
INFORMATICA, 1999, Vol. 10, No. 1, 27–44 27
 1999 Institute of Mathematics and Informatics, Vilnius

A Generalization of Regular Expressions

Aleksei L. GOMOZOV, Larisa I. STANEVICHENE
Department of Computational Mathematics and Cybernetics
Moscow State University, Moscow, Russia

Received: January 1999

Abstract. CF-expressions are defined which generalize the regular one. It is established that so
called pseudo-coiterating CF-expressions characterize the regular sets. The results are used to de-
velop some more characterizations of the regular sets: the pseudo-coiterating D-graphs and the
pseudo-coiterating pushdown automata (PDAs). An algorithm is presented for deciding whether a
device of three mentioned types is pseudo-coiterating or not. Apparently, the pseudo-coiterating
PDAs form the most large of classes of PDAs the solvability of the question of belonging to which
was proved and which are known as characterizations of the regular sets.

Key words: D-graphs; regular expression generalization; characterization of context-free langua-
ges; pushdown automata; characterization of regular sets.

1. Introduction

In this development we attempt to express adequately the common essence of the follow-
ing formal descriptions of the context-free (in shorthand form, CF) languages: D-graphs,
PDAs, and CF-grammars. Defined here CF-expressions summarize the essence of the
mentioned formalisms. Now it is possible the most accurate description of the primi-
tives for pumping of CF-words. The stated here Growth Theorem for the CF-expressions
indicates such a description.

As a consequence, we define easily a subclass of the CF-expressions that characterizes
the regular sets. This subclass is remarkable by its wideness that is compatible to the
wideness of the CF-grammars without self-embedding symbols.

Further, this result indicates the subclass of PDAs (the so-called pseudo-coiterating
PDAs) that characterizes the regular sets. There exists an algorithm for deciding, once any
PDA is given, whether it is pseudo-coiterating or not. Thus, the present paper contains
the sufficient condition of CF-language regularity which can be checked.

The notion of a CF-expression was prepared by the investigation of the D-graphs (see
(Stanevichene, 1997) and its references). We use terms and denotations from (Stanevi-
chene, 1997).

In Section 2 of the present paper agreements are accepted about the denotations of
objects that define a D-graph. The notion of the core is slightly extended.

28 A.L. Gomozov and L.I. Stanevichene

Section 3 considers CF-expressions which generalize the regular expressions. Pseudo-
coiterating CF-expressions are defined. It is stated that they characterize the regular sets.
This fact is important to the following Section.

In Section 4, the pseudo-coiterating PDAs are defined and investigated. It is estab-
lished that a pseudo-coiterating PDA accepts a regular set. The core of a PDA M indi-
cates, whetherM is pseudo-coiterating or not. Consequently, we have a partial algorithm
of checking of L(M)’s regularity. Hence, the paper is also a contribution to the regularity
question that, since (Stearns, 1967) appearance, has not received a great attention.

2. D-graph and its core

The following definitions introduce convenient denotations of some notions defined in
(Stanevichene, 1997).

For any D-set P ⊆ Σ(× Σ) let Left(P) and Right(P) denote respectively the sets
{a | ∃b ∈ Σ) (a, b) ∈ P}, {b | ∃a ∈ Σ((a, b) ∈ P}.

DEFINITION 1. Let Σ, V be finite sets, P0 ∈ V , F ⊆ V , P be a D-set (finite, also), λ
be a function

Left(P)∪Right(P)→ V × (Σ ∪ {Λ})× V.

Then the sixtuple

D = (Σ, V,P , λ, P0, F)

is called a D-graph with the input alphabet Σ, set of vertices V , input vertex P0, set of
the output vertices F , D-set P , set of edgesE(D) = Left(P)∪Right(P), and location
function λ.

DEFINITION 2. Let π ∈ E(D), P,Q ∈ V , a ∈ Σ ∪ {Λ}, λ(π) = (P, a,Q). Then P , Q
are called the initial and final, respectively, vertices of π, a is called π’s label.

Occasionally, we omit location functions within D-graph formulas implying that edge
weights are complicated to avoid the confusion of multiple edges.

The label ω(T) of a path T is defined as the natural sequence of its edge labels.
The intersection Sentences(D) of the D-language LP and the set of all paths from

P0 to P , P ∈ F , defines a language

L(D) = {ω(T)|T ∈ Sentences(D)}.

DEFINITION 3. Core(D,w, d) is defined as the set of all (w, d)-canons. In (Stanevich-
ene, 1997) (see Definition 15), elements of a core were, in addition, sentences.

The Growth Theorem (see Theorem 5) in (Stanevichene, 1997) is generalized as fol-
lows.

A Generalization of Regular Expressions 29

Theorem 1. Let D = (Σ, V,P , λ, P0, F) be a D-graph. For every of its paths
T ∈ LP there exists T0 ∈ Core(D, 1, 1) such that (T0, T) ∈⇑∗D . In each element
〈T1, T2, T3, T4, T5〉 of T ’s genealogy from the ancestor T0, the formantis T2T3T4 is con-
tained in some element of Core(D, 2, 1).

3. CF-Expressions

Ogden’s lemma and our growth notion induce to add to regular operations a “coiterating”
operation which groups pairs of words around the “center”, similarly to the following
CF-productions:

S → z|xSy, z ∈ Z ⊆ Σ∗, (x, y) ∈ X × Y ⊆ Σ∗ × Σ∗.

Here it can be said that z and xzy are the alternative centers of a growing word, and
the replacement of z by xzy pumps the word. Clearly, it is necessary to find a means
of marking subwords the replacement of which is valid. Hence, coiteration may be de-
fined through lists of some primitive alternations and through techniques for pointing of
positions where an element of a list may be substituted.

Recursive ties of coiterated objects require to distinguish one coiteration instance from
another. Usual methods of expressing of hierarchies of subwords within CF-words influ-
enced the following Definition 4.

Let Σ1, Σ2 be alphabets, x ∈ (Σ1 ∪Σ2)∗. Then projection(x, Σ2) denotes the result
of the deletion all symbols of Σ1 − Σ2 from x.

Let us agree that the truth of bi . . . bj ∈ LP , 1 6 i < j 6 k, implies
projection(xibi+1xi+1 . . . bj−1xj−1,B) ∈ LP every time we consider alphabets ∆, B,
a D-set P ⊆ B2, and a formula x0b1x1 . . . bkxk where k > 2, bl ∈ B for 1 6 l 6 k, and
xm is a denotation of a word over ∆ ∪ B for 0 6 m 6 k.

DEFINITION 4. Let Names be a nonempty finite set, B = {(ι,)ι|ι ∈ Names}. Let Σ,
B, and {+, ε, ∅, (,)} be pairwise disjoint, Alph = Σ ∪ B ∪ {+, ε, ∅, (,)}. Let us define
recursively a CF-expression ζ over Σ (as a specific word over Alph):

1. a ∈ Σ ∪ {ε, ∅} is a CF-expression;
2. if α, β are CF-expressions, then:

(a) ζ = α+ β is a CF-expression; the subexpressions α and β are called addends
of ζ; ζ is called a sum;

(b) ζ = (α)(β) is a CF-expression; the subexpressions α and β are called factors
of ζ; if a factor is not a sum, then round brackets are redundant;

(c) if ι ∈ Names, then (ιβ)ι is a CF-expression of the name ι (or a ι-nest);
3. all CF-expressions over Σ are constructed by 1–2.

Further Alph(ζ), B(ζ), and Names(ζ) denote the sets {c ∈ Alph|∃ (u, v ∈ Alph∗)
ζ = ucv}, B ∩Alph(ζ), and {ι ∈ Names|(ι∈ B(ζ)} respectively.

The following notions of a fraction and clan help formulate the language defined by a
CF-expression.

30 A.L. Gomozov and L.I. Stanevichene

DEFINITION 5. Let ζ be a CF-expression over Σ. Define a set Fractions(ζ) of “frac-
tions” of ζ recursively:

1) Fractions(a) = {a} for a ∈ Σ ∪ {ε, ∅};
2) if α, β are CF-expressions, then

Fractions((β)) = Fractions(β),

F ractions(α + β) = Fractions(α) ∪ Fractions(β),

F ractions((α)(β)) = Fractions(α)Fractions(β),

F ractions((ιβ)ι) = {(ι}Fractions(β){)ι}.

Hence, a fraction appears as a CF-expression having no sums and nameless parenthe-
sis. By this reason every word of such a form will be called a fraction.

DEFINITION 6. Let ζ be a fraction over Σ. Then its label ω(ζ) ⊂ Σ∗ is defined recur-
sively as follws:

1) ω(a) = {a}, a ∈ Σ;
2) ω(ε) = {Λ};
3) ω(∅) = ∅;
4) if α and β are fractions, then:

a) ω(αβ) = ω(α)ω(β);
b) ω((ιβ)ι) = ω(β).

Note that for any set of words S the catenations S∅ and ∅S are empty. It justifies the
following notion of a trim fraction.

DEFINITION 7. Let ξ be a fraction. Let ξ = ∅ or ∅ 6∈ Alph(ξ). Then ξ is called a trim
fraction.

The following formula indicates the method of trimming:

trim(ξ) =

{
∅, ξ contains the symbol ∅,

ξ otherwise.

For any CF-expression ζ let Trim(ζ) = {trim(ξ)|∅ 6= ξ is a fraction of ζ}.

DEFINITION 8. Let us define recursively a clan being generated by a CF-expression ζ:

Clan(ζ) = Trim(ζ) ∪ {β1(ια2)ιβ3|∃(β2, α1, α3 ∈ Alph(ζ)∗)

α1(ια2)ια3, β1(ιβ2)ιβ3 ∈ Clan(ζ)}.

A Generalization of Regular Expressions 31

DEFINITION 9. Let ζ be a CF-expression. Then

L(ζ) =
⋃

ξ∈Clan(ζ)

ω(ξ)

is called the language being defined by ζ. If Clan(ζ) = ∅, then L(ζ) = ∅.

DEFINITION 10. Let ζ be a CF-expression, ι ∈ Names(ζ). Then h(ι, ζ) =

= depth(projection(ζ, {(ι,)ι})) is called the ι-height of ζ.

DEFINITION 11. The number

height(ζ) = max{h(ι, ζ)|ι ∈ Names(ζ)}

is called the height of the CF-expression ζ.

DEFINITION 12. Let d > 0, ζ be a CF-expression. Then Core(ζ, d) = {ξ ∈
Clan(ζ)|height(ξ) 6 d} is called a d-core of ζ.

From Definitions 5 and 8 it follows that

width(projection(ξ,B(ζ))) 6 width(projection(ζ,B(ζ)))

for any ξ ∈ Clan(ζ). Besides the equality ξ = xyz implies |y| 6 |ζ| for any x, z ∈
Alph(ζ)∗, y ∈ (Σ ∪ {ε})∗. From Definition 11 it follows that

depth(projection(ξ,B(ζ))) 6 d · |Names(ζ)|.

Hence, Core(ζ, d) is a finite set by Theorem 1 of (Stanevichene,1997).

DEFINITION 13. Let ζ be a CF-expression, ξ ∈ Clan(ζ) contain a m-nest u, h(m,u) =

2, and h(k, u) < 2 for every name k 6= m. Then u is called a formantis of ζ.

Lemma 1 (see below) implies that the 2-core of a CF-expression reveals every for-
mantis.

DEFINITION 14. Let u = v(mx(my)mz)mw ∈ Clan(ζ), (mx(my)mz)m be a forman-
tis. Then we write (v(my)mw, u) ∈⇑ζ . The relation ⇑∗ζ is called the growth relation.
The quintuple (v, (mx, (my)m, z)m, w) is called the history of the growth of u from
v(my)mw.

DEFINITION 15. Let u(mx(my)mz)mv be a CF-expression. Then the subwords (mx and
z)m are called its (matching) cycles (more precisely, m-cycles), left and right respec-
tively.

32 A.L. Gomozov and L.I. Stanevichene

Similarly to the case of D-graphs, it is easy to define the analog of the reduction
function mapping a factorization of a CF-expression in a set of CF-expressions. This
function (let its name be reduction, also) deletes in the given CF-expression all cycles
that do not intersect with even-numbered parts of the given factorization.

Lemma 1. If β is a formantis and αβγ ∈ Clan(ζ), then

reduction(α, β, γ) ⊆ Core(ζ, 2).

Proof. Let α′βγ′ ∈ reduction(α, β, γ) where α′ and γ′ are images of α and γ respec-
tively. Suppose that α′βγ′ contains a k-nest ξ for some k and h(k, ξ) = 3. Observe that
if different nests are subexpressions of the same expression, then either one of the nests
contains another, or they do not overlap. Consequently, ξ is not within α′, γ′ (by the con-
struction of them), and β (by the reason that each subexpression of a formantis has the
height at most 2). If ξ contains β, then matching cycles of ξ are within α′ and γ′ (left and
right, respectively), contrary to construction of α′βγ′.

Lemma 2. If a fraction ξ ∈ Clan(ζ) contains a cycle, then there exists ξ′ ∈ Clan(ζ)

such that (ξ′, ξ) ∈⇑ζ and |ξ′| < |ξ|.

Proof. Prove that ξ contains a formantis. Let us choose a nest β = (mx(my)mz)m ∈
Nests = {u|∃(v, w ∈ Alph(ζ)∗,m ∈ Names(ζ)) (ξ = vuw, u is a m-nest, h(m,u) >
2)} having the minimal length. By the choice it contains no proper subexpression being
an element of Nests, i.e., is a formantis. Let ξ = αβγ for some α, γ. Then, by the
definition of growth relation, we have (ξ′, ξ) ∈⇑ζ for ξ′ = α(my)mγ and |ξ′| < |ξ|.

Theorem 2 (CF-Expression Growth Theorem). Let ζ be a CF-expression. For every ξ ∈
Clan(ζ) there exist number k > 0 and a sequence of fractions ξ0, . . . , ξk such that
ξ0 ∈ Core(ζ, 1), ξk = ξ, (ξi−1, ξi) ∈⇑ζ with a history (ui, xi, yi, zi, vi), 0 < i 6 k, and
the formantis xiyizi is a subexpression of some element of Core(ζ, 2).

Proof. If ξ ∈ Core(ζ, 1), then the fact holds for k = 0. Now let ξ ∈ Clan(ζ) −
Core(ζ, 1). Then ξ has a cycle. By Lemma 2 there exists ξ′ ∈ Clan(ζ) such that
(ξ′, ξ) ∈⇑ζ and |ξ′| < |ξ|. The last inequality implies the existence of number k > 1

and sequence ξ0, . . . , ξk such that ξ0 has no cycle (i.e., is of Core(ζ, 1)), ξk = ξ, and
(ξi−1, ξi) ∈⇑ζ for 0 < i 6 k with a history (ui, xi, yi, zi, vi). By Lemma 1 each forman-
tis xiyizi, 0 < i 6 k, is a subexpression of an element of Core(ζ, 2).

The following theorem, in essence, generalizes Cleene’s theorem.

Theorem 3. L = L(ζ) for some CF-expression ζ iff L = L(D) for some D-graph D.

Our proof of this theorem is constructive. It uses a series of new terms and denotations.
The following sections 3.1, 3.2 present two parts of this proof.

A Generalization of Regular Expressions 33

3.1. Transformation of a D-graph to an Equivalent CF-expression

As above D-graph is denoted by

D = (Σ, V,P , λ, P0, F).

DEFINITION 16. Let T = π1T1π2T2 ∈ LP be a path of D, π1, π2 ∈ P , T1 ∈ LP . Then
rlf(T) = (π1, T1, π2, T2) is called the right-linear factorization of T .

Note that if rlf(T) = (π1, T1, π2, T2), then Core(D, 1, 1) contains a path having a
right-linear factorization (π1, T

′
1, π2, T

′
2) where pair(T ′i) = pair(Ti) for i = 1, 2. (In-

deed, reduction(π1, T1, π2, T2) ⊆ Core(D, 1, 1).) As it will be seen, this fact implies
that Core(D, 1, 1) provides all necessary information for the constructions proposed be-
low. In this section we write Core(D) instead of Core(D, 1, 1).

DEFINITION 17. Let Phrases(D) = Sentences(D) ∪ {T1, T2|∃((π1, π2) ∈ P , T ∈
Phrases(D)) (π1, T1, π2, T2) = rlf(T)}. Then every element of Phrases(D) is called
a phrase of D.

In the following subsets of Phrases(D), empty elements are synonyms of the deno-
tation Λ, and the subsets themselves are languages in E(D)∗.

Let
Alt(P,Q) = {T ∈ Phrases(D)|pair(T) = (P,Q)},

P roductions(P,Q) = Alt(P,Q) ∩ Core(D).

DEFINITION 18. Let T ∈ Phrases(D). Then a fraction scheme(T) is defined recur-
sively:

1) if T is empty, then scheme(T) = (pair(T)ε)pair(T);
2) if rlf(T) = (π1, T1, π2, T2), then

scheme(T) = (pair(T)π1scheme(T1)π2scheme(T2))pair(T).

Transform a D-graphD to a CF-expression E(D) over E(D) where
Names(E(D)) = {pair(T)|T ∈ Phrases(D)}:

E(D) =
∑
Q∈F

∑
T∈Productions(P0,Q)

scheme(T).

Definition 18 implies that Alt(P,Q) is equal to the set {π1T1π2T2| beg(π1) = P ;
parti(π1T1π2) = 1; T1 ∈ Alt(end(π1), beg(π2)); T2 ∈ Alt(end(π2),Q)}, being united
to {P} in case of P = Q.

Let

τ(P,Q) = {scheme(T)|T ∈ Productions(P,Q)}, LP,Q = L(
∑

ξ∈τ(P,Q)

ξ).

34 A.L. Gomozov and L.I. Stanevichene

Clearly, LP,Q ⊆ Alt(P,Q). The fact Alt(P,Q) ⊆ LP,Q holds by the following
lemma.

Lemma 3. If T is a phrase, then T ∈ Lpair(T).

Proof. Let ζ =
∑
ξ∈τ(pair(T)) ξ. Note that the construction of schemes implies the equa-

lities Fractions(ζ) = Trim(ζ) = τ(pair(T)). By Theorem 2 it is sufficient to prove
that T ∈ ω(ψ) where (ξ, ψ) ∈⇑mζ for some ξ ∈ τ(pair(T)) and m > 0.

Let’s use induction on k > 0 where 2k = |T |. If k = 0, then T is an empty phrase.
Hence, ξ = (pair(T)ε)pair(T) ∈ τ(pair(T)). Note that (ξ, ξ) ∈⇑0

ζ and T ∈ ω(ξ), there-
fore our assertion holds in this case. Let k > 0. Assume the assertion for every phrase the
length of which is less than 2k. Consider a phrase T having the length 2k. Suppose that
rlf(T) = (π1, T1, π2, T2). By induction hypothesis we have for i = 1, 2: Ti ∈ ω(ψi)

where (ξi, ψi) ∈⇑miζ for some ξi ∈ τ(pair(Ti)) and mi > 0. It may be supposed (cf.
the formula for ξ0 in Theorem 2) that height(ξi) = 1, i = 1, 2. Then ξ = π1ξ1π2ξ2 ∈
τ(pair(T)). As (ξ, π1ψ1π2ψ2) ∈⇑m1+m2

ζ and T = π1T1π2T2 ∈ ω(π1ψ1π2ψ2), the
assertion holds for k > 0.

Hence, T ∈ Lpair(T).

This lemma implies that L(E(D)) = Sentences(D). Define a morphism ϕ by:
ϕ(π) = ω(π), π ∈ E(D), ω(π) ∈ Σ; ϕ(π) = ε, π ∈ E(D), ω(π) = Λ; ϕ(a) = a, a 6∈
E. By Theorem 3 of (Stanevichene, 1997) the CF-expression Expr(D) = ϕ(E(D))

describes the language L(D).

3.2. Transformation of a CF-expression to a D-graph

Now prove that every CF-expression defines a CF-language. It is sufficient to consider
the case of a nonempty clan. Otherwise a CF-expression defines the empty (i.e., CF)
language.

First transform a CF-expression to simplify the construction of the equivalent PDA or
D-graph.

DEFINITION 19. Let a CF-expression ζ over Σ be a nest or ζ ∈ Σ ∪ {ε, ∅}. Then ζ is
called an item.

Let ζ be a CF-expression. To provide the uniformity of nests within the below de-
fined CF-expression Augm(ζ), we require the following: 1) every element of Clan(ζ)

has the form αβ for an item α and fraction β; 2) if x(ι1y(ι2β)ι2)ι1z ∈ Clan(ζ) or
x(ι1(ι2β)ι2y)ι1z ∈ Clan(ζ) for some ι1, ι2 ∈ Names(ζ) and x, y, z, β ∈ Alph(ζ)∗,
then y is a fraction. To reach that, it is sufficient to add the “artificial” factors ε within
elements of Fractions(ζ) which violate this requirement.

DEFINITION 20. Let ξ 6= ∅ be a trim fraction, κ be a finite sequence of natural numbers.
Define a marking of ζ by means of κ recursively as the following fraction rlm(ζ, κ):

A Generalization of Regular Expressions 35

1) if a ∈ Σ∪{ε}, then rlm(a, κ) = (κa)κ and rlm((ιa)ι, κ) = (ιa)ι for any name ι;
2) if α is an item, then

rlm(αβ, κ) = (κrlm(α, (κ, 1))rlm(β, (κ, 2)))κ,

rlm((ιαβ)ι, κ) = (ιrlm(α, (κ, 1))rlm(β, (κ, 2)))ι

for any fraction β and name ι.

DEFINITION 21. Let ζ be a CF-expression such that Clan(ζ) 6= ∅. Let the elements of
Core(ζ, 2) be anyhow numbered, ν(ξ) denote number of ξ ∈ Core(ζ, 2), and

Mark(ζ) = {rlm((0ξ)0, ν(ξ))|ξ ∈ Core(ζ, 2)}.

Then the CF-expression
Augm(ζ) =

∑
ξ∈Mark(ζ)

ξ

is called ζ’s augmentation.

DEFINITION 22. Let uξv ∈ Clan(Augm(ζ)), ξ be a nest. Then ξ is called an active
nest.

The following lemma is useful to prove the equivalence ofAugm(ζ) to ζ.

Lemma 4. Let ζ have a nonempty clan. Then:
1) Core(ζ, 1) = {projection(ξ, Alph(ζ))|ξ ∈ Core(Augm(ζ), 1)};
2) {ψ ∈ Alph(ζ)∗|ψ is a formantis of ζ} = {projection(ξ, Alph(ζ))|ξ is a formantis

of Augm(ζ)}.

Proof. Let κ ∈ Names(Augm(ζ)) − Names(ζ). Remark that h(κ, ψ) 6 1 for
any ψ ∈ Mark(ζ). Consequently, every formantis of an element of Mark(ζ) is
a marking of a formantis of an element of Core(ζ, 2). This implies the equality
Core(Augm(ζ), 1) = {ξ ∈ Mark(ζ)|projection(ξ, Alph(ζ)) ∈ Core(ζ, 1)}. Hence,
the first assertion of the lemma holds, as Core(ζ, 1) ⊆ Core(ζ, 2) and Core(ζ, 2) =

{projection(ξ, Alph(ζ))|ξ ∈Mark(ζ)}.
The last equality implies {ψ ∈ Alph(ζ)∗|ψ is a formantis of ζ} = FS where FS

denotes the set {projection(ξ, Alph(ζ))|ξ is a formantis, ∃(u, v ∈ Alph(Augm(ζ))∗)
uξv ∈Mark(ζ)}. Show that FS coincides

{projection(ξ, Alph(ζ))|ξ is a formantis of Augm(ζ)}.

From Lemma 1 it follows that FS presents the projections onto Alph(ζ) of every
Augm(ζ)’s formantis having its name from Names(ζ). Consequently, it is sufficient to
show that each of κ-nests,

κ ∈ Names(Augm(ζ))−Names(ζ),

36 A.L. Gomozov and L.I. Stanevichene

is not a formantis. If h(κ, v) = 2 for an active κ-nest v, then (see the remark in the
beginning of the proof) a genealogy of v contains two quintuples

(u0, (ιu1(κu2, (ιu3)ι, u4)κu5)ι, u6)

and

(u′0, (ιu1(κu2, (ιu
′
3)ι, u4)κu5)ι, u

′
6)

displaying the same matching cycles. Consequently, h(ι, v) > 2, i.e., v is not a formantis.

Lemma 5. L(ζ) = L(Augm(ζ)).

Proof. On the base of Lemma 4, it is not difficult to construct the proof of the following
assertion:

{projection(ξ, Alph(ζ))|∃ξ0 ∈ Core(Augm(ζ), 1) (ξ0, ξ) ∈⇑kAugm(ζ)}
= {ψ|∃ψ0 ∈ Core(ζ, 1) (ψ0, ψ) ∈⇑kζ}

for k > 0.
This fact implies that there exists a surjection

ϕ : Clan(Augm(ζ))→ Clan(ζ)

such that

projection(ξ, Alph(ζ)) = ϕ(ξ)

for ξ ∈ Clan(Augm(ζ)). Consequently,

L(Augm(ζ)) = ∪ξ∈Clan(Augm(ζ))ω(ξ) = ∪ξ∈Clan(Augm(ζ))ω(ϕ(ξ)) = L(ζ).

Lemma 6. Let (m(kα)k(lβ)l)m be an active nest. Then an element of
Core(Augm(ζ), 3) has a nest (m(kα

′)k(lβ
′)l)m as its subexpression.

Proof. From Definition 22 it follows that Clan(Augm(ζ)) contains
ξ = u(m(kα)k(lβ)l)mv for some u, v ∈ Alph(Augm(ζ))∗. Let

ξ′ ∈ reduction(u, (m(k, α)k, (l, β)l)mv).

Observe that projection(ξ,B(Augm(ζ))) is a balanced word. Consequently, if a cy-
cle contains a parenthesis, then the matching parenthesis lies within either this cycle, or
the matching one.

Besides, remember that a deletion of matching cycles must not imply a deletion of
preserved parts of ξ′.

A Generalization of Regular Expressions 37

Taking into account these observations, it is not difficult to imagine all possible posi-
tions of parentheses (ι,)ι, ι ∈ Names(Augm(ζ)), within ξ and to conclude that h(t, ξ)
reaches its maximum in the following cases:

ξ = u1(tu2(m(kα1(tα2)tα3)k(lβ)l)mv1)tv2, t = k,

ξ = u1(tu2(m(kα)k(lβ1(tβ2)tβ3)l)mv1)tv2, t = l.

Consequently, h(ι, ξ′) 6 3 for every ι ∈ Names(Augm(ζ)).

DEFINITION 23. Let

k, l,m ∈ Names(Augm(ζ)), α, β ∈ Alph(Augm(ζ))∗,

and ξ = (m(kα)k(lβ)l)m be an active nest. Then (k, l,m) is called an alliance (condi-
tioned by ξ).

Note that every active nest either conditions an alliance, or has the form (ιa)ι, a ∈
Σ ∪ {ε}, ι ∈ Names(Augm(ζ)).

Lemma 6 signifies that every alliance is conditioned by a nest of an element of
Core(Augm(ζ), 3).

Now convert Core(Augm(ζ), 3) into a D-graph

D(ζ) = (Σ, V,P , λ, [(0, Z0], {[)0, Z0]}).

Permit “neutral” edge as a shorthand symbol for: 1) path being a word of LP the length
of which is equal to 2; 2) the element of P consisting of the edges of this path.

Construct V and P progressively:
(i) assign ∅ to P ; assign {[(0, Z0], [)0, Z0]} to V ;
(ii) while the following actions augment V , repeat them:

– assign {([(m, Z] Λ
+m [(k,m], [)l,m] Λ

−m [)m, Z]), [)k,m]Λ[(l,m] |[(m, Z] ∈ V ;
(k, l,m) is an alliance } ∪ {[(m, Z]a[)m, Z]|[(m, Z] ∈ V ; a ∈ Σ; (ma)m is
an active nest } ∪{[(m, Z]Λ[)m, Z]|[(m, Z] ∈ V ; (mε)m is an active nest } to
NewP ;

– assign P ∪NewP to P ;
– assign V ∪ {P |∃ν ∈ NewP (an edge of ν has P as its vertex) } to V .

The function λ is defined by way of the ignorance of edge charge.
D(ζ) can be considered as the graph of the PDA

M(ζ) = (B(Augm(ζ)),Σ, Names(Augm(ζ)) ∪ {Z0}, Z0, δ(ζ), (0, {)0}),

where

δ(ζ) = {(p, a, Z)→ (q, ZX)|(p, Z)
a

+X
(q,X) ∈ E(D(ζ))}

∪ {(p, a, Z)→ (q,Λ)|∃X∈N(ζ) (p, Z)
a

−Z (q,X) ∈ E(D(ζ))}

∪ {(p, a, Z)→ (q, Z)|(p, Z)a(q, Z) ∈ E(D(ζ))}.

38 A.L. Gomozov and L.I. Stanevichene

To verify the equivalence of ζ and D(ζ), define objects that can be correlated with
paths of D(ζ).

DEFINITION 24. Let ζ be a CF-expression. An element of the recursively defined
set Paths(ζ) = Clan(ζ) ∪ {x[(mu]k(my)m[v)m]lz|k, l > 0, x(mu(my)mv)mz ∈
Paths(ζ)} is called a path of ζ.

For b1, b2 ∈ B(Augm(ζ)) let

DisBal(b1, b2, 0) =

{
{b1}, b1 = b2,

∅, b1 6= b2,

DisBal(b1, b2, s) = {b1yb2|s = |projection(b1yb2,B(Augm(ζ)))| − 1; ∃(x, z ∈
Alph(Augm(ζ))∗) xb1yb2z ∈ Paths(Augm(ζ))} for s > 0. Let DisBal(b1, b2) =

∪s>0DisBal(b1, b2, s).

For P,Q ∈ V let

T (P,Q, 0) =

{
{P}, P = Q,

∅, P 6= Q,

T (P,Q, s) = {Tπ|π ∈ E(D(ζ)); end(π) = Q; T ∈ T (P, beg(π), s − 1)} for s > 0.
Let T (P,Q) = ∪s>0T (P,Q, s).

For any vertexP = (p, Z), let state(P) denote the state symbol p. Define a morphism

Φ : E(D(ζ))∗ → ({state(beg(π))|π ∈ E(D(ζ))}(Σ ∪ {Λ}))∗

by Φ(π) = state(beg(π))ω(π).

Lemma 7. For any s > 0 and P,Q ∈ V , if T (P,Q, s) 6= ∅, then there exists a bijection

ϕ : T (P,Q, s)→ DisBal(state(P), state(Q), s),

such that every T ∈ T (P,Q, s) satisfies the equality

Φ(T)state(end(T)) = ϕ(T).

Proof. By induction on s. If s = 0, then the lemma follows from the definitions of
T (P,Q, 0) and DisBal(state(P), state(Q), 0). Let s > 0. Assume that for any 0 6
s′ < s and P ′, Q′ ∈ V satisfying the condition T (P ′, Q′, s′) 6= ∅ there exists a bijection

ϕ′ : T (P ′, Q′, s′)→ DisBal(state(P ′), state(Q′), s′),

such that every T ∈ T (P ′, Q′, s′) satisfies the equality

Φ(T)state(end(T)) = ϕ′(T).

A Generalization of Regular Expressions 39

Let T (P,Q, s) 6= ∅. By construction of elements of E(ζ) T (P,Q, s) is equal to one
of the following unions:
{[(m, Z] Λ

+m [(k,m]T |P = [(m, Z]; (∃l ∈ Names(Augm(ζ)) (k, l,m) is an al-
liance); T ∈ T ([(k,m], Q, s− 1)} ∪ {[(m, Z]a[)m, Z]T |P = [(m, Z]; a ∈ Σ; (ma)m is
an active nest; T ∈ T ([)m, Z], Q, s − 1)}∪ {[(m, Z]Λ[)m, Z]T |P = [(m, Z]; (mε)m is
an active nest; T ∈ T ([)m, Z], Q, s− 1)};
{[)k,m]Λ[(l,m]T |P = [)k,m]; (k, l,m) is an alliance; T ∈ T ([(l,m], Q, s − 1)}

∪ {[)k,m] Λ
−m [)m, Z]T |P = [)k,m]; (∃l ∈ Names(Augm(ζ)) (l, k,m) is an alliance);

T ∈ T ([)m, Z], Q, s− 1)}.
Let p = state(P), q = state(Q). By construction of Augm(ζ) DisBal(p, q, s) is

equal to one of the following unions:
{(m(ky|p = (m; ∃l ∈ Names(Augm(ζ)) (k, l,m) is an alliance; (ky ∈ DisBal((k,

q, s − 1)}∪ {(ma)my|p = (m; a ∈ Σ ∪ {ε}; (ma)m is an active nest;)my ∈
DisBal()m, q, s− 1)};
{)k(ly|p =)k; ∃m ∈ Names(Augm(ζ)) (k, l,m) is an alliance; (ly ∈ DisBal((l,

q, s − 1)}∪ {)k)my|p =)k; ∃l ∈ Names(Augm(ζ)) (l, k,m) is an alliance;)my ∈
DisBal()m, q, s− 1)}.

Consequently, the existence of ϕ′ implies that the function ϕ defined by

ϕ(πT) = Φ(π)ϕ′(T), πT ∈ T (P,Q, s)

is an appropriate bijection.

Lemma 7 implies the following proposition.
Consequence 1. Let P,Q ∈ V . If T (P,Q) 6= ∅, then there exists a bijection

ϕ : T (P,Q)→ DisBal(state(P), state(Q)),

such that any T ∈ T (P,Q) satisfies the equality Φ(T)state(end(T)) = ϕ(T).
Consequence 2. L(D(ζ)) = L(ζ).

Proof. By Consequence 1 there exists a bijection

ϕ : Sentences(D(ζ))→ Clan(Augm(ζ)),

such that every sentence T satisfies the condition Φ(T)state(end(T)) = ϕ(T). Hence,
ω(T) = projection(ϕ(T),Σ). So,

L(D(ζ)) = L(Augm(ζ)).

Now by Lemma 5 L(D(ζ)) = L(ζ).

3.3. Coiterating and Pseudo-coiterating CF-expressions

The following Definition 27 breaks CF-expressions into two subclasses.

40 A.L. Gomozov and L.I. Stanevichene

DEFINITION 25. Let w be a cycle within a fraction over Σ,

projection(w,Σ) ∈ Σ+.

Then w is called a labelled cycle.

DEFINITION 26. Let ξ = u(mx(my)mz)mv is a fraction, both the cycles (mx and z)m
be labelled. Then ξ is called an inserting fraction.

DEFINITION 27. Let ζ be a CF-expression. If Clan(ζ) has an inserting element, then ζ
is called a coiteraing expression, else pseudo-coiterating.

Lemma 8. If ζ is a coiterating expression, then there exists an inserting fraction ξ ∈
Clan(ζ) such that height(ξ) 6 5.

Proof. Suppose that ξ′ is an inserting element of Clan(ζ). By Definition 26 ξ′ =

u′(mx
′
1ax
′
2(my

′)mz
′
1bz
′
2)mv

′ for some name m ∈ Names(ζ), words u′, x′1, x
′
2, y
′, z′1,

z′2, v
′ ∈ Alph(ζ)∗, and symbols a, b ∈ Σ. Let

ξ = u (mx1ax2(my)mz1bz2)mv)

∈ reduction(u′, (m, x
′
1, a, x

′
2, (m, y

′,)m, z
′
1, b, z

′
2,)m, v

′)

where s ∈ {u, x1, x2, y, z1, z2, v} denotes the image of s′ under this reduction.
Consideration of all possible positions of parentheses (k,)k, k ∈ Names(ζ), within

ξ leads to the conclusion that h(k, ξ) reaches its maximum in the following cases:

ξ = u1(ku2(mx11(kx12ax21(kx22(kx23(my1(ky2)k

y3)mz11)kz12bz21)kz22)kz23)mv1)kv2, k 6= m,

ξ = u1(ku2(mx11(kx12(kx13ax21(kx22(my1(ky2)k

y3)mz11)kz12)kz13bz21)kz22)mv1)kv2, k 6= m,

ξ = u(mx11(mx12ax2(my)mz11)mz12bz2)mv, k = m,

ξ = u(mx1ax21(mx22(my)mz1bz21)mz22)mv, k = m.

In any case h(k, ξ) 6 5, k ∈ Names(ζ), i.e., height(ξ) 6 5. The cycles (mx1ax2,
z1bz2)m are labelled, as projection((mx1ax2,Σ) and projection(z1bz2)m,Σ) contain
a and b respectively. Consequently, ξ is an inserting fraction.

Lemma 9. CF-expression ζ is pseudo-coiterating iff every element of Core(ζ, 5) is not
an inserting fraction.

Proof. Let ζ be a pseudo-coiterating CF-expression. Then Clan(ζ) does not have an
inserting element. But Core(ζ, 5) forms a subset of Clan(ζ).

A Generalization of Regular Expressions 41

Now let Core(ζ, 5) contain no inserting fractions. Then Lemma 8 implies that every
element of Clan(ζ) does not satisfy Definition 26. Consequently, ζ is pseudo-coiterating
CF-expression.

Theorem 4. If ζ is a pseudo-coiterating CF-expression, then L(ζ) is regular.

Proof. Let the finite automatonA(ζ) have the set of the edges {λ(π)|π ∈ E(D(ζ))}, the
input vertex [(0, Z0], and the output vertex [)0, Z0]. Then L(ζ) = L(A(ζ)). Indeed, the
paths of a pseudo-coiterating ζ can be used instead of the fractions for the definition of
L(ζ):

L(ζ) = ∪ξ∈Paths(ζ)ω(ξ).

Note that Paths(ζ) and Paths(Augm(ζ)) = DisBal((0,)0) define the same language.
By Consequence 1 there exists a bijection

ϕ : T ([(0, Z0], [)0, Z0])→ DisBal((0,)0)

such that every T ∈ T ([(0, Z0], [)0, Z0]) satisfies the condition

Φ(T)state(end(T)) = ϕ(T).

The last equality implies ω(ϕ(T)) = {ω(T)}. But T ([(0, Z0], [)0, Z0]) was converted to
the set of all successful paths of A(ζ) by means of the deletion of edge charges. Conse-
quently, L(ζ) = {ω(T)|T ∈ T ([(0, Z0], [)0, Z0])} = L(A(ζ)).

4. Inserting Nests and Language Regularity Condition

Define a pseudo-coiterating D-graph and pseudo-coiterating PDA. The last notion was
defined in (Vylitok, 1998) by a different way.

DEFINITION 28. Let D be a D-graph, and T be its sentence such that there exist cycles
T1, T2 forming a nest in T and satisfying the inequalities ω(T1) 6= Λ, ω(T2) 6= Λ. Then
this nest is called an inserting nest ofD, andD is called a coiterating D-graph. A D-graph
without inserting nests is called a pseudo-coiterating D-graph.

DEFINITION 29. If a PDA M defines an inserting nest, then M is called a coiterating
PDA, else it is called a pseudo-coiterating PDA.

Theorem 5. If D is a pseudo-coiterating D-graph, then Expr(D) (see Section 3.1) is a
pseudo-coiterating CF-expression.

Proof. Note that E(D) is a coiterating CF-expression iff D has cycles forming a nest.
Indeed, let a fraction ξ = x1(ιx2(ιx3)ιx4)ιx5 ∈ Clan(E(D)) be such that ω(x2) 6= Λ

42 A.L. Gomozov and L.I. Stanevichene

and ω(x4) 6= Λ. Then, by the construction of schemes, (ιx2 = y1π1y2, x4)ι = y3π2y4,
and

projection(π1y2(ιx3)ιy3π2, E(D))

is one of the nests of the sentence corresponding to ξ.
Hence, the fraction ψ = x1[(ιx2]2(ιx3)ι[x4)ι]

2x5 ∈ Clan(E(D)) corresponds to the
sentence having the nest

projection(π1y2y1π1y2(ιx3)ιy3π2y4y3π2, E(D))

that is formed by cycles π1y2y1, y4y3π2.
The fraction ϕ(ψ) ∈ Clan(Expr(D)) ought to satify the equalities

ω(projection(ϕ(x2), E(D))) = ω(projection(ϕ(x4), E(D))) = Λ. The contrary
would imply that D is not a pseudo-coiterating D-graph. Consequently, Expr(D) is a
pseudo-coiterating CF-expression.

Theorem 5 and Consequence 2 imply

Theorem 6. If D is a pseudo-coiterating D-graph, then L(D) is a regular set.

The following important theorem was proved in (Vylitok, 1998) in terms of PDAs. It
implies a partial algorithm for regularity testing.

Theorem 7. Let D be a D-graph. It defines an inserting nest iff so does an element of
Core(D, 5, 5).

Thus, we have the algorithmically checked condition of CF-language regularity. This
condition is not necessary. Indeed, constructed in (Stanevichene, 1994) coiterating unam-
biguous deterministic PDA and corresponding D-graph define a regular set.

References

Stanevichene, L.I. (1997). D-graphs in context-free language theory. Informatica, 8, 0–0.
Stearns, R.E. (1967) . A regularity test for pushdown machines. Information and Control, 11, 323–340.
Vylitok, A.A. (1998). Pushdown automata and characterization of regular languages. Candidate thesis. Moscow

State University (in Russian).
Stanevichene, L.I. (1994). A recursively unsolvable problem in deterministic pushdown acceptors. Reports of

the Russian Academy of Sciences (This journal issues in English as Doklady Mathematics), 6, 744–746 (in
Russian).

A Generalization of Regular Expressions 43

L. Stanevichene received the Degree of Candidate of Physical and Mathematical Sci-
ences from the Computer Center of the USSR Academy of Sciences in 1972. She is a se-
nior tutor of the Computational Mathematics and Cybernetics Department of the Moscow
State University. Her research interests include formal language theory and its applica-
tions.

A. Gomozov is a student of the Computational Mathematics and Cybernetics Department
of the Moscow State University. He works under the supervision of L. Stanevichene.

44 A.L. Gomozov and L.I. Stanevichene

Reguliari ↪uj ↪u reiškini ↪u apibendrinimas

Aleksei GOMOZOV, Larisa STANEVIČIENĖ

Straipsnyje pateikta regualiariuosius reiškinius apibendrinanči ↪u nuo konteksto nepriklausanči ↪u
reiškini ↪u apibrėžtis. Parodyta, kad vadinamieji pseudo-ko-iteraciniai nuo konteksto nepriklausantys
reiškiniai charakterizuoja reguliari ↪asias aibes. Šis rezultatas panaudotas kitoms reguliari ↪uj ↪u aibi ↪u
charakterizacijoms, pseudo-ko-iteraciniams D grafams ir pseudo-ko-iteraciniams automatams su
steko atmintimi, formuluoti. Sudarytas algoritmas, leidžiantis nustatyti, ar aukščiau nurodyt ↪u tip ↪u
charakterizacijos yra pseudo-ko-iteracinės, ar ne.

