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Abstract. A likelihood approach is considered to the prob
lem of making inferences about the point t = v in. a Gaussian 
autoregressive sequence {Xt , t = 1 -7- N} at which the under
lying AR(p) parameters .undergo a sudden change. The statistics 
of a loglikelihood function L( n, v) is im·estigated over the admis
sible values n E (p + 1, ... , N - 1) of a change point v under 
validity of hypothesis of a change and no change. The expres
sions of L( n, v) implying the loss of plausibility when moving away 
from the true change point v are presented, and the probabilities 
P{VN = v±r}, r = 0,1,2, ... , where VN is the MLH estimate 
of a change point v from the available realization Xl, X2, ... , X N 

of {Xt, t = 1 -7- N} are considered. 

Key words: change point problem; likelihood inference; au
toregressive sequences. 

1. Introduction. There is a great number of situa
tions when the assumed structure of a stochastic model at the 
beginning of an observation becomes unfit at the end. The 
most simple assumption is to set up that an abrupt change of 
parameters has occurred somewhere. Analogous examples can 
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be found in quality control, econometrics, study of biomedical 
signals, etc. 

To make ,a statistical inference about a change point, it is 
necessary: i) to determine if there exists any change point in 
the observed sequence - the output of a stochastic model; ii) 
to estimate the change point; iii) to investigate the statistical 
properties of the involved statistics and estimates. This paper 
is devoted to the last two goals but the crucial point is to 
evaluate the contribution to the inference of the magnitude of 
change in various parameters of the considered model before 
and after a change. As for detection of changes, there is a 
wide choice of approaches (see, e.g., surveys Basseville, 1988; 
Kligiene and Telksnys, 1983). 

2. Model assumptions and notations. Let {X~i), 
t = 0, ±1, ... }, i = 1,2, be two stationary, Gaussian autore
gressive sequences of finite order p, i.e., AR(i)(p) described by 
the equations 

i = 1,2, (1) 

where the sequence {Ct, t = 0, ±1, ±2, ... } consists of inde
pendent normally distributed variables Ct I'V N(O, 1). The as
sumption of stationarity involves a condition that all the roots 

ofthe equation t a;i) zp-j = ° are less than 1 in the absolute 
j=O 

I . th t O( i) ( i) (i) (i» f d 1 va ue, 1.e., e parame ers = J.1, ,ao , ... , ap 0 mo e 
(1) belong to the stationarity area e : O(i) E e c Rk, k > p. 

Let us introduce a change point as an unknown time in
stant t = 1/ at which the process {XP)} switches to {X?)}, 
resulting a new process: 

t = ... ,1/ - 1,1/ 

t = 1/ + 1,1/ + 2, ... 
(2) 
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represented by a single realization X1N = (Xl' X2,· .. ,X N)' 
We may set up the following two hypotheses of homogene
ity: H 1(8 = 8(1»)N : v > N; H2(8 = 8(2»)N : v < 1 against 
the alternative of a change: H12 (8(1), v, 8(2») N: there exists an 
unknown change time v, where p < v ~ N - 1. The alterna
tive itself contains the multiple hypotheses H 12 ( 8(1), n, 8(2»)N, 
n = p + 1,p + 2, ... , N -1 with N - p admissi.ble values n of 
a change point v. • . 

Denote by lnpH;(x1N; 6(i»), i = 1,2 and lnpH12 (x1N; 8(1), 

n,8(2»), n = P + 1, ... , N the corresponding loglikelihood 
(LLH) functions., We shall investigate the LLH statistics 
lnpH12(X1N ; 8(1), n,'8(2»), n = P + 1, ... , N when the true hy
pothesis is H 12 (X1N; 8(1), v,8(2») including special cases v = N 
(HI is true) and v = 0 (H2 is true). 

The test statistics will be investigated under the assump
tions: 

(AI) a change point v is an unknown non~random pa
rameter with a set of admissible values n E A = 
(p + 1, ... , N - 1); 

(A2) 8(1) =f:. 8(2), and 8(1),8(2) are known parameters 
belonging to the stationarity area 0; 

(A3) the sequences {XiI)} and { .. ;yP)} are independent 
for every admissible value n E A; 

(A4) the order P of the equation (1) is a small number 
in comparison with v and N - v. 

Let for i = 1, 2 

X (i) _ T(X(i) X(i) X-(i») 
IN -.,. l' 2 , ... , N , 

1/( i) _ T( 1/( i) 1/( i) 1/( i»)_ ~ 1/( i) 
rlN - r, r , ... , r r, 

(3) 

where T(.) means transposed array, i.e, column vector and 
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0 

A(i) - ( i) (i) ( i) (4) N - ap a l ao 

0 ( i) ap 
( i) a l 

( i) ao 

Let xi~ be a vector generated by model (1) which now 
can be rewritten as 

(5) 

Let us express for the sake of convenience the covariance 
t ' ,,(i) f XCi) d't' ,,(i), t f A(i) rna nx L.Jjv 0 IN an I s Inverse L.JN In ernls 0 • N: 

v(i) (i) A-(i) 
·'l..IN - /-lIN = N 511',[, (6) 

~(i) _ EH { (X(i) _ /I(i) ), T (v(i) _ fl(i) ) } 
LJN - i IN rlN ·'l..IN r'IN 

= AW EHi{ SIN' TSIN }AW = AW, TAW, (7) 

,,(i) _ T A(i) A(i) 
L.JN - - N' N' 

The model of change (2) can be transformed into the 
following one: ' 

~r (1) A-(I) 
Alv = /-llv + v 5l v , 

X - (2) A-(2)-
v+1,N - /-lv+l,N + N-vc/J+I,N' 

(8) 

3. Test statistics. According to the assumptions 
(A1)-(A3) we can write out the expressions of LLH functions 
for each hypothesis 

InPHi(XIN; a(i») = Ci + (N - p) In a~i) 

1 T( v (i) ) TA(i)A(i)( v· (i) ') - 2" ... 1.1N - /-lIN N N ·'l..lN - /-lIN' 

(9) 
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(1) 
1 (X, 0(1) 0(2») 1 ao npH12 IN, ,n, . =CI2 +n n('2) 

ao 

_ ~ T(X _ 1/(1») T A(I) A(l)(X _ 1/(1») 2 In .11'1 1'1 1'1 In .11'1. . (10) 

1 T(X (2») TA(2) - 2' n+I,N - j.ln+1,N. N-n 

X A~~n(Xn+I,N - j.l~21I,N)' 
For every n = P + 1, ... , N - 1 and fixed v denote by 

L(n, v) = lnpH12 (xIN; 0(1), n, 0(2») 

-lnpH12 (xIN; 0(1), v, 0(2») 
(11) 

the difference between LLH values at the point n and the true 
change point v. L( n, v), as a function of n, represents the loss 
of plausibility when moving away from the point v. Evidently: 
L(v, v) =0. 

Lemma 1. In the change point model (2), where the au
toregressive process {X?)} switches to {Xi 2)} at an unknown 
time instant t = v under validity of the assumptions (A1)
(A4), the loss ofp1ausihility L(n, v) (11) has the expression 

a(I) 1 [ -(2) 
L(n,v)=(n-v)ln ~2) -2' T(j.l(1)_j.l(2»)'E II _ n 

ao 

X (j.l(1) - j.l(2») + T £n+I,II(R;~n - [11-1'1)£1'1+1,11 
(12) 

if n < v; 

(13) 
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where C1N is a vector of independent normally distributed 
Ct fV #(0,1) and h - the matrix of identity, 

R ij - TA-(j)~(i) A(j) " 1 2 
k - k L.Jk .Jd.k' Z,) = , , (14) 

The proof involves evident transformations or(10), (11) 
(different for n < v and n > v), when the hypothesis HI2(f~(1}, 
v, O(2»)N is true and the model (8) is valid. Th'e dimensions of 
matrices and vectors are diminished from N, N - v to In - v I 
mainly due to the assumption (A4): 

COROLLARY 1. If the hypothesis H 1(0(1»)N is true, the 
expression (12) is valid with v = Nj if H 2(O(2»)N is true, the 
statistics L(n, v)~~ expressed by (13) with v = O. 

Denote by ).~Jk' t = 1,2, ... , k, the eigenvalues of matrix 

R~ and by ,;jk' 't = 1,2, ... , k, the eigenvalues of matrix 
-(i) -( ') , 
~k • A'; . The results (12), (13) of Lemma 1 may be trans-
formed into a non-vectorial from 

(1) 1 
L(n, v) = (n -v){ In a~2) + 2'(j.P) _1l(2)?",~2) 

ao 

1 f.. ( 21 ) 2 (15) + 2( _ ) L...J At ,lI-n - 1 Ct 
v n t=n+1 

if n < Vj 

if n > v; 
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where x~i) is the diagonal element of an asymptotically Toep-

l·t t· ~(i) Th . ~(i). . d·· t d·f 1 Z rna nx LJk. e matnx LJk IS symmetnc an It IS no 1-

fi It t h I"", \ (i) (i) h d i) 12k cu 0 prove t at Ii L.J At k = Xo ,were At k' t = , , ... , .. , 
t ' , 

th · al f h . ~ (i) are e elgenv ues 0 t e matnx LJ k • 

COROLLARY 2. 

where 

. [ a(l) 
E HI2 {L(n, v)} = (n - v) In ~2) 

ao 

+ ~(J.l(l) - J.l(2»)2X~2) - ~(1 - O"il)] 

6 (n - v )ml' ml > 0, if n < v; 

(1) 

E HI2 {L(n, v)} = (n - v) [In a~2) 
ao 

- ~(J.l(I) - J.l(2»)2X~I) + ~(1 - O"i2)] 
6 (n - v)m2, m2 < 0, if n > v; 

O"? = ~ a Ci ) a Ci ) E {(X(j) - Il(j)) 
I) L.J k I Hj t+k r 

k,I=O 

X (Xi~l - J.l(j»)} , i,j = 1,2, i· i= j. 

(17) 

(18) 

(19) 
\ 

The proof of (17), (18) is based essentially on the results 
of Kligiene (1989). 

In statistics it is quite natural when a test statistics is 
investigated under the null hypothesis (HI) and under the 
alternative one (H2). However, in practice we can meet a non
standard situation when a hypothesis, different from HI and 
H2 , is true while the test statistics is fitted to distinguish be
tween HI and H 2 • It is interesting to investigate the behaviour 
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of a test statistics under that other hypothesis which does not 
coincide with HI or H 2 • In the change point problem very 
natural is to consider the likelihood ratio statistics (to distin
guish between H1({) = {)(1»)N and H2({) = {)(2»)N ) while the 
hypothesis of change H 12 ({)(1), 1/, {)(2»)N is true. 

Lemma 2. If the hypothesis of a change H 12 ({)(1>, 1/, 

{)(2»)N is true, the loglikelihood ratio equals to 

and the inference in favour of HI or H2 depends on a sign of 
the value .6. 

Proof. Using the expressions (9) and the analogous trans
formations as for deriving (12), (13), we have 

(1) 

InpHl (XIN; {)(1») -lnpH2 (XIN; {)(1») = c12 + (N - p) In a~2) 
ao 

- ~{ TClvlvClv + T(p(2) - p(1»)~~~v(p(2) - p(1») 

+ T CV+I,NR}J_vCV+I,N + 2 T(p(2) - p(I»)~~~v 

X A~~vcv+I,N} + ~{ T(p(l) - p(2»)~~2)(p(1) - p(2») 

+ 2 T(I/(I) _ 1/(2»):E(2) A(1) C + T C R2I C 
r r v v Iv Iv v ;tv 

(1) 

T '} ao + Cv+I,NIN-vcv+I,N = CI2 + (N - p) In (2) 
ao 

+ ~ T(p(I) _ p(2»)~~2)(p(1) _ p(2») + ~ TCIv(R~l - IV)Cl v 

+ T(p(l) _ p(2»)~~2) A~l)ClV _ T(p(l) - p(2»)~~~v 

X (p(l) - p(2») - ~ TCV+1,N(R}J_v - IN-v)Cv+l,N-
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T( (1) (2))),(1) .4.(2) 
/-l - /-l "-'N-v N-vCv+1,N 

= L(N, V) - L(O, V). (21) 

4. The MLH estimate of a change point. To ob
tain the maximum likelihood (MLH) estimate VN from XIN = 
(Xl,' .. ,X N), we have to maximize the loglikelihood function 
lnpH12(XIN; f)(1), n,f)(2)) over the admissible values of n, na
mely n E.A or do the same with L(n, v), i.e., to find max 
L(n, v). The expressions (12), (13), (15), (16) lead us to a 
statement that the MLH estimate VN is the value of n maxi
mizing the sequences of partial sums 

{ 
0, 

L(n, v) = 
0, 

where 

v 

2: et = S~+I' n = P + 1 -;- v-I, 
t=n+l 

n 

2: (t = S~+l' n = v + 1 -;- N - 1, 
t=v+l 

(22) 

_ a~1) 1 2 (1) 1 12 _2 .12 
(t - In a~2) - ~t5 Xo - 2(A t,n-v - l)l:.t + °"tt,n-vCt , (24) 

o = /-l(I) - /-l(2) . 

Evidently, et's and (t'S are independent and L(n, v) (22) con
sist of two independent random walks (because of the inde
pendence of Ct 's). 

The probability law of a random variable 

(25) 

for any constant a, b and a standard normal variable c should 
describe the probabilistic structure of random walks in (22). 
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Denote 

Fa~2+be(X) = P{ae2 + be < x}, D(x) = b2 + 4ax (26) 

and consider it separately for the cases a < 0 and a > o. It is 
not difficult to prove that 

Fa~2+b~( x) = 
a<O 

(27) 

= 2a ~ 2a ,IX < - 4a' (28) { cp(-b+D~(X») + 1- ;r..(-b-D~(X»)·f b2 

• b2 
1, If x ~ - 4a' 

where cp( x) is a standard normal function. The expressions 
(27), (28) obviously lead us to the probability densities con-

centrated on [-::,(0) if a> 0 and (-00,-::) if a < o. 
Lemma 3. The probability density function 

{ 
0, x ~ 0, 

py(x) = 2a e.:$--2a2 x chb..jX x> 0, (29) 
"/27rx ' 

describes the distribution ~f Y = 4!a e + 1::4 ' where e is de
fined by (25), a > O. 

The distribution function (28) leads us to the analogous 
probability density function, concentrated on (-00,0]. Evi
dently 

p{e<o}=cp(~)-~, if a>O, 

P {e < O} = cp (~) + ~, if a < o. 
(30) 
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The density function (29) is a natural generalization of xi dis
tribution law but a random walk S~+l or S~+l' beginning its 
pattern at the point t = lJ consists of the independent items 
et or (t, each having a distribution function FeJx), F(t(x) of 
the same family as (27), (28) and with the individual parame
ters at, bt , t = 1,2,3, ... , what makes the c1assical fluctuation 
theory unproper in this case. . 

To determine fiN, we must find the larger of two random 
walk (22) maxima Mv- p and M'tv-v-1' where 

M v - p = max{O, S~+ll n = P + lJ -I}, 

M'tv-V-1 = max{O, S~+l' n = lJ + 1 + N - I}. 
(31) 

We can express events involving VN in terms of events involv
ing Mk and Mk. Denote Pv±r = P{VN = lJ±r}, r = 0,1,2, ... 

Pv = P{Mv- p = M~-v-1 -:- O} 
= P{Mv- p = O}· P{M~-v""l = O}, 

Pv-r = P{VN ~ lJ}' P{Mv- p = S:-r+d, 

Pv+r = P{VN > lJ}·P{M'tv_v_1 = S:tD· 

(32) 

The probabilities P{VN ~ lJ} and P{VN > lJ} may be ap
proximately evaluated with reference to the results of Corol
lary 2 and the concrete values m1 and m2, whereas P{Mv - p = 
S~-r+1} as well as P{M'tv-v-1 = S:tn are calculated in the 
following way: 

P{ Mv - p = S:-r+d 
= P{S;+[ < 0, S;+; < 0, ... , S:=;_l < 0, ev-r < 0, 

ev-r+1 ~ 0, s:=;ti ~ 0, ... ,S:=;+l ~ 0, S:-r+1 ~ O} 
v-r-p 

= P{Bd II P{BjIBj-1· ... · Bd· P{A·d 
j=2 

r 

x II P{AjIAj- r ···· Ad, (33) 
j=2 
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where 

Bk = {S~=;-k+l < A}, Ak = {S~=;tf ~ O}. (34) 

The probabilities P{Bd or P{Ad follow from (30) while 
P{Ak!Ak-l ... Ad as well a$ P{Bk!Bk-l ... Bd may be cal
culated as: 

P{Ak!Ak- 1 •.. Ad = P{S~=;tf ~ O!S~=;t~-l ~o, 
... , ~v-r+l ~ O} = P{~v-r+k ~ O} 

v-r+k-l 
+ P{~v-r+k < O}·P{!~v-r+k! < ~ ~t1. 

v-r+l 

(35) 

The results (25)-(35) enable us to calculate the probabil
ities Pv±n r = 0,1,2 ... in terms of the parameters B(1), B(2) 

more explicitly as it w~s done by Kligiene (1989). 

5. Conclusions. The function L(n, v) representing the 
loss of plausibility, when moving away from the true change 
point v, and its mean value EH12L(n, v) are presented in terms 
of changing parameters. It is proved that E H 12 { L ( n, v)} is a 
polygon with a breakpoint at v, whereas its slopes are fully 
determined by 0(1) and 0(2). Th~ results enable us to write 
out the exact values of probabilities P{VN = v ± r}, r = 
0,1,2, ... , derived for any N, r, v. Asymptotic behaviour of 
P{v N = v ± r} is a goal of future investigation. 
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