
INFORMATICA, 1999, Vol. 10, No. 1, 45–70 45
 1999 Institute of Mathematics and Informatics, Vilnius

Recurrences in Solving Triangular Systems of
Linear Equations: Representation in the Structural
Blanks Method

Vytautas ČYRAS
Department of Computer Science, Vilnius University
Naugarduko 24, 2600 Vilnius, Lithuania
and
Institute of Mathematics and Informatics
Akademijos 4, 2600 Vilnius, Lithuania
e-mail: Vytautas.Cyras@maf.vu.lt

Received: January 1999

Abstract. In the paper we examine data dependencies in the algorithm of back substitution in the
problem of solving triangular systems of linear equations. The aim of the paper is to illustrate
the structural blanks (SB) notation in consistency proof of data dependencies in loop programs.
Data dependency semantics of programs is introduced and investigated. The introduced notation
constitutes the theoretical basis of data dependencies in SB. Two structural modules – a sequential
S-module and a parallel one – are examined.

Key words: data dependency, a loop program, triangular system of linear equations, S-module’s
consistency proof.

1. Introduction

This paper was inspired by the report of Yang and Choo (1992) which proposes a func-
tional view of arrays, called data fields, and derives a parallel algorithm for solving trian-
gular systems of equations. Data fields and index domains are major semantic objects in
the language Crystal (see Chen et al., 1991). In our paper we treat the algorithm of back
substitution in terms of the structural blanks (SB) method.

The structural blanks approach, first presented by Čyras in 1983, then by Greshnev,
Lyubimskii and Čyras in 1985, was developed to express solutions to mutually dependent
recurrences in the form of reusable program components defining loops over arrays. A
decade after, the SB concept was revised by Čyras and Haveraaen (1995; 1995; 1998).
The theoretical basis of SB is being developed further. The aim of this paper is to illus-
trate the SB notation in consistency proof of data dependencies in loop programs. The
algorithm of parallel back substitution in the problem of solving triangular systems of
linear equations, which was presented in Yang and Choo (1992), is taken as a sample
algorithm. In order to assure strict reasoning in the proof, program semantics in terms of

46 V. Čyras

� @
@
@
@�

�
�
�	 ti1
i2

� @
@
@
@�

�
�
�	 ti1
i2

� @
@
@
@�

�
�
�	 ti1
i2

� @
@
@
@�

�
�
�	 ti1
i2

� @
@
@
@�

�
�
�	 ti1
i2

n = 0 n = 1 n = 2 n = 3 n = 4 . . . n = N

Fig. 1. Data dependency graph of a second order one-dimensional recurrence, such as the Fibonacci function.
The numbers in circles label the two arcs from a node. The nodes are enumerated by the plain numbers under-
neath them. The dependency of one step is a pair n−1, n−2 ; n. The dependency of the whole computation
is a pair of index sets 0, 1 ; 2, 3, 4, . . . , N .

data dependencies is introduced. This notation is presented in Section 4 and thus consti-
tutes the theoretical basis of data dependencies in SB. Hence this paper is regarded as a
further development of SB.

The SB approach distinguishes between functional components (F-modules) and
structural components (S-modules). Each module contains a data dependency part and
a procedure part. The S-module describes the data dependencies, the set of initial ele-
ments and the set of output elements, and in the S-procedure it defines a driver algorithm
for recurrences with this dependency structure. SB provides a framework for defining
data dependencies explicitly when writing procedures, and taking these data dependen-
cies into account when combining modules into larger programs.

This paper is structured as follows. First, we discuss some basic properties of recur-
rences. Second, the SB approach is introduced. Third, the notation for data dependency
semantics of programs is presented. Fourth, two S-modules – a sequential and a parallel
one – in the domain of solving triangular systems of equations are examined. A detailed
consistency proof of the parallel S-module is presented.

2. Recurrences

Before introducing the formal definition of data dependency in Section 4, we start with
the more familiar notion of recurrence.

An order k linearly dependent recurrence r with the natural numbers as index domain
is a relation defined by a set of equations

rn = φ(rn−1, rn−2, . . . , rn−k), n > k, rk−1 = εk−1, . . . , r0 = ε0 (1)

where the indices are natural numbers, φ is a k-ary expression, k > 0, not referring to r,
and the εi, representing initial values, are expressions not referring to r. The choice of
r0, . . . , rk−1 as initial elements is arbitrary. The archetypical second order recurrence
relation is the Fibonacci function Fn = Fn−1 + Fn−2, where F1 = 1 and F0 = 0,
defining the sequence 0, 1, 1, 2, 3, 5, 8, 13, The dependency pattern of this function
is illustrated in Fig. 1.

Recurrences in Solving Triangular Systems of Linear Equations 47

To compute all values r0, r1, . . . , rn the array should be declared R[0:n], and the com-
putations be

R[j] := φ (R[j-1], R[j-2], . . . , R[j-k]), (2)

where R[j] will then contain rj for 0 6 j 6 n. Other result sets may also be defined.
Recurrences may be generalized to arbitrary index domains. Given a sufficient set of

initial values εi1,...,im , the m-dimensional order k general recurrence has the form

rn1,...,nm = φ(rδ1(n1,...,nm), . . . , rδk(n1,...,nm)), (3)

where each δj returns an m-tuple of indices. Since δj have a more complex relationship
than the linear dependency in (1), it is impossible to give a general algorithm for com-
puting rn1,...,nm . But the structure of the algorithm is dependent only on δj , the data
dependency pattern of the recurrence, and is independent of the actual φ, known as the
computational aspect of the recurrence. The data dependency of (3) will be represented
as a pair of index sets

δ1(n1, . . . , nm), . . . , δk(n1, . . . , nm) ; <n1, . . . , nm> .

A set of mutually dependent recurrences is of the form

r1
n1,...,nm1

= φ1(r
i1,1
δ1,1(n1,...,nm1), . . . , r

i1,k1

δ1,k1
(n1,...,nm1)),

...

r`n1,...,nm`
= φ`(r

i`,1
δ`,1(n1,...,nm`)

, . . . , r
i`,k`
δ`,k` (n1,...,nm`)

),

(4)

together with a suitable set of initial values. Here ij,q ∈ {1, . . . , `}, and δj,q is an mj-ary
function returning an mij,q -tuple of indices.

3. Structural Blanks

The SB approach distinguishes between functional modules (F-modules) and structural
modules (S-modules). An F-procedure defines the algorithm to compute one step of one
recurrence expression rj of (4), and the containing F-module describes the data depen-
dencies of this step. An S-module is applied to a collection of F-modules by matching the
dependencies of the F-modules with those of the S-module as defined by a substitution Ξ

on the S-module. The application produces a new F-module containing an algorithm to
compute the full recurrence.

The F-module for each step of the Fibonacci function is

F-module FIBSTEP (q : integer) ==
global X : array[*] of integer

template X[q–1], X[q–2] ; X[q]
procedure X[q] := X[q–1] + X[q–2]

end

(5)

48 V. Čyras

This is to be interpreted as: FIBSTEP contains a one-dimensional second order recurrence
expression over the array X. The size of the array X will be declared in the program unit
that uses the modules.

In the case of an order k linear recurrence (1) an S-module would be

S-module LDEP (Fmod Φ(integer); k, N : integer) ==
formal x : array[*]

internal-template
(var q: integer; (x[t], t=q–k..q–1) ; x[q])

external-template
(x[t], t=0..k–1) ; (x[t], t=k..N)

procedure
var q: integer;
for q := k to N do

call Φ(q)
od

end

(6)

This is to be interpreted as: given a one-dimensional recurrence over the array x (as de-
clared in the internal template), the S-module defines a procedure that will invoke Φ to
compute all elements x[k], . . . , x[N] given that x[0], . . . , x[k–1] are defined (external tem-
plate). The set of array elements to the left of the ; (gives) in the external template is
the set of initial elements, and the set to the right is the set of output elements. The data
dependency graph of the computation organized by the S-module LDEP when k = 2 is
shown in Fig. 1, where square nodes mean that the nodes here have initial values, while
the disc nodes represent nodes that will be computed.

To be able to use FIBSTEP to compute the Fibonacci function, we need a driver pro-
cedure that will schedule the computations of its F-procedure. Driver procedures are part
of the S-modules, and are applicable if the internal template Iin; Iout of the S-module
matches the template Fin;Fout of the F-module. In our example we obtain an equality
by substituting

k 7→ 2; x[·] 7→ X[·]; Φ(·) 7→ FIBSTEP(·). (7)

Calling the substitution (7) for Ξ, we denote the application

FIB = LDEP
Ξ

(FIBSTEP).

Unfolding the above application we get a new F-module

F-module FIB (N : integer) ==
global X : array[*] of integer

template X[0], X[1] ; X[2..N]
procedure

var q: integer;
for q := 2 to N do

X[q] := X[q–1] + X[q–2]
od

end

(8)

Recurrences in Solving Triangular Systems of Linear Equations 49

S-module SNAME (Fmod Φ1(q1,1, . . . ,q1,m1 : integer);
...

Fmod Φ`(q`,1, . . . ,q`,m` : integer);
N1 : t1; . . . ; Nm : tm) ==

formal x1 : array[*, . . . ,*]; . . . ; x`S : array[*, . . . ,*]
internal-template

(var q1,1, . . . ,q1,m1 : integer; I1,in ; I1,out);
...

(var q`,1, . . . ,q`,m` : integer; I`,in ; I`,out)
external-template

Ein;Eout
procedure

Ψ
end

Fig. 2. The general form of an S-module based on a set of mutually dependent recurrences (4).

The template of FIB specifies that X contains Fibonacci numbers numbered from 0 to N,
where X[2..N] are regarded as output, based on the initial values of X[0] and X[1].

3.1. The F-module

An elementary F-module defines the dependency pattern and the computational aspect of
a step of the recurrence equation. A nonelementary F-module is a result of applying an
S-module to an F-module. The basic form of the F-module is

F-module FNAME (n1, n2, . . . , nm : integer) ==
global X1 : array[*,. . . ,*] of<type1>; . . . ; X`X : array[*,. . . ,*] of<type`X>

template
Fin;Fout

procedure
Ψ

end

(9)

where Ψ are program statements, n1, . . . , nm are index domain parameters, X1, . . . , X`X
are global array names. In the case of an elementary F-module FNAME, the Ψ is the
program statement defining the actual expression φj in (4). The template Fin;Fout in
(9) represents the data dependency of Ψ.

An F-module is consistent when his template describes correctly the data dependency
of his F-procedure. The programmer has to ensure consistency.

3.2. The S-module

The purpose of an S-module is to organize the computations needed to solve a recurrence
equation. The S-module declares arrays x1, . . . , x`S , and is polymorphic in the sense that
element-types are immaterial, as are the dimensions (the number of dimensions however
is important). The internal templates of the S-module serve the same purpose as the tem-
plate of the F-module: to identify the data dependencies of the computation steps. The

50 V. Čyras

external template, Ein;Eout, of the S-module states which elements, Ein, of the arrays
must be initialized in order to compute the recurrences for a specific output set Eout of
index domain points.

The S-module only relates to the dependency pattern of a recurrence (i.e., functions
δj,i, i = 1, . . . , kj). The dependency pattern embedded in each F-module parameter Φj
is described in the internal template using

(var qj,1,. . . ,qj,mj : integer; Ij,in; Ij,out),

where qj,i denote index domain variables. The alphabet of Ij,in and Ij,out is the set of
indexes of formal arrays x1, . . . , x`S . The specific patterns for each Φj will depend on the
variables qj,1, . . . , qj,mj of the pattern, and sometimes we shall accentuate this by writing
Ij,in(qj,1, . . . , qj,mj) and Ij,out(qj,1, . . . , qj,mj). In this presentation the index domain
variables qj,i will be ranging over the full Cartesian product domain of mj integers. The
interpretation of the pattern is similar to the F-module case: the call Φj(qj,1, . . . , qj,mj)
will use the array elements in Ij,in to compute the ones in Ij,out.

The S-procedure is a driver routine that will call the F-procedures in a predetermined
order, so that the computation successively will define new elements of the arrays until
the entire output has been computed. The Ψ is the program statement defining the driver
algorithm, and N1 : t1, . . . , Nm : tm are other parameters the S-module may need. In our
examples they play the role of loop boundaries.

To refer to the constituents of an S-module S, we introduce simple operators.
The internal template Ij,in; Ij,out for parameter F-module Φj is referred to by
int templ(S, j), the external template of S by ext templ(S) and the program statements
Ψ by pgms(S).

An S-module S is consistent when its external template describes correctly the data
dependency of its S-procedure assuming that each internal template Ij,in; Ij,out de-
scribes correctly the data dependency of the call Φj(qj,1, . . . , qj,mj) for every formal
F-module Φj of S. It is up to the programmer to ensure consistency.

4. Data Dependency Semantics of Programs

In order to provide a formal basis for the structural blanks method, we have to use state-
ments about data dependencies in loop programs. The notation we use for dependencies
is influenced by Tyugu and his method of structural synthesis of programs (Mints and
Tyugu, 1988).

4.1. Data Dependencies

DEFINITION 4.1. A dependency over an (index) set X is a pair 〈Ki,Ko〉, where Ki ⊆ X

and Ko ⊆ X.

In other words, the dependency pair is an element of the Cartesian product, 〈Ki,Ko〉 ∈
P(X)×P(X), where P(X) denotes the powerset of X, i.e., the set of all subsets of X. The

Recurrences in Solving Triangular Systems of Linear Equations 51

a w
b

�

c

wdHH
HHY

�����

Fig. 3. Data dependency graph of sequencing two dependencies, a; b
⊔

b, c; d. The resulting dependency
is a, c; b, d.

constituents Ki and Ko are called input and output respectively. The dependency K is
denoted

K
def
= 〈i(K), o(K)〉. (10)

We shall write dependency as i(K); o(K). The set X plays the role of an alphabet. In
the dependency notation the arrow ; points from the input to the output. Thus ;means
that the input influences the output. In the corresponding data dependency graph (DDG)
the edges are traditionally drawn in the opposite direction. Here the edges mean that
output nodes depend on input nodes.

DEFINITION 4.2. A sequence of dependencies K1 and K2 is a dependency denoted
K1

⊔
K2 (read “square cup”) and defined

i(K1

⊔
K2)

def
= i(K1)

⋃ (
i(K2) \ o(K1)

)
o(K1

⊔
K2)

def
= o(K1)

⋃
o(K2)

(11)

or in other words, putting the defining equations (11) together,

K1

⊔
K2

def
= i(K1)

⋃ (
i(K2) \ o(K1)

)
; o(K1)

⋃
o(K2). (12)

K1

⊔
K2 input includes K1 input and those elements from K2 input which are not con-

tained in K1 output. K1

⊔
K2 output includes outputs of both K1 and K2.

EXAMPLE 4.1. Let X = {a, b, c, d}. Then a; b
⊔
b, c;d = a, c; b, d. The corre-

sponding data dependency graph is shown in Fig. 3.

The operator “
⊔

” for sequencing dependencies is used further in the future to define
the semantics of the program sequencing operator “;” . In the SB approach we also assume
that program’s input and output have an empty intersection.

Proposition 4.1. Let K,K1,K2 and K3 be dependencies. Then

(K1

⊔
K2)

⊔
K3 = K1

⊔
(K2

⊔
K3)

〈∅, ∅〉
⊔
K = K = K

⊔
〈∅, ∅〉

K
⊔
K = K

(Associativity) (13)

(〈∅, ∅〉 is neutral element)

(Idempotency)

52 V. Čyras

Proof. This follows trivially from the defining equation (12).

The associativity (13) implies that the resulting dependency K1

⊔
. . .
⊔
Kl does not

depend on the order of applying
⊔

. The dependency sequence K1

⊔
. . .
⊔
Kl is denoted

l⊔
j=1

Kj . Read “square cup of dependencies Kj for j from 1 to l ”. We can derive from

(11) that the input expression for dependency sequence is

i(K1

⊔
. . .
⊔
Kl) = i(K1)

⋃(
i(K2) \ o(K1)

) ⋃(
i(K3) \

(
o(K1)

⋃
o(K2)

)) ⋃
...(

i(Kl) \
(
o(K1)

⋃
. . .
⋃

o(Kl−1)
))
,

(14)

and the output expression is

o(K1

⊔
. . .
⊔
Kl) = o(K1)

⋃
o(K2)

⋃
. . .

⋃
o(Kl). (15)

The input expresssion (14) is easy to explain. The first step, K1, uses the elements from
K1 input. The second step, K2, uses those elements from K2 input which are not con-
tained in the output of a previous step. The third step, K3, uses those elements from K3

input which are not contained in the output of two previous steps. And so on. The output
expression (15) states that the output of a sequence comprises the outputs of all the steps.
The expressions (14) and (15) are formulated as the following fact.

Fact 4.1. Let K1, . . . ,Kl, l > 1 be dependencies. The constituents of
l⊔

j=1

Kj are

i(
l⊔

j=1

Kj) =
l⋃

j=1

(
i(Kj) \

j−1⋃
k=1

o(Kk)
)
,

o(
l⊔

j=1

Kj) =
l⋃

j=1

o(Kj),

(16)

or, in other words, putting (16) together,

l⊔
j=1

Kj =
l⋃

j=1

(
i(Kj) \

j−1⋃
k=1

o(Kk)
)
;

l⋃
j=1

o(Kj). (17)

Proof. By induction on l.

DEFINITION 4.3. A set of dependencies K1, . . . ,Kl, l > 1 is nonfeeding (otherwise
feeding) iff all their inputs are distinct from all the outputs, i.e., i(Kj)

⋂
o(Kk) = ∅ for

all j, k = 1, . . . , l.

Recurrences in Solving Triangular Systems of Linear Equations 53

� w� w� w� w
0 1 2 . . . l

Fig. 4. Data dependency graph of the loop computation according to the simplest feeding dependency j−1 ; j
for j = 1, . . . , l.

Fact 4.2. The input of a nonfeeding sequence is equal to the union of step inputs, i.e.,

i(
l⊔

j=1

Kj) =
l⋃

j=1

i(Kj). (18)

Proof. Check the first equation of (16) by induction.

In other words, putting the input (18) and the output in (16) together, for nonfeeding
dependencies we have

l⊔
j=1

Kj =
l⋃

j=1

i(Kj) ;
l⋃

j=1

o(Kj). (19)

In case of a parametric dependency, it is nonfeeding depending on parameter values. For
example, the dependency j − 1 ; j is feeding for j = 1, 2, 3, . . . , l and nonfeeding for
j = 2, 4, 6, . . . , 2 ∗ l.

Examples below illustrate the introduced notation.

EXAMPLE 4.2. The simplest feeding dependency. Let X = {0, 1, 2, . . .}. Let Kj =

j − 1 ; j. Then

l⊔
j=1

Kj = 0 ; 1, 2, . . . , l. (20)

The proof is by induction. The corresponding DDG is depicted in Fig. 4.

EXAMPLE 4.3. Fibonacci-like dependency. Let X = {0, 1, 2, . . .}. Let Kj = j − 1,

j − 2 ; j. Then

N⊔
j=2

Kj = 0, 1; 2, 3, 4, . . . , N. (21)

The corresponding data dependency graph is depicted in Fig. 1.

EXAMPLE 4.4. Nonfeeding dependency. This example illustrates (19). Let X be the
union X = Y

⋃
Z of two distinct sets Y = {y1, y2, . . . , yl} and Z = {z1, z2, . . . , zl}

54 V. Čyras

?

w
?

w
?

w
?

w
?

w

1 2 3 . . . l

Y

Z

Fig. 5. Data dependency graph of the computation according to the nonfeeding dependency yj; zj for
j = 1, . . . , l. The loop computation can be parallel.

– Y
⋂

Z = ∅. Let Kj = yj; zj . Then

l⊔
j=1

Kj = {y1, . . . , yl} ; {z1, . . . , zl}. (22)

The corresponding data dependency graph is depicted in Fig. 5.

4.2. Traces

Let T denote a trace over a set X termed the trace alphabet. Let in and out denote the
functions that return sets, the input and the output of a trace respectively, i.e., in(T) ⊆ X

and out(T) ⊆ X. Let

io(T) = in(T);out(T) (23)

be a dependency over X, and let ω denote the neutral trace. The concatenation of two
traces T1 and T2 is a new trace denoted T1 ;̂ T2.

in() : trace→ P(X)

out() : trace→ P(X)

io() : trace→ P(X)× P(X)

ω : trace

;̂ : trace× trace→ trace

(24)

We define the neutral trace by

io(ω)
def
= ∅; ∅. (25)

In order to be correct when defining the function io over concatenation, first we define
io over terms T1 ;̂ T2, where T1 and T2 are trace terms.

DEFINITION 4.4. Let T1 and T2 be traces. Then

io(T1 ;̂ T2)
def
= io(T1)

⊔
io(T2). (26)

Recurrences in Solving Triangular Systems of Linear Equations 55

Proposition 4.2. Let T, T1, T2 and T3 be traces. Then

io
(

(T1 ;̂ T2) ;̂ T3

)
= io

(
T1 ;̂ (T2 ;̂ T3)

)
io(ω ;̂ T) = io(T) = io(T ;̂ ω)

io(T ;̂ T) = io(T)

(Associativity of io) (27)

(ω is neutral element) (28)

(Idempotency)

Proof. Check according to the defining equation (26). The associativity of
⊔

im-
plies (27). The neutrality of ω (28) is implied by io(ω) = 〈∅, ∅〉 from (25).

The trace concatenation T1 ;̂ . . . ;̂ Tl is denoted

l∏
j=1

Tj
def
= T1 ;̂ . . . ;̂ Tl. (29)

For llow > lup, we define concatenation
lup∏

j=llow

as the neutral trace ω. The associativity

(27) implies that io(T1 ;̂ . . . ;̂ Tl) does not depend on the order of applying ;̂ .

Lemma 4.1. Function io distributes through
∏

. The dependency of trace concatena-
tion equals to sequencing its dependencies, i.e., for traces T1, . . . , Tl, l > 0

io(
l∏

j=1

Tj) =
l⊔

j=1

io(Tj). (30)

Proof. By induction on the length l.

4.3. Program Semantics

We will use the semantics brackets [[]] to denote the data dependency of program state-
ments’ trace. This trace semantics will obviously have to interact with the operational
semantics of the programming language in question. Most reasonable programming lan-
guages, such as Pascal or Fortran satisfy our assumptions. We have chosen a Pascal-like
language with some Fortran-90 extensions and notation for the examples given here. We
shall follow the Pascal conventions of interpreting a multidimensional array as an array
of arrays.

The sequence of two programs Ψ1 and Ψ2 is a program denoted Ψ1; Ψ2. The constant
skip denotes neutral program. The semantics of sequencing two programs Ψ1 and Ψ2 is

56 V. Čyras

defined as concatenating their traces. Hence

[[]] : program→ trace

skip : program

; : program× program→ program

[[skip]] = ω

[[Ψ1; Ψ2]] = [[Ψ1]] ;̂ [[Ψ2]]

(31)

The above notation serves for defining program semantics in terms of dependency of
program’s trace. The interpretation is that a program Ψ updates data elements out([[Ψ]]).
For this updating, Ψ uses data elements in([[Ψ]]).

Due to the associativity of ;̂ , the semantics of an arbitrary program sequence becomes

[[Ψ1 ; . . . ; Ψl]]
def
= [[Ψ1]] ;̂ . . . ;̂ [[Ψl]], (32)

where Ψ1, . . . ,Ψl, l > 1 are programs. The semantics of the DO-loop is defined as the
semantics of the sequence of loop’s steps

[[for j := 1 to l do Ψj]]
def
= [[Ψ1 ; . . . ; Ψl]], (33)

where the values of 1 and l which determines the length of the sequence obviously de-
pend on the program’s underlying semantics. Putting (33), (32) and the notation for trace
concatenation (29) together we obtain

[[for j := 1 to l do Ψj]] = [[Ψ1]] ;̂ . . . ;̂ [[Ψl]] =
l∏

j=1
[[Ψj]]. (34)

Putting the last defining equation in (31) and (26) together we obtain the semantics of
program sequence in terms of their dependencies, i.e.,

io([[Ψ1; Ψ2]]) = io([[Ψ1]])
⊔

io([[Ψ2]]). (35)

Further a corollary from (35) and the defining equations (12) is obtained.

Corollary 4.1. For programs Ψ1 and Ψ2 the dependency of their sequence Ψ1; Ψ2 is

io([[Ψ1; Ψ2]])

= in([[Ψ1]])
⋃(

(in([[Ψ2]]) \ out([[Ψ1]])
)
; out([[Ψ1]])

⋃
out([[Ψ2]]).

(36)

Similarly the dependency of the DO-loop is obtained. Putting (32) and (30) together we
have

io([[for j := 1 to l do Ψj]]) =
l⊔

j=1
io([[Ψj]]). (37)

Following is a corollary from (37) and (17).

Recurrences in Solving Triangular Systems of Linear Equations 57

Corollary 4.2. The dependency of a loop program is

io([[for j := 1 to l do Ψj]])

=
l⋃

j=1

(
in([[Ψj]]) \

j−1⋃
k=1

out([[Ψk]])
)
;

l⋃
j=1

out([[Ψj]]).
(38)

Operational semantics of the DOPARALLEL-loop

for j := 1 to l doparallel Ψj

assumes, that steps Ψ1, . . . ,Ψl may be performed in any order, i.e., this order is non-
deterministic. In case inputs and outputs of all the steps are distinct, i.e., in([[Ψj]])

⋂
out([[Ψk]]) = ∅ for j, k = 1, . . . , l, then all permutations Ψj1 ; . . . ; Ψjl have the same
input and output, namely, the union of inputs and outputs respectively of all the steps,

i.e.,
l⋃

j=1

in([[Ψj]]) and
l⋃

j=1

out([[Ψj]]) respectively. These input-output expressions follow

from (19).

DEFINITION 4.5. A set of programs {Ψ1, . . . ,Ψl, l > 1} is nonfeeding (otherwise feed-
ing) iff all their inputs and outputs are distinct, i.e.,

in([[Ψj]])
⋂

out([[Ψk]]) = ∅ for all j, k = 1, . . . , l. (39)

DEFINITION 4.6. The dependency of the nonfeeding DOPARALLEL-loop is defined as
that of the DO-loop, namely,

io([[for j := 1 to l doparallel Ψj]])
def
=

l⊔
j=1

io([[Ψj]]). (40)

Theorem 4.1. The dependency of the nonfeeding DOPARALLEL-loop is

io([[for j := 1 to l doparallel Ψj]]) =
l⋃

j=1
in([[Ψj]]) ;

l⋃
j=1

out([[Ψj]]). (41)

Proof. The above expression follows from (40) and (19).

The procedure is an important modular abstraction in most programming languages.
We assume that procedures can have explicit and implicit parameters. The explicit pa-
rameters are listed in the parameter list, while the implicit parameters may be variables

58 V. Čyras

from a global context such as in Pascal or COMMON block as in classical Fortran. To
accentuate the context dependency of a procedure, we will use a general declaration like

procedure P (q1 : t1, . . . , qm : tm);
global x1, . . . , x`
Ψ

end

(42)

Here the formal parameters qi are declared with type ti as in Pascal. The keyword global
identifies the global parameters xj which are supplied by the context. The procedure’s
statement sequence is Ψ. For simplicity we will restrict our presentation to procedures
where the trace alphabet safely may be assumed to be the collection of global param-
eters, i.e., X = {x1, . . . , x`}. The semantics of a procedure call call P(e1, . . . , em), for
appropriately typed expressions ei will be assumed to be defined by substituting the for-
mal parameters with the actual parameters in the program statement Ψ.

DEFINITION 4.7. Given a procedure declaration of the form P above and a type correct
substitution σ = [q1 7→e1, . . . , qm 7→em], then

[[call P(e1, . . . , em)]]
def
= [[Ψσ]], (43)

where Ψσ means replacing all occurances of qi with ei, from the atomic substitutions
qi 7→ei of σ, in the program statements Ψ.

This substitution will be semantically safe in languages like Pascal or Fortran if there are
no assignments or updating of the formal parameters qi in the program statement Ψ. Of
course the parameters to procedure call may change the value of loop bounds, effectively
giving different traces for different calls to the same procedure.

4.4. Overloading the Sequence Operator

Until now we used different operators to denote sequencing: “
⊔

” for dependencies, “̂; ”
and “

∏
” for trace concatenation, and “;” and the DO-loop for programs. In the future

we overload “;” and the DO-loop operators. They will yield respectively a dependency,
a trace or a program iff their arguments are dependencies, traces or programs. Thus for
dependenciesK1, . . . ,Kl, l > 1 we overload

K1;K2
def
= K1

⊔
K2, (44)

and

for j := 1 to l do Kj
def
=

l⊔
j=1

Kj. (45)

For programs Ψ1 and Ψ2, taking into account (44) and (35), we have

io([[Ψ1]]) ; io([[Ψ2]]) = io([[Ψ1]])
⊔

io([[Ψ2]]) = io([[Ψ1; Ψ2]]). (46)

Recurrences in Solving Triangular Systems of Linear Equations 59

Similarly, for programs Ψ1, . . . ,Ψl, l > 1, taking into account (45) and (37), we have

for j := 1 to l do io([[Ψj]]) =
l⊔

j=1
io([[Ψj]]) = io([[for j := 1 to l do Ψj]]).(47)

As an example, similarly to (20), the loop over a simple dependency v[j–1]; v[j] is

for j := l1 to l2 do v[j–1]; v[j] = v[l1–1];{v[l1], . . . , v[l2]}
= v[l1–1]; v[l1..l2],

(48)

where v[l1..l2] denotes the set {v[l1], . . . , v[l2]}. In the future we will also use the de-
notation v[t], t=l1..l2]. As another example, similarly to (22), the loop over a nonfeeding
dependency y[j]; z[j] is

for j := l1 to l2 do y[j]; z[j] = y[l1..l2]; z[l1..l2]. (49)

Another example illustrates, that a constant appearing in the input of each step can be
moved to the dependency of the whole loop. According to (22), a loop over a nonfeeding
dependency const; z[j], where const

⋂
z[j] = ∅ for j = l1, . . . , l2 is

for j := l1 to l2 do const; z[j] = const; z[l1..l2]. (50)

In the above examples and also in the future, different names denote different elements
of an alphabet.

4.5. Example: A Fibonacci-like Loop

The introduced notation is illustrated in the following example.
Consider the following Fibonacci-like assignment statement. The j-th element of a

one-dimensional array X of type, say, real is assigned

X[j] := ϕ(j, X[j-1], X[j-2]), (51)

where the function ϕ : integer × real × real→ real is not important. The input of this
assignment statement is defined to consist of two memory locations, X[j-1] and X[j-2], and
the output of one, X[j], where j is a free parameter, formally,

io
(
[[X[j] := ϕ (j, X[j-1], X[j-2])]]

)
= X[j-1],X[j-2] ;X[j]. (52)

The dependency of the loop over the assignment (51) expresses that the loop’s input con-
sists of two array elements indexed 0 and 1, and the output consists of elements indexed
from 2 through N

io
(
[[for j := 1 to N do X[j] := ϕ(j, X[j-1], X[j-2])]]

)
= X[0..1] ;X[2..N]. (53)

60 V. Čyras

Now consider procedure F with the assignment statement (51) being its body

procedure F(j : integer);
global X : array[*] of real;
X[j] := ϕ (j, X[j-1], X[j-2])

end

(54)

The call to this procedure is defined to have the same dependency as its body. This de-
pendency is presented in the right-hand side of (52). Therefore

io
(
[[call F(j)]]

)
= X[j-1],X[j-2] ;X[j].

The dependency of the loop over the call to F is the same as in the right-hand side of (53)

io
(
[[for j := 1 to N do call F(j)]]

)
= X[0..1] ;X[2..N]. (55)

5. S-modules for Solving Triangular Systems of Linear Equations

The SB notation is demonstrated in the algorithm of back substitution in the problem of
solving lower triangular systems of equations. Two S-modules are presented.

Given an n × n lower triangular matrix a and an n-vector b, we would like to solve
for the n-vector x so that ax = b, assuming that a is invertible.

a =

a0,0 0 0 · · · 0

a1,0 a1,1 0 · · · 0

a2,0 a2,1 a2,2 · · · 0
...

...
...

...
an−1,0 an−1,1 an−1,2 · · · an−1,n−1

 x =

x0

x1

x2

...
xn−1

 b =

b0
b1
b2
...
bn−1

 .

An elementary sequential approach to this problem is to use back substitution, in
which we start by solving for x0 from the first equation a0,0 ∗x0 = b0. Given x0, we next
solve for x1 from the second equation a1,0 ∗ x0 + a1,1 ∗ x1 = b1, and so forth

x0 = b0 / a0,0

x1 = (b1 − a1,0x0) / a1,1

x2 = (b2 − a2,0x0 − a2,1x1) / a2,2

...
xp = (bp − ap,0x0 − ap,1x1 − · · · − ap,p−1xp−1) / ap,p
...
xn−1 = (bn−1 − an−1,0x0 − · · · − an−1,n−2xn−2) / an−1,n−1.

(56)

Recurrences in Solving Triangular Systems of Linear Equations 61

We treat the equations (56) as assignments and obtain a sequential program

x[0] := b[0] / a[0,0];
for p := 1 to n–1 do

s := 0;
for q := 0 to p–1 do

s := s + a[p,q] * x[q]
od;
x[p] := (b[p] – s) / a[p,p]

od

(57)

We can enroll the first assignment x[0] := b[0] / a[0,0] into the loop with the index p. In
this case the lower bound is changed from 1 to 0. We interpret a loop with the lower
bound greater than the upper bound, e.g. for q := 0 to –1 do, as empty statement. Thus we
obtain a program shown in Fig. 6, where it is annotated with data dependencies. This
sequential program can be represented as the S-module SSEQ below. The essential data
dependency x[0..p–1]; x[p] which feeds up the loop program can be seen in the internal
template.

S-module SSEQ (Fmod Φ(integer); n : integer) ==
formal x : array[*], a : array[*,*], b : array[*]

internal-template
(var p: integer; x[0..p–1], a[p,0..p], b[p] ; x[p])

external-template
(a[t,0..t], t=0..n–1), – – INPUT: a lower triangular matrix a
b[0..n–1] ; – – and a vector b.
x[0..n–1] – – OUTPUT: the resulting vector x.

procedure
var p: integer;
for p := 0 to n–1 do

call Φ(p)
od

end

(58)

The correctness of the external template can be proved by induction over n. Data move-
ments and broadcasting in the sequential program as depicted by Yang and Choo (1992)
are shown on the left-hand side of Fig. 7.

Yang and Choo (1992) propose an approach to equational transformations to system-
atically derive equivalent yet more efficient program. The algorithm can be parallelized
by computing a set of partial sums cp,q, p > q in parallel. We define cp,0 to be b0
for 0 6 p 6 n − 1. First solve for x0 from the equation x0 = c0,0/a0,0. Given x0,
we next compute the partial sums cp,1 = cp,0 − ap,0 ∗ x0, 1 6 p 6 n − 1, in par-
allel and then solve for x1 from the equation x1 = c1,1/a1,1. Similarly, we compute
cp,2 = cp,1 − ap,1 ∗ x1, 2 6 p 6 n− 1, in parallel then for x2, and so on.

Fig. 8 shows a Crystal (Chen, 1991) program, which is composed in accordance with
a program for this parallel algorithm that is given in Yang and Choo (1992). Arrays, called
data fields are treated as functions over a set of index points, called index domains. The
domain D is triangular. When q = 0, c(p, 0) is defined to be b(p); otherwise, c(p, q) is
defined to be c(p, q − 1)− a(p, q − 1) ∗ x(q − 1).

62 V. Čyras�
�

�
�INPUT: a[p,0..p], p=0..n–1, – – A lower triangular matrix a.

b[0..n–1] – – A vector b.
⇓

for p := 0 to n–1 do#
"

!

INPUT: x[0..p–1], – – A subvector of x.
a[p,0..p], – – A row of a.
b[p] – – An element of b.

⇓
s := 0;
for q := 0 to p–1 do

s := s + a[p,q] * x[q]
od;
x[p] := (b[p] – s) / a[p,p]

⇓�
 �	OUTPUT: x[p] – – An element of x.
od

⇓�
 �	OUTPUT: x[0..n–1] – – The resulting vector x.

Fig. 6. A sequential program (57) for solving triangular system of linear equations. Program constructs are
in frameboxes. Input and output of program constructs are in ovals. A lower triangular matrix a and the
vector b serve as input, and a vector x serves as the output for the whole program.

s
@
@R s
@
@R s
@
@R s
@
@R

A
A
A
AU AA
A
AU AA
A
AU

B
B
B
B
B
BN

B
B
B
B
B
BN

C
C
C
C
C
C
C
CW

-s
-s -s
-s -s -s
-s -s -s -s s

p

4

3

2

1

0 q

0 1 2 3 4 s
? s

? s
? s

?

-

?

s
-

?

s -

?

s
-

?

s -

?

s -

?

s
-s -s -s -s s

p

4

3

2

1

0 q

0 1 2 3 4

Fig. 7. Figures taken from Yang and Choo (1992). To the left, long distance data movements in the sequential
program (57) are shown. To the right, data movements and broadcasting are eliminated in the parallel programs
which are shown in Fig. 8, (60) and SPAR (61).

This Crystal program specifies a program for massively parallel distributed memory
machines to be scheduled by a human or a compiler. The challenging task is to schedule
two assignment statements

c[p,q] := c[p,q–1] – a[p,q–1] * x[q–1],
x[p] := c[p,p] / a[p,p].

(59)

Recurrences in Solving Triangular Systems of Linear Equations 63

I = interval (0, n− 1)
D = I × I | λ(p, q). p > q
A = λ(p, q) : D. given values, read in from input
B = λ(p) : I. given values, read in from input

C = λ(p, q) : D.

{
q = 0 → B(p)
1 6 q 6 n− 1 → C(p, q − 1)−A(p, q − 1) ∗X(q − 1)

}
X = λ(p) : I. C(p, p) /A(p, p)
? X

Fig. 8. A Crystal program composed in accordance with Yang and Choo (1992) for the lower triangular solver.

The scheduled program is as follows

– – 1. Initialize the column 0 of c with b.
for p := 1 to n–1 doparallel

c[p,0] := b[p]
od;
– – 2. Compute the vector x.
x[0] := c[0,0] / a[0,0];
for q := 1 to n–1 do

for p := q to n–1 doparallel – – 2.1 Broadcast x[q–1].
c[p,q] := c[p,q–1] – a[p,q–1] * x[q–1]

od;
x[q] := c[q,q] / a[q,q] – – 2.2 Compute x[q].

od

(60)

The second, essential, part of this program can be represented as the S-module,
SPAR, below with two internal templates as are the data dependencies in the two as-
signments (59)

S-module SPAR (Fmod Φ1(integer, integer); Fmod Φ2(integer); n : integer) ==
formal x : array[*], a : array[*,*], b : array[*]

internal-template
(var p, q: integer; Φ1(p,q) == c[p,q–1], a[p,q–1], x[p–1] ; c[p,q]);
(var p: integer; Φ2(p) == c[p,p], a[p,p] ; x[p])

external-template
(a[t..n–1,t], t=0..n–1), – – INPUT: a lower triangular matrix a
c[0..n–1,0] ; – – and the column 0 of c.
(c[t..n–1,t], t=1..n–1), – – OUTPUT: partial sums as a side effect
x[0..n–1] – – and the resulting vector.

procedure
var p, q: integer;
call Φ2(0);
for q := 1 to n–1 do

for p := q to n–1 doparallel
call Φ1(p,q)

od;
call Φ2(q)

odend

(61)

64 V. Čyras

In Fig. 9 the S-procedure of the above S-module SPAR is shown annotated with data
dependencies. The annotation serves to prove the input/output consistency of the sched-
uled program. The essence of the S-procedure of SPAR is to schedule the calls to the
formal F-modules Φ1 and Φ2 in order to feed up the loop iterations. In our case the call to
Φ2(q) produces x[q] as output, which serves as input to be broadcasted to the parallel loop,
which produces c[q+1,q+1]. Consequently c[q+1,q+1] serves as input to produce x[q+1].
And so on, and so forth.

The consistency requirement of an S-module states the following. The S-module’s
program that is given in the procedure has the dependency that is given in the external-
template assuming that all formal F-modules Φj have dependencies that are given in the
internal-template.

DEFINITION 5.1 S-module’s consistency requirement. An S-module S is consistent when

io([[pgms(S)]]) = ext templ(S), (62)

assuming io([[call Φj(qj,1, . . . , qj,mj)]]) = int templ(S, j)(qj,1, . . . , qj,mj) is satisfied
for every formal F-module Φj of S.

In the case of SPAR, the consistency requirement is

io([[

call Φ2(0);
for q := 1 to n–1 do

for p := q to n–1 doparallel

call Φ1(p,q)
od;
call Φ2(q)

od

]]) =

(a[t..n–1,t], t=0..n–1),
c[0..n–1,0] ;

(c[t..n–1,t], t=1..n–1),
x[0..n–1],

(63)

assuming that

io([[call Φ1(p,q)]]) = c[p,q–1], a[p,q–1], x[q–1] ; c[p,q],
io([[call Φ2(p)]]) = c[p,p], a[p,p] ; x[p].

(64)

Below we provide the proof of this consistency requirement, i.e., the proof of (63) under
the assumption (64).

Proof. We obtain (63) step by step – from the dependency in the inner loop to that in the
outer one. The obtained dependencies are depicted in Fig. 9.

Step 1. Taking into account the definition (47) and the dependency of call Φ1(p,q) that
is in the first assumption of (64), we obtain the inner loop dependency

io([[

for p := q to n–1 doparallel

call Φ1(p,q)
od

]]) =

Recurrences in Solving Triangular Systems of Linear Equations 65

�
�

�
�INPUT: a[t..n–1,t], t=0..n-1, – – A lower triangular matrix.

c[0..n–1,0] – – A column 0.
⇓

call Φ2(0);
for q := 1 to n–1 do#
"

!

INPUT: c[q..n–1,q–1],
a[q..n–1,q–1], a[q,q],
x[q–1]

⇓#
"

!

INPUT: c[q..n–1,q–1], – – A column.
a[q..n–1,q–1], – – A column.
x[q–1] – – An element.

⇓
for p := q to n–1 doparallel�
 �	INPUT: c[p,q–1], a[p,q-1], x[q-1]

⇓
call Φ1(p,q)

⇓�
 �	OUTPUT: c[p,q]
od

⇓�
�

�
�OUTPUT: c[q..n–1,q] – – A column. Split to

– – c[q,q], c[q+1..n–1,q].

; – – After splitting, the output of this sequencing is established.�
 �	INPUT: c[q,q], a[q,q]
⇓

call Φ2(q)
⇓�
 �	OUTPUT: x[q]

⇓#
"

!

OUTPUT: c[q,q], – – Notice the feedup of iterations:
c[q+1..n–1,q], – – to the first additive of input;
x[q] – – to the last additive of input.

od
⇓�

�
�
�OUTPUT: c[t..n–1,t], t=1..n–1, – – An array for partial sums (side effect).

x[0..n–1] – – The solution.

Fig. 9. Data dependencies in the parallel program, the S-procedure of the S-module SPAR (61), for solving
triangular system of equations.

66 V. Čyras

=

for p := q to n–1 doparallel

c[p,q–1], a[p,q–1], x[q–1] ; c[p,q]
od

=

Let us combine, first, the nonfeeding dependency (49), where the roles of one-
dimensional arrays y and z are played respectively by the columns q–1 and q of the
two-dimensional c, and, second, (50), where the constant’s role is played by x[q–1]. For-
mally, the substitution is y[t] 7→ (c[t,q–1]

⋃
a[t,q–1]), z[t] 7→ c[t,q] for t = q, . . . , n–1 and

const 7→ x[q–1]. We obtain

= c[q..n–1,q–1], a[q..n–1,q–1], x[q–1] ; c[q..n–1,q]. (65)

Step 2. Sequencing the above inner loop and call Φ2(q), we consider the definition (46)
and obtain

io([[

for p := q to n–1 doparallel

call Φ1(p,q)
od;
call Φ2(q)

]]) =

= io([[

for p := q to n–1 doparallel

call Φ1(p,q)
od

]])
⊔

io([[call Φ2(q)]]) =

The expression on the left-hand side of
⊔

above is in (65), and that on the right-hand is
in the second equation of (64). Putting them together we have

= c[q..n–1,q–1], a[q..n–1,q–1], x[q–1]; c[q..n–1,q]
⊔

c[q,q], a[q,q]; x[q] =

We split above the first output set, c[q..n–1,q], to two sets, c[q,q] and c[q+1..n–1,q], and
rewrite the above dependency to

= c[q..n–1,q–1], a[q..n–1,q–1], x[q–1]; c[q,q], c[q+1..n–1,q]
⊔

c[q,q], a[q,q]; x[q] =

In accordance with the definition (12) of
⊔

, we perform the set operations
⋃

and \ over
the subexpressions above. Indeed only one element, c[q,q], from these yielded in the first
step is fed up to the second step. We obtain

= c[q..n–1,q–1], a[q..n–1,q–1], a[q,q], x[q–1] ; c[q,q], c[q+1..n–1,q], x[q]. (66)

Recurrences in Solving Triangular Systems of Linear Equations 67

Step 3. Now we continue with the outer loop dependency

io([[

for q := 1 to n–1 do

for p := q to n–1 doparallel

call Φ1(p,q)
od;
call Φ2(q)

od

]]) =

In accordance with the definition (46), we rewrite the above dependency to

=

for q := 1 to n–1 do

io([[

for p := q to n–1 doparallel
call Φ1(p,q)

od;
call Φ2(q)

]])

od

=

The dependency io([[· · ·]] within the loop above was obtained already in Step 2 and is
in (66). Thus we rewrite the above dependency to

=

for q := 1 to n–1 do

c[q..n–1,q–1], a[q..n–1,q–1], a[q,q], x[q–1] ;

c[q,q], c[q+1..n–1,q], x[q]
od

= (67)

Note the feeding in the above DO-loop, where the dependency

c[q..n–1,q–1], . . . , x[q–1] ; . . . c[q+1..n–1,q], x[q]

matches v[q–1]; v[q]. Therefore we match (67) to the combination of (48) and (49) in
accordance with the substitution v[t] 7→ (c[t+1..n–1,t]

⋃
x[t]), y[t] 7→ (a[t..n–1,t–1]

⋃
a[t,t])

and z[t] 7→ c[t,t]. Thus we rewrite (67) to

= c[1..n–1,0], (a[t..n–1,t–1], t=1..n–1), (a[t,t], t=1..n–1), x[0] ;
(c[t,t], t=1..n–1), (c[t+1..n–1,t], t=1..n–1), x[1..n–1].

(68)

Step 4. Finally, in order to prove (63) we are sequencing two dependencies: that of
call Φ2(0) and that of the outer loop. In accordance with the sequencing definition (35),

68 V. Čyras

we rewrite the left-hand side of (63) to

io([[call Φ2(0)]]
⊔

io([[

for q := 1 to n–1 do

for p := q to n–1 doparallel

call Φ1(p,q)
od;
call Φ2(q)

od

]]) =

The dependency on the left-hand side above is obtained from the second equation of (64)
for p=0. The dependency on the right-hand side is in (68). Therefore we continue

= c[0,0], a[0,0]; x[0]
⊔

c[1..n–1,0], (a[t..n–1,t–1], t=1..n–1), (a[t,t], t=1..n–1), x[0] ;
(c[t,t], t=1..n–1), (c[t+1..n–1,t], t=1..n–1), x[1..n–1]. =

(69)

In accordance with (12) we perform the set operations
⋃

and \ over the subexpressions
above. We take into account the following partition of the lower triangle

a[0,0]
⋃

(a[t..n–1,t–1], t=1..n–1)
⋃

(a[t,t], t=1..n–1) = (a[t..n–1,t], t=0..n–1),

and rewrite (69) to

= (a[t..n–1,t], t=0..n–1), c[0..n–1,0] ; (c[t..n–1,t], t=1..n–1), x[0..n-1].

Q.E.D.

6. Summary and Acknowledgements

This paper could not appear without the contribution of Magne Haveraaen. He developed
the constructive recursive (CR) approach to programming with recurrences and first pre-
sented it in (Haveraaen, 1990). The development of CR was inspired by ideas in the
programming language Crystal (Chen et al., 1991), which in turn was inspired by sys-
tolic algorithms. Haveraaen also contributed considerablly to the development of SB. CR
and SB are compared in Čyras and Haveraaen (1995) and Haveraaen and Čyras (1995),
where also a comparison with other approaches as well as a list of references to other
works are presented.

My special thanks to Young-il Choo who participated in discussions.

References

Chen, M., Y. Choo and J. Li (1991). Crystal: theory and pragmatics of generating efficient parallel code. In
B.K. Szymanski (Ed.), Parallel Functional Languages and Compilers, 255–308.

Recurrences in Solving Triangular Systems of Linear Equations 69

Čyras, V., and M. Haveraaen (1995). Modular programming of recurrences: a comparison of two approaches.
Informatica, 6(4), 397–444.

Čyras, V., and M. Haveraaen (1998). Data dependence in nested loops in the structural blanks approach to
programming with recurrences. Informatica, 9(1), 21–50.

Haveraaen, M. (1990). Distributing programs on different parallel architectures. In Proc. of the 1990 Interna-
tional Conference on Parallel Processing, ICPP, Vol. II Software, 288–289.

Haveraaen, M., and V. Čyras (1995). The Structural Blanks Approach to Solve Generalized Recurrences. Uni-
versity of Bergen, Reports in Informatics No. 100, Department of Informatics, UiB, 40 p.

Mints, G., and E. Tyugu (1988). The programming system PRIZ. J. Symbolic Computation, 5, 359–375. See
also LNCS, 502, 1–17.

Yang, J.A. and Y. Choo (1992). Data Fields as Parallel Programs. Technical report, Yale University, Department
of Computer Science, March 1992.

V. Čyras is a docent in computer science at Vilnius University and a researcher at the In-
stitute of Mathematics and Informatics. In 1979 he graduated from Vilnius University. In
1985 he received the degree of PhD of physics and mathematics from M.V. Lomonosov
Moscow State University. His current research interests include semantics of loop pro-
grams, information systems and document management.

70 V. Čyras

Rekurencijos sprendžiant tiesini ↪u lygči ↪u trikampes sistemas:
pavaizdavimas struktūrini ↪u ruošini ↪u metode

Vytautas ČYRAS

Tiriamos duomen ↪u priklausomybės tiesini ↪u lygči ↪u trikampės sistemos sprendimo algoritme.
Siekiama iliustruoti struktūrini ↪u ruošini ↪u (SR) metodo notacij ↪a ciklinės programos duomen ↪u pri-
klausomybės ↪irodyme. ↪Ivedama griežta programos semantika. Ji apibrėžiama programos trasos ir
duomen ↪u priklausomybės terminais. Nuoseklusis ir lygiagretusis tiesini ↪u lygči ↪u sprendimo algorit-
mai pavaizduojami SR s ↪avokomis – kaip struktūriniai moduliai (S-moduliai). Pateikiamas lygia-
grečiojo S-modulio darnos ↪irodymas.

