ POINT1;POINT2;POINT3;POINT4 } \PAINTED COLOR
• another creates a single box:
POINT1 \TO POINT2 \PAINTED COLOR

Variants
This type constructor gathers together unrelated types to form a new type which admits
a well-defined uncertainty in representation. Now we can define the type LAYOUT by
writing:

TYPE LAYOUT = EITHER
BOX = BOX
POLYGON = POLYGON
UNION = LAYOUTS
COLOR = [PAINT: LAYOUT WITH: COLOR]
MOVE = [DISPLACE: LAYOUT BY: POINT]

ENDOR ;

With a variant obiect are inserapable the CASE statements:

Automatic Configuration of Structured Graphical Documents 103

CASE variant object OF
STATE1 : analyze (certain object)
STATE2 : analyze (certain object)

ENDOR;

About Quantifiers
A “quantifier” is a loop generator. Three quantifiers are introduced in GCL: FOR,
WHILE, REPEAT. The following quantifier operators are introduced to form a new
quanitifier:

INIT – an action occurs before the quanifier starts up,

FIRST_ DO – the action is performed only upon the first iteration,

OTHER_ DO – the action is performed on all nonfirst iteractions,

EACH_ DO – we can append the quantifier that is to occur upon each iteration. The
OTHER_ DO complements FIRST_ DO, and together, these two clauses form the
equivalent of an EACH_ DO.

WITH – we can filter out those iterations for which the boolean expression yields
FALSE,

&& – a new quantifier is formed from two given quantifiers by repectively lock-stepping
two. The action is performed, while the boolean expressions of both quantifiers
produce TRUE,

!! – a new quantifier is formed from two given quantifiers by repectively nesting two
(Cartesian product),

THERE_ IS – for expressing the conditions like this: there is an X in A, and Y in B such
that X \EQ Y. We write this condition in GCL with

THERE_ IS X \EQ Y FOR X $E A; !! FOR Y $E B;
or with

FOR X $E A; !! FOR Y $E B; THERE_ IS X \EQ Y

Standart Unit Specification
Each component is defined by a function:

DEFINE name (arguments) = type:
BEGIN

VAR variables_if_needed
DO actions_if_needed
GIVE value_of_the_type_described_above

END
ENDDEFN

A layout of a unit we define with the function notation DEFINE ... ENDDEFN. When
the output type is LAYOUT, we become the layout of the unit.

104 K. Lapin

Complex Layouts
Since a layout is a picture, we can conceive that the layout is made up of a large set of
individual polygons. Each polygone represents not just the outline of the polygon, but the
entire area enclosed by the polygon. Each polygon area has a colour, too. But designer
rarely thinks in terms of pure polygons. He/She thinks in terms of functional units made
up of small sets of polygons.

A practical layout consists of more than a single polygon or box. There are two equiv-
alent notations for specifying the superposition of existing layouts:
1 LAYOUT1; \UNION LAY OUTk
2 { LAY OUT1; LAY OUT2; ...; LAYOUTk}

4.3. Plotting a Layout

A plotting process interfaces between a layout and specific plotter. One of user requiments
is that plotting process must be easy to modify. Now, we can describe the plot program :

DEFINE PLOT (L:LAYOUT DISP:POINT COLOR:COLOR);
BEGIN VAR L1 = LAYOUT;

CASE L OF
POINT: plot the point displaced by DISP, with COLOR
BOX: plot the box displaced by DISP, with COLOR
CIRCLE: plot the cicle displaced by DISP, with COLOR
TEXT: plot the text displaced by DISP, with COLOR
POLYGON: plot the polygon displaced by DISP, with COLOR
UNION: FOR L1 $E L; DO

PLOT (L1, DISP, COLOR)
END;

MOVE: PLOT (L.DISPLACE, DISP+L.BY, COLOR);
COLOR: PLOT (L.PAINT, DISP, L.WITH);

ENDCASE
END

ENDDEFN

This recursive program is easy to understand. For a complex layout, the function
recursively calls itself until a graphical primitive (point, line, circle and so on) is obtained.
In order to change a CAD tool, the user has to modify a PLOT program.

4.4. Data Flow in SyntheCAD

In organisational context, we have chosen a completely automatic configuration. It makes
the configuration capable to people without the required background knowledge and re-
duces the workload of experienced users.

In Fig. 9 the data flow in SyntheCAD is shown. The logical structure (arrangement)
of an electroplating line is given by the user and serves as an input. In an arrangement the
key components of a particular electroplating line are given.

Automatic Configuration of Structured Graphical Documents 105

Fig. 9. Data flow: from a customer’s order to drawings.

The script files of technical drawings for a general-purpose CAD system serve as
output. A configurator’s knowledge base and a library of symbols is prepared before
configuring.

4.5. Implementation of Component Oriented Method

We have mentioned three basic stages, which are performed in component oriented ap-
proach (Section 3.2).

The logical structure (arrangement) defines what components are created. It is the first
stage in the component oriented configuration process. Component types are chosen by
the user.

The second and third stages of the configuration are performed during the interpreta-
tion of the logical tree. In this step the following sub-steps are performed: forming com-
ponent’s layout, connecting the components, cabling, dividing the drawings into pages,
etc.

106 K. Lapin

Fig. 10. Three configuration stages in SyntheCAD.

After the interpretation, the layout structure is derived from the logical structure. Ac-
tions are specified in GCL programs.

The architecture of SyntheCAD consists of arrangement input, GCL interpreter, GCL
compiler, linker, and a PLOT program (Fig. 10). During the arrangement input compo-
nents are created. A logical parser-tree of an electroplating line results. The interpreter
traverses the tree and adds new variables (i.e., components and attributes) to the config-
uration, enriches the logical tree with semantic information, calculates the layout struc-
ture, produces semantic analysis (i.e., divides into pages, connects components, makes
cabling, etc.). The main goal in the interpretation step is to yield the layout structure of
the drawings.

5. Conclusions

The aim of this paper is to present a method of automatic graphical document preparation
as it is implemented in the SyntheCAD system developed at Vilnius University. In our
domain the logical structure of drawings constitutes the essence of the domain model.

Automatic Configuration of Structured Graphical Documents 107

The method proves, that logical structure of graphical documents can be formalized and
used further in the configuration.

The document preparation system SyntheCAD is designed for specifications which
are applicable to 2D graphical documents, that have an internal aggregation structure.
SyntheCAD uses essentially the logical structure of documents to be synthesized. In our
case technical documentation is produced.

References

Ayres, R.F. (1983). Silicon Compilation and the Art of Automatic Microchip Design. Prentice-Hall, Englewood
Clifs, New Jersey.

Brown, David C. (1997). Some thoughts on configuration processes.
http://www.cs.wpi.edu/ dcb/Config/configuration.html

Čyras V., V. Povilaitis, D. Sidarkevičiūtė, K. Moroz (Lapin), M. Žilinskas, R. Baracevičius (1993). A Model-
driven configuration: from procedural to object-based decomposition. In M.R. Beheshti and K. Zreik (Ed.),
Advanced Technologies, Elsevier Science Publishers B.V.

Furuta R., J. Scotfield, A. Shaw (1992). Document formatting systems: survey, concepts and issues. In J. Niev-
ergelt, G. Coray, J.D. Nicoud, A.C. Shaw (Eds.) Document Preparation Systems, North-Holland Publishing
Company.

Eickel, J. (1990). Logical and layout structures of documents. Computer Physics Communication, 61,201–208.
Gajski D.D., D.E. Thomas (1988). Introduction to Silicon compilation. In Silicon Compilation, Addison-

Wesley, pp. 1–48.
ISO-Standart 10179 (1996). Information Technology – Processing languages – Document Style Semantics and

Specification Language (DSSSL).
ISO-Standart 8879 (1986). Information Processing – Text and Office Systems – Standart Generalised Markup

Language (SGML).
Maler, E., J.E. Andaloussi (1996). Developing SGML DTDs: From Text to Model to Markup. Prentice Hall PTR,

Upper Saddle River, New Jersey 07458.
Mittal, S., F. Frayman (1989). Towards a generic model of configuration tasks. In Proc. of the IJCAI’89,

pp. 1395–1401.
Stumptner, M. (1997). An overview of knowledge-based configuration. AI Communications, 10, 111–125.
Wilhelm, R., R. Heckman (1996). Grundlagen der Dokumentenverarbeitung. Bonn, Addison-Wesley-

Longman.

K. Lapin has received her Diploma in Computer Science from Vilnius University in
1988. Since then she is a researcher at the Faculty of Mathematics of Vilnius University.
Her research interests include document processing, document structure representation,
knowledge-based configuration.

108 K. Lapin

Struktūrini ↪u grafini ↪u dokument ↪u automatinis konfigūravimas
galvanini ↪u linij ↪u srityje

Kristina LAPIN

Pristatomas technini ↪u brėžini ↪u automatinis konfigūravimas galvanini ↪u linij ↪u dalykinėje srityje.
Aprašoma, kaip sukurtoje sistemoje SyntheCAD integruojami du metodai: dokument ↪u ruošimo
srityje pasiūlytas apibendrintas kodavimas bei konfigūravimo uždavini ↪u klasėje naudojamas kom-
ponentinis metodas.

