
INFORMATICA, 1999, Vol. 10, No. 1, 5–26 5
 1999 Institute of Mathematics and Informatics, Vilnius

Primitive (Co)Recursion and Course-of-Value
(Co)Iteration, Categorically

Tarmo UUSTALU
Dept. of Teleinformatics, Royal Inst. of Technology, Electrum 204, SE-164 40 Kista, Sweden
e-mail: tarmo@it.kth.se

Varmo VENE
Inst. of Computer Science, Univ. of Tartu, J. Liivi 2, EE-2484 Tartu, Estonia
e-mail: varmo@cs.ut.ee

Received: December 1998

Abstract. In the mainstream categorical approach to typed (total) functional programming,
datatypes are modelled as initial algebras and codatatypes as terminal coalgebras. The basic func-
tion definition schemes of iteration and coiteration are modelled by constructions known as cata-
morphisms and anamorphisms. Primitive recursion has been captured by a construction called
paramorphisms. We draw attention to the dual construction of apomorphisms, and show on ex-
amples that primitive corecursion is a useful function definition scheme. We also put forward and
study two novel constructions, viz., histomorphisms and futumorphisms, that capture the powerful
schemes of course-of-value iteration and its dual, respectively, and argue that even these are helpful.

Key words: typed (total) functional programming, category theory, program calculation, (co)data-
types, forms of (co)recursion.

1. Introduction

This paper is about a well-known categorical approach to typed (total) functional pro-
gramming popular in the program calculation community. In this approach, datatypes and
codatatypes are modelled as initial algebras and terminal coalgebras, and iteration and
coiteration are modelled by constructions known as catamorphisms and anamorphisms.
Primitive recursion, which universally recognized as an important generalization of iter-
ation, is nicely captured by Meertens’ (1992) paramorphisms. With this paper, we aim to
draw attention to the dual construction of apomorphisms, described in (Vos, 1995) and
(Vene and Uustalu, 1998), which models an undeservedly little appreciated scheme that
we like to call primitive corecursion. We also put forward and study two novel construc-
tions, viz., histomorphisms and futumorphisms, that capture course-of-value iteration and
its dual, respectively, and argue that even these schemes are helpful for a declaratively
thinking programmer and program reasoner who loves languages of programming and
program reasoning where programs and proofs of properties of programs are easy to
write and read.



6 T. Uustalu and V. Vene

The tradition of categorical functional programming that we follow in this paper
started off with the Bird-Meertens formalism (Bird, 1987), which is a theory of the
datatype of lists. Malcolm (1990) and Fokkinga (1992), inspired by (Hagino, 1987), gen-
eralized the approach for arbitrary datatypes and codatatypes.

(Geuvers, 1992) contains a thorough category-theoretic analysis of primitive recursion
versus iteration and a demonstration that this readily dualizes into an analysis of primitive
corecursion versus coiteration. In general, however, it appears that primitive corecursion
has largely been overlooked in the theoretical literature, e.g. (Fokkinga, 1992) ignores it.
Apart from (Vos, 1995) and (Vene and Uustalu, 1998), the sole discussion on primitive
corecursion in a programming context that we know about is the laconic report in (Vesely,
1997) on a recent not very clean extension to the categorical functional language Charity
in which it is possible to define functions by primitive recursion and primitive corecur-
sion. The most probable reason for this situation is the young age of programming with
codatatypes. We are not aware of any work whatsoever on categorical constructions mod-
elling course-of-value (co)iteration.

This paper is an intermediate report of an ongoing research project on program con-
struction for typed functional languages in which all programs are guaranteed to termi-
nate (only total functions can be programmed). For a recent defence of the merits of typed
total functional programming, see (Turner, 1995). Part of the material of the present pa-
per originates from (Vene and Uustalu, 1998). In another earlier paper, (Uustalu and
Vene, 1997), we discussed programming and program construction with (co)datatypes in
a different setting of intuitionistic natural deduction.

We shall proceed as follows. In Section 2, we present the setting and notation. In Sec-
tion 3, we give a short introduction to the standard categorical approach to (co)datatypes
and (co)iteration. In Section 4, we introduce a categorical construction for primitive re-
cursion and prove several laws about it. Afterwards, we dualize this development, in-
troducing a categorical primitive corecursor and stating the laws it obeys, and show the
usefulness of primitive corecursion on several examples. In Section 5, we introduce a
novel construction for course-of-value iteration, prove the crucial laws about it, and hint
at programming examples where course-of-value iteration is useful. Again, we also du-
alize the whole development, arriving at a categorical treatment of the dual of course-of-
value iteration. In Section 6, we indicate some possible directions for further work and
conclude.

Proofs in this paper are carried out in the structured calculational proof style (Grundy,
1996).

2. Preliminaries

Throughout the paper C is the default category, which we require to be distributive, i.e., it
must have finite products (×, 1) and co-products (+, 0), and the products must distribute
over the coproducts. The typical example of a distributive category is Sets – the category
of sets and total functions.



Primitive (Co)Recursion and Course-of-Value (Co)Iteration, Categorically 7

We make use the following quite standard notation. Given two objectsA, B, we write
fst : A × B → A and snd : A × B → B for the left and right projections for the
product A × B. For g : C → A and h : C → B, 〈 g, h 〉 denotes the unique morphism
f : C → A×B, such that fst ◦ f = g and snd ◦ f = h (pairing). The notation g × h is
a shorthand for 〈 g ◦ fst, h ◦ snd 〉. The left and right injections for the coproductA+B

are denoted by inl : A → A + B and inr : B → A + B. For g : A → C and
h : B → C, [ g, h ] denotes the unique morphism f : A+B → C, such that f ◦ inl = g

and f ◦inr = h (case analysis). The notation g+h abbreviates [ inl ◦ g, inr ◦ h ]. Also,
! and ¡ denote the unique morphisms f : C → 1 and f ′ : 0 → C. The inverse of the
canonical map [ inl× idC , inr× idC ] : (A × C) + (B × C) → (A + B) × C is
denoted by distr : (A+B)×C → (A×C)+(B×C), and the inverse of the canonical
map [ idA × inl, idA × inr ] : (A × B) + (A × C) → A × (B + C) is denoted by
distl : A× (B +C)→ (A×B) + (A×C). Finally, given a predicate p : A→ 1 + 1,
the guard p? : A→ A+A is defined as (snd + snd) ◦ distr ◦ 〈 p, idA 〉.

3. (Co)Datatypes and (Co)Iteration

Categorically, datatypes (of natural numbers, lists, etc.) are traditionally modelled by
initial algebras and codatatypes (of conatural numbers, colists, streams, etc.) by terminal
coalgebras. The function definition schemes of iteration and coiteration are modelled
by constructions termed catamorphisms and anamorphisms. The theory presented in this
section has become a bit of folklore; a good reference source is (Fokkinga, 1992).

Initial Algebras and Catamorphisms. Let F be a functor from C to C. An algebra
with the signature F (F -algebra, for short) is a pair (A,ϕ), where A (called the carrier)
is an object and ϕ : F A → A (called the structure) is a morphism in C. For any two
F -algebras (A,ϕ) and (C,ψ), a morphism f : A → C is said to be a homomorphism
(between F -algebras) from (A,ϕ) to (C,ψ) if f ◦ ϕ = ψ ◦ F f .

It is easy to verify that the morphism composition of two homomorphisms is also a
homomorphism. Moreover, for any F -algebra (A,ϕ), the identity morphism id : A →
A is a homomorphism from (A,ϕ) to (A,ϕ). It follows that the F -algebras and the
homomorphisms between them form a category. The category Alg(F ) is the category
whose objects are the F -algebras and morphisms are the homomorphisms between them.
Composition and identities are inherited from C.

A F -algebra is said to be an initial F -algebra if it is initial (as an object) in the
category Alg(F ). The initial F -algebra may or may not exist. It is guaranteed to exist if
F is ω-cocontinuous (i.e., it preserves the colimits of ω-chains). All polynomial functors
(i.e., functors built up from products, sums, the identity functor, and constant functors)
are ω-cocontinuous and, hence, the initial algebras for them exist.

Given a functorF , the existence of the initialF -algebra (µF, inF ) means that, for any
F -algebra (C,ϕ), there exists a unique F -homomorphism of algebras from (µF, inF ) to



8 T. Uustalu and V. Vene

(C,ϕ). Following Fokkinga (1992), we denote this homomorphism by (|ϕ |)F , so (|ϕ |)F :

µF → C is characterized by the universal property

f ◦ inF = ϕ ◦ F f ⇔ f = (|ϕ |)F cata-CHARN

The type information is summarized in the following diagram:

F µF
inF

F f

µF

f

F C
ϕ

C

Morphisms of the form (|ϕ |) are called catamorphisms (derived from the Greek preposi-
tion κατα meaning ‘downwards’); the construction (| · |) is an iterator.

EXAMPLE 1. The datatype of natural numbers can be represented as the initial algebra
(µN, inN ) of the functor N defined by N X = 1 +X and N f = id1 + f . Write Nat

for µN . The function zero : 1 → Nat equals inN ◦ inl, the function succ : Nat :

Nat → Nat equals inN ◦ inr. Given any two functions c : 1→ C and h : C → C, the
catamorphism f = (| [ c, h ] |)N : Nat → C is the unique solution of the equation system

f ◦ zero = c

∧ f ◦ succ = h ◦ f.

Given a function n : 1 → Nat , the function add(n) : Nat → Nat (which adds n to its
argument), for instance, can be defined as the catamorphism (| [n, succ ] |)N .

EXAMPLE 2. The datatype of lists over a given set A can be represented as the initial
algebra (µLA, inLA) of the functor LA defined by LAX = 1 + (A ×X) and LA f =

id1+(idA×f). DenoteµLA by ListA. The function nil : 1→ ListA equals inLA◦inl,
the function cons : A × ListA → ListA equals inLA ◦ inr. Given any two functions
c : 1→ C and h : A× C → C, the catamorphism f = (| [ c, h ] |)LA : ListA → C is the
unique solution of the equation system

f ◦ nil = c

∧ f ◦ cons = h ◦ (idA × f),

i.e., foldr (c, h) from functional programming. Given a function h : A→ B, the function
map(h) : ListA → ListB (which applies h to every element of the argument), for
instance, can be defined as the catamorphism

(| [ nil , cons ◦ (h× idListA) ] |)LA .



Primitive (Co)Recursion and Course-of-Value (Co)Iteration, Categorically 9

Catamorphisms obey several nice laws, of which the cancellation law, the reflection
law (also known as the identity law) and the fusion (or, promotion) law are especially
important for program calculation (the cancellation law describing a certain program ex-
ecution step):

(|ϕ |)F ◦ inF = ϕ ◦ F (|ϕ |)F cata-CANCEL

idµF = (| inF |)F cata-REFL

f ◦ ϕ = ψ ◦ F f ⇒ f ◦ (|ϕ |)F = (|ψ |)F cata-FUSION

The reflection and fusion laws are proved as follows:



idµF
= – cata-CHARN – inF

= – F functor –
inF ◦ F idµF

(| inF |)F



� f ◦ ϕ = ψ ◦ F f
f ◦ (|ϕ |)F

= – cata-CHARN –

f ◦ (|ϕ |)F ◦ inF
= – cata-CHARN –
f ◦ ϕ ◦ F (|ϕ |)F

= – � –
ψ ◦ F f ◦ F (|ϕ |)F

= – F functor –
ψ ◦ F (f ◦ (|ϕ |)F )

(|ψ |)F

The important simple result that inF : F µF → µF is an isomorphism with the
inverse (|F inF |)F : µF → F µF was first recorded by Lambek (1968).

inF ◦ (|F inF |)F = idµF ∧ (|F inF |)F ◦ inF = idF µF LEMMA-1

It is proved by the following two calculations:


inF ◦ (|F inF |)F

= – cata-FUSION –
(| inF |)F

= – cata-REFL –
idµF



(|F inF |)F ◦ inF
= – cata-CHARN –
F inF ◦ F (|F inF |)F )

= – F functor –
F (inF ◦ (|F inF |)F )

= – above –
F idµF

= – F functor –
idF µF

Define

in−1
F = (|F inF |)F in-inv-DEF



10 T. Uustalu and V. Vene

Lemma 1 gives us the following characterization for in−1
F :

inF ◦ in−1
F = idµF ∧ in−1

F ◦ inF = idF µF in-inv-CHARN

EXAMPLE 3. Using in−1
F , the predecessor function pred : Nat → Nat can be defined

as [ zero, idNat ] ◦ in−1
N .

Terminal Coalgebras and Anamorphisms. We now dualize the material about initial
algebras and catamorphisms.

Let F be a functor from C to C. A coalgebra with the signature F (F -coalgebra,
for short) is a pair (A,ϕ), where A (called the carrier) is an object and ϕ : A → F A

(called the structure) is a morphism in C. For any two F -coalgebras (C,ψ) and (A,ϕ),
a morphism f : C → A is said to be a homomorphism (between F -coalgebras) from
(C,ψ) to (A,ϕ) if ϕ ◦ f = F f ◦ ψ.

The F -coalgebras and the homomorphisms between them form a category. The cat-
egory CoAlg(F ) is the category whose objects are the F -coalgebras and morphisms are
the homomorphisms between them. Composition and identities are inherited from C.

A F -coalgebra is said to be a terminal F -coalgebra if it is terminal (as an object) in
the category CoAlg(F ). The terminal F -coalgebra may or may not exist. It is guaranteed
to exist if F is ω-continuous (i.e., it preserves the limits of ω-chains). All polynomial
functors (i.e., functors built up from products, sums, the identity functor, and constant
functors) are ω-continuous and, hence, the terminal coalgebras for them exist.

The existence of the terminal F -coalgebra (νF, outF ) means that for any F -
coalgebra (C,ϕ), there exists a unique F -homomorphism of coalgebras from (C,ϕ) to
(νF, outF ). This homomorphism is usually denoted by [(ϕ )]F , so [(ϕ )]F : C → νF is
characterized by the universal property

outF ◦ f = F f ◦ ϕ ⇔ f = [(ϕ )]F ana-CHARN

The type information is summarized in the following diagram:

C
ϕ

f

F C

F f

νF
outF

F νF

Morphisms of the form [(ϕ )] are called anamorphisms (derived from the Greek prepo-
sition ανα meaning ‘upwards’; the name is due to Meijer), and the construction [( · )] is
a coiterator. Like catamorphisms, anamorphisms enjoy various properties including the
following cancellation, reflection and fusion laws:

outF ◦ [(ϕ )]F = F [(ϕ )]F ◦ ϕ ana-CANCEL

idνF = [( outF )]F ana-REFL

ψ ◦ f = F f ◦ ϕ ⇒ [(ψ )]F ◦ f = [(ϕ )]F ana-FUSION



Primitive (Co)Recursion and Course-of-Value (Co)Iteration, Categorically 11

Also, outF : νF → F νF is an isomorphism with the inverse [(F outF )]F : F νF →
νF .

out−1
F = [(F outF )]F out-inv-DEF

out−1
F ◦ outF = idνF ∧ outF ◦ out−1

F = idF νF out-inv-CHARN

EXAMPLE 4. The codatatype of streams over a given set A is nicely represented by the
terminal coalgebra (νSA, outSA) of the functor SA defined by SAX = A × X and
SA f = idA × f . Write StreamA for νSA. The functions head : StreamA → A and
tail : StreamA → StreamA equal fst◦outSA and snd◦outSA , respectively. Given any
two functions c : C → A and h : C → C, the anamorphism [( 〈 c, h 〉 )]SA is the unique
solution f : C → StreamA of the equation system

head ◦ f = c

∧ tail ◦ f = f ◦ h.

The function nats : Nat → StreamNat , which returns the stream of all natural
numbers starting with the natural number given as the argument, is the unique solution of
the equation system

head ◦ nats = idNat

∧ tail ◦ nats = nats ◦ succ,

and is thus definable as the anamorphism [( 〈 idNat , succ 〉 )].
The function zip : StreamA × StreamA → StreamA×A that zips the argument

streams together is characterized as follows:

head ◦ zip = (fst× fst) ◦ (outSA × outSA)

∧ tail ◦ zip = zip ◦ (snd× snd) ◦ (outSA × outSA)

This function can, therefore, be defined as

[( 〈 fst× fst, snd× snd 〉 ◦ (outSA × outSA) )]SA .

EXAMPLE 5. The codatatype of colists over a given set A can be represented as the
terminal coalgebra (νLA, outLA) of the functor LA. Write List ′A for νLA. Given any
function g : C → 1 + (A×C), the anamorphism [( g )]LA is the unique solution f : C →
List ′A of the equation outLA ◦ f = (id1 + (idA × f)) ◦ g, i.e. the function unfold(g)

from functional programming.



12 T. Uustalu and V. Vene

4. Primitive (Co-)Recursion

Paramorphisms

EXAMPLE 6. The factorial function fact : Nat → Nat is most neatly characterized as
the unique solution of the equation system

fact ◦ zero = succ ◦ zero

∧ fact ◦ succ = mult ◦ 〈 fact , succ 〉.

This function is not a catamorphism. The problem is that its value for a given argument
depends not only on the values for the immediate subparts of the argument, but also on
these immediate subparts directly.

Meertens (1992) showed that any function which can be characterized similarly to
the factorial function is definable as the composition of the left projection and a catamor-
phism.

The relevant result is the following:
For any two morphisms f : µF → C and ϕ : F (C × µF )→ C, we have

f ◦ inF = ϕ ◦ F 〈 f, idµF 〉 ⇔ f = fst ◦ (| 〈ϕ, inF ◦ F snd 〉 |)F LEMMA-2

It is proved by the following calculations:



� f ◦ inF = ϕ ◦ F 〈 f, idµF 〉
f

= – pairing –
fst ◦ 〈 f, idµF 〉

= – cata-CHARN –

〈 f, idµF 〉 ◦ inF
= – pairing –
〈 f ◦ inF , inF 〉

= – F functor –
〈 f ◦ inF , inF ◦ F idµF 〉

= – pairing –
〈 f ◦ inF , inF ◦ F (snd ◦ 〈 f, idµF 〉) 〉

= – �, F functor –
〈ϕ ◦ F 〈 f, idµF 〉, inF ◦ F snd ◦ F 〈 f, idµF 〉 〉

= – pairing –
〈ϕ, inF ◦ F snd 〉 ◦ F 〈 f, idµF 〉

fst ◦ (| 〈ϕ, inF ◦ F snd 〉 |)F



Primitive (Co)Recursion and Course-of-Value (Co)Iteration, Categorically 13

� f = fst ◦ (| 〈ϕ, inF ◦ F snd 〉 |)
f ◦ inF

= – � –
fst ◦ (| 〈ϕ, inF ◦ F snd 〉 |) ◦ inF

= – cata-CHARN –
fst ◦ 〈ϕ, inF ◦ F snd 〉 ◦ F (| 〈ϕ, inF ◦ F snd 〉 |)F

= – pairing, 2x –
ϕ ◦ F 〈 fst ◦ (| 〈ϕ, inF ◦ F snd 〉 |)F , snd ◦ (| 〈ϕ, inF ◦ F snd 〉 |)F 〉

= – �, cata-FUSION – snd ◦ 〈ϕ, inF ◦ F snd 〉
= – pairing –

inF ◦ F snd

ϕ ◦ F 〈 f, (| inF |)F 〉
= – cata-REFL –
ϕ ◦ F 〈 f, idµF 〉

EXAMPLE 7. For the factorial function, we have that

fact ◦ inF
= [ succ ◦ zero,mult ◦ 〈 fact , succ 〉 ]
= [ succ ◦ zero,mult ◦ (idNat × succ) ] ◦N 〈 fact , idNat 〉.

and consequently we get the definition of factorial

fact

= fst ◦ (| 〈 [ succ ◦ zero,mult ◦ (idNat × succ) ], inF ◦N snd 〉 |)N
= fst ◦ (| 〈 [ succ ◦ zero,mult ◦ (idNat × succ) ], [ zero, succ ◦ snd ] 〉 |)N

To make programming and program reasoning easier, let us introduce a new con-
struction and study its properties. For any morphism ϕ : F (C × µF ) → C, define the
morphism 〈|ϕ |〉F : µF → C by

〈|ϕ |〉F = fst ◦ (| 〈ϕ, inF ◦ F snd 〉 |)F para-DEF

Morphisms of the form 〈|ϕ |〉F are called paramorphisms (παρα – Greek preposition
meaning ‘near to’, ‘at the side of’, ‘towards’; the name is due to Meertens). The con-
struction 〈| · |〉F is a primitive recursor.

From Lemma 2, we get the characterization of paramorphisms by the following uni-
versal property:

f ◦ inF = ϕ ◦ F 〈 f, idµF 〉 ⇔ f = 〈|ϕ |〉F para-CHARN



14 T. Uustalu and V. Vene

The type information is summarized in the following diagram:

F µF
inF

F 〈 f,idµF 〉

µF

f

F (C × µF )
ϕ

C

EXAMPLE 8. The paramorphism 〈| [ succ ◦ zero,mult ◦ (idNat × succ) ] |〉N defines
the factorial function.

More generally, given any two functions c : 1 → C and h : C × Nat → C, the
paramorphism f = 〈| [ c, h ] |〉N : Nat → C is the unique solution of the equation system

f ◦ zero = c

∧ f ◦ succ = h ◦ 〈 f, idNat 〉.

The calculational properties of paramorphisms are similar to those of catamorphisms.
In particular, we have the following “paramorphic” cancellation, reflection and fusion
laws:

〈|ϕ |〉F ◦ inF = ϕ ◦ F 〈 〈|ϕ |〉F , idµF 〉 para-CANCEL

idµF = 〈| inF ◦ F fst |〉 para-REFL

f ◦ ϕ = ψ ◦ F (f × idµF ) ⇒ f ◦ 〈|ϕ |〉F = 〈|ψ |〉F para-FUSION

The reflection and fusion laws are proved as follows:



idµF
= – para-CHARN –

inF
= – F functor –

inF ◦ F idµF
= – pairing –

inF ◦ F (fst ◦ 〈 idµF , idµF 〉)
= – F functor –

inF ◦ F fst ◦ F 〈 idµF , idµF 〉
〈| inF ◦ F fst |〉F



Primitive (Co)Recursion and Course-of-Value (Co)Iteration, Categorically 15

� f ◦ ϕ = ψ ◦ F (f × idµF )

f ◦ 〈|ϕ |〉F
= – para-CHARN –

f ◦ 〈|ϕ |〉F ◦ inF
= – para-CHARN –
f ◦ ϕ ◦ F 〈 〈|ϕ |〉F , idµF 〉

= – � –
ψ ◦ F (f × idµF ) ◦ F 〈 〈|ϕ |〉F , idµF 〉

= – F functor –
ψ ◦ F ((f × idµF ) ◦ 〈 〈|ϕ |〉F , idµF 〉)

= – pairing –
ψ ◦ F 〈 f ◦ 〈|ϕ |〉F , idµF 〉

〈|ψ |〉F

By definition, every paramorphism is the composition of the left projection and a
catamorphism. In converse, paramorphisms can be viewed as a generalization of cata-
morphisms, in the sense that every catamorphism is definable as a certain paramorphism:

(|ϕ |)F = 〈|ϕ ◦ F fst |〉F para-CATA

This law is verified by the following calculation:



(|ϕ |)F
= – para-CHARN –

(|ϕ |)F ◦ inF
= – cata-CHARN –
ϕ ◦ F (|ϕ |)F

= – pairing –
ϕ ◦ F (fst ◦ 〈 (|ϕ |)F , idµF 〉)

= – F functor –
ϕ ◦ F fst ◦ F 〈 (|ϕ |)F , idµF 〉

〈|ϕ ◦ F fst |〉F

Actually, every morphism whose source is the carrier of an initial algebra is a paramor-
phism:

f = 〈| f ◦ inF ◦ F snd |〉F para-ANY

This observation, first recorded in (Meertens, 1992), is proved as follows:



16 T. Uustalu and V. Vene

f

= – para-CHARN –

f ◦ inF
= – F functor –
f ◦ inF ◦ F idµF

= – pairing –
f ◦ inF ◦ F (snd ◦ 〈 f, idµF 〉)

= – F functor –
f ◦ inF ◦ F snd ◦ F 〈 f, idµF 〉

〈| f ◦ inF ◦ F snd |〉F

From this law, it is a very short step to the following definition of the morphism in−1
F

as a paramorphism:

in−1
F = 〈|F snd |〉F para-IN-INV

The proof proceeds as follows:


in−1
F

= – para-ANY –
〈| in−1

F ◦ inF ◦ F snd |〉F
= – in-inv-CHARN –
〈|F snd |〉F

Apomorphisms. Let us now dualize everything we know about paramorphisms. For
any morphism ϕ : C → F (C + νF ), define the morphism [〈ϕ 〉]F : C → νF as a
composition of a certain anamorphism with the left injection:

[〈ϕ 〉]F = [( [ϕ,F inr ◦ outF ] )]F ◦ inl apo-DEF

Morphisms of the form [〈ϕ 〉]F are the dual of paramorphisms. Both in (Vos, 1995) and
(Vene and Uustalu, 1998), these morphisms are called apomorphisms (απo – Greek
preposition meaning ‘apart from’, ‘far from’, ‘away from’)1. The construction [〈 · 〉]F is, of
course, a primitive corecursor. The characterizing universal property for apomorphisms
is following:

outF ◦ f = F [ f, idνF ] ◦ ϕ ⇔ f = [〈ϕ 〉]F apo-CHARN

The type information is summarized in the following diagram:

1A curious thing is that we wrote (Vene and Uustalu, 1998) unaware of the earlier existence of (Vos, 1995),
but happened to come up with exactly the same new name.



Primitive (Co)Recursion and Course-of-Value (Co)Iteration, Categorically 17

C
ϕ

f

F (C + νF )

F [ f,idνF ]

νF
outF

F νF

The laws for apomorphisms are just the duals of those for paramorphisms. The can-
cellation, reflection and fusion laws are these:

outF ◦ [〈ϕ 〉]F = F [ [〈ϕ 〉]F , idνF ] ◦ ϕ apo-CANCEL

idνF = [〈F inl ◦ outF 〉]F apo-REFL

ψ ◦ f = F (f + idνF ) ◦ ϕ ⇒ [〈ψ 〉]F ◦ f = [〈ϕ 〉]F apo-FUSION

As paramorphisms generalized catamorphisms, apomorphisms are a generalization of
anamorphisms.

[(ϕ )]F = [〈F inl ◦ ϕ 〉]F apo-ANA

Also, any morphism whose target is the carrier of a terminal coalgebra, is an apomor-
phism.

f = [〈F inr ◦ outF ◦ f 〉]F apo-ANY

The morphism out−1
F has this nice “apomorphic” definition:

out−1
F = [〈F inr 〉]F apo-OUT-INV

EXAMPLE 9. The function maphd(h) : StreamA → StreamA, which modifies any
input stream by applying a function h : A → A to its head while leaving the tail un-
changed, is definable as the composition of a certain anamorphism with the left injection
that constructs the value for a given argument from the value of h for its head and from
the elements of its tail.

maphd (h)

= [( [ 〈h ◦ head , inr ◦ tail 〉, 〈 head , inr ◦ tail 〉 ] )]SA ◦ inl
= [( [ 〈h ◦ head , inr ◦ tail 〉, SA inr ◦ outSA ] )]SA ◦ inl

A much more natural definition of this function is given by an apomorphism that con-
structs the value for a given argument from the value of h for its head and from the whole
of its tail.

maphd (h) = [〈 〈h ◦ head , inr ◦ tail 〉 〉]SA

EXAMPLE 10. Assume that a given set A is linearly ordered by a predicate (�) : A ×
A→ 1 + 1. For any function x : 1→ A, the function insert(x) : StreamA → StreamA,



18 T. Uustalu and V. Vene

that inserts the element x into an input strean immediately before the first element that x
is less than or equal to (so that the returned stream will be sorted, if the given stream is),
is characterized by the equation

〈 head , tail 〉 ◦ insert(x) ◦ ys =

{
〈x, ys 〉 if x � head ◦ ys,
〈 head , insert(x) ◦ tail 〉 ◦ ys otherwise.

The function insert(x) is most naturally defined as an apomorphism that constructs the
value for a given argument from its certain initial segment elementwise and the remainder
as one whole:

insert(x) = [〈 [ 〈x ◦ !, inr 〉, (idA × inl) ] ◦ test(x) 〉]SA
where test(x) : StreamA → StreamA + SA StreamA is

test(x) = (fst + snd) ◦ ((�) ◦ 〈x ◦ !, fst ◦ snd 〉)?
◦〈 idStreamA

, 〈 head , tail 〉 〉

EXAMPLE 11. For any function ` : 1 → List ′A, the function append(`) : List ′A →
List ′A, which appends the colist ` to an input colist, is naturally definable as an apomor-
phism which constructs the value for a given argument from the elements of the argument
and from the whole of `:

append(`)

= [〈 [ [ inl, inr ◦ (idA × inr) ] ◦ outLA ◦ `, inr ◦ (idA × inl) ] ◦ outLA 〉]LA
= [〈 [LA inr ◦ outLA ◦ `, inr ] ◦ LA inl ◦ outLA 〉]LA

5. Course-of-Value (Co)Iteration

Histomorphisms

EXAMPLE 12. The famous Fibonacci function fibo : Nat → Nat is most smoothly
characterized as the unique solution of the equation system

fibo ◦ zero = one

∧ fibo ◦ one = one

∧ fibo ◦ succ ◦ succ = add ◦ 〈fibo ◦ succ,fibo 〉,

where one = succ ◦ zero. This very nice characterization does not give us any definition
of fibo in terms of catamorphisms. The problem is that the value of fibo for a given
argument is defined not via the values for the immediate subparts of the argument, but
via the values for its subparts of depth 2. But the characterization of fibo together with the
function fibo′ : Nat → Nat × Nat (which, for any argument n, returns the pair formed
of the value of fibo for n and either zero or the value of fibo for the predecessor of n) by
a much trickier equation system, viz.,



Primitive (Co)Recursion and Course-of-Value (Co)Iteration, Categorically 19

fibo = fst ◦ fibo′

∧ fibo′ ◦ zero = 〈 one, zero 〉
∧ fibo′ ◦ succ = 〈 add , fst 〉 ◦ fibo′,

leads to a definition of fibo as the composition of the left projection and a catamorphism:

fibo = fst ◦ (| 〈 [ one, add ], [ zero, fst ] 〉 |)Nat .

To make programming and program reasoning easier, we could introduce a new con-
struction that would capture the natural definition scheme of the Fibonacci function and
closely similar functions, and start studying its properties. But this would only provide us
with a partial solution to the problem manifested by the Fibonacci example, as one can
imagine functions whose value for a given argument is naturally defined via the values
for its subparts of depth three, four, etc. Instead of this, we introduce a construction that
captures course-of-value iteration, which is a function definition scheme where the value
of a function for a given argument may depend on the values for just any of its subparts.

We start with the following result, which, to our knowledge, is novel:
Let F×A denote the functor F×A X = A × F X , F×A h = idA × F h. Then, for any

two morphisms f : µF → C and ϕ : F (νF×C )→ C, we have

f ◦ inF = ϕ ◦ F [( 〈 f, in−1
F 〉 )]F×

⇔ f = fst ◦ outF× ◦ (| out−1
F× ◦ 〈ϕ, id 〉 |)F LEMMA-3

Proving it is quite tricky.

� f ◦ inF = ϕ ◦ F [( 〈 f, in−1
F 〉 )]F×

f
= – pairing –

fst ◦ 〈 f, in−1
F 〉

= – pairing –
fst ◦ (id× F [( 〈 f, in−1

F 〉 )]F×) ◦ 〈 f, in−1
F 〉

= – ana-CHARN –
fst ◦ outF× ◦ [( 〈 f, in−1

F 〉 )]F×
= – cata-CHARN –

[( 〈 f, in−1
F 〉 )] ◦ inF

= – out-inv-CHARN –
out−1

F× ◦ outF× ◦ [( 〈 f, in−1
F 〉 )]F× ◦ inF

= – ana-CHARN –
out−1

F× ◦ (id× F [( 〈 f, in−1
F 〉 )]F×) ◦ 〈 f, in−1

F 〉 ◦ inF
= – pairing –

out−1
F× ◦ 〈 f, F [( 〈 f, in−1

F 〉 )]F× ◦ in−1
F 〉 ◦ inF

= – pairing –
out−1

F× ◦ 〈 f ◦ inF , F [( 〈 f, in−1
F 〉 )]F× ◦ in

−1
F ◦ inF 〉

= – �, in-inv-CHARN –
out−1

F× ◦ 〈ϕ ◦ F [( 〈 f, in−1
F 〉 )]F× , F [( 〈 f, in−1

F 〉 )]F× 〉
= – pairing –

out−1
F× ◦ 〈ϕ, id 〉 ◦ F [( 〈 f, in−1

F 〉 )]F×
fst ◦ outF× ◦ (| out−1

F× ◦ 〈ϕ, id 〉 |)F



20 T. Uustalu and V. Vene

� f = fst ◦ outF× ◦ (| out−1
F× ◦ 〈ϕ, id 〉 |)F

f ◦ inF
= – � –

fst ◦ outF× ◦ (| out−1
F× ◦ 〈ϕ, id 〉 |) ◦ inF

= – cata-CHARN –
fst ◦ outF× ◦ out−1

F× ◦ 〈ϕ, id 〉 ◦ F (| out−1
F× ◦ 〈ϕ, id 〉 |)F

= – out-inv-CHARN –
fst ◦ 〈ϕ, id 〉 ◦ F (| out−1

F× ◦ 〈ϕ, id 〉 |)F
= – pairing –
ϕ ◦ F (| out−1

F× ◦ 〈ϕ, id 〉 |)F
= – ana-CHARN –

outF× ◦ (| out−1
F× ◦ 〈ϕ, id 〉 |)F

= – pairing –
〈fst ◦ outF× ◦ (| out−1

F× ◦ 〈ϕ, id 〉 |)F ,
snd ◦ outF× ◦ (| out−1

F× ◦ 〈ϕ, id 〉 |)F 〉
= – �, in-inv-CHARN –
〈 f, snd ◦ outF× ◦ (| out−1

F× ◦ 〈ϕ, id 〉 |)F ◦ inF ◦ in
−1
F 〉

= – cata-CHARN –
〈f, snd ◦ outF× ◦ out−1

F× ◦ 〈ϕ, id 〉◦
◦F (| out−1

F× ◦ 〈ϕ, id 〉 |)F ◦ in
−1
F

= – out-inv-CHARN –
〈 f, snd ◦ 〈ϕ, id 〉 ◦ F (| out−1

F× ◦ 〈ϕ, id 〉 |)F ◦ in
−1
F 〉

= – pairing –
〈 f, F (| out−1

F× ◦ 〈ϕ, id 〉 |)F ◦ in
−1
F 〉

= – pairing –
(id× F (| out−1

F× ◦ 〈ϕ, id 〉 |)F ) ◦ 〈 f, in−1
F 〉

ϕ ◦ F [( 〈 f, in−1
F 〉 )]F×

For any morphism ϕ : F (νF×C ) → C, let us now define the morphism {|ϕ |}F :

µF → C by letting

{|ϕ |}F = fst ◦ outF× ◦ (| out−1
F× ◦ 〈ϕ, id 〉 |)F histo-DEF

Morphisms of the form {|ϕ |}F are called histomorphisms in this paper. The construction
{| · |}F is easily seen to be a course-of-value iterator. By Lemma 3, the characterizing
universal property for histomorphisms is the following:

f ◦ inF = ϕ ◦ F [( 〈 f, in−1
F 〉 )]F× ⇔ f = {|ϕ |}F histo-CHARN

The type information is summarized in the following diagram:



Primitive (Co)Recursion and Course-of-Value (Co)Iteration, Categorically 21

F µF
inF

F [( 〈 f,in−1
F
〉 )]
F×

µF

f

F (νF×C )
ϕ

C

EXAMPLE 13. The following is a neat “histomorphic” definition of the Fibonacci func-
tion:

fibo = {| [ one, [ one ◦ snd, add ◦ (id× (fst ◦ outN×)) ] ◦ distl ◦ outN× ] |}N

The cancellation, reflection and fusion laws for histomorphisms are these:

{|ϕ |}F ◦ inF = ϕ ◦ F [( 〈 {|ϕ |}F , in−1
F 〉 )]F× histo-CANCEL

idµF = {| inF ◦ F (fst ◦ outF×) |}F histo-REFL

f ◦ ϕ = ψ ◦ F [( (f × id) ◦ outF× )]F×⇒ f ◦ {|ϕ |}F = {|ψ |}F histo-FUSION

The reflection law is proved by the following calculation:



idµF
= – histo-CHARN –

inF
= – F functor –

inF ◦ F id

= – pairing –
inF ◦ F (fst ◦ 〈 id, in−1

F 〉)
= – pairing –

inF ◦ F (fst ◦ (id× F [( 〈 id, in−1
F 〉 )]F×) ◦ 〈 id, in−1

F 〉)
= – ana-CHARN –

inF ◦ F (fst ◦ outF× ◦ [( 〈 id, in−1
F 〉 )]F×)

= – F functor –
inF ◦ F (fst ◦ outF×) ◦ F [( 〈 id, in−1

F 〉 )]F×
{| inF ◦ F (fst ◦ outF×) |}F

The fusion law is proved as follows:



22 T. Uustalu and V. Vene

� f ◦ ϕ = ψ ◦ F [( (f × id) ◦ outF× )]F×
f ◦ {|ϕ |}F

= – histo-CHARN –

f ◦ {|ϕ |}F ◦ inF
= – histo-CHARN –
f ◦ ϕ ◦ F [( 〈 {|ϕ |}, in−1

F 〉 )]F×
= – � –
ψ ◦ F [( (f × id) ◦ outF× )]F× ◦ F [( 〈 {|ϕ |}F , in−1

F 〉 )]F×
= – F functor –
ψ ◦ F ([( (f × id) ◦ outF× )]F× ◦ [( 〈 {|ϕ |}F , in−1

F 〉 )]F×)
= – ana-FUSION –

(f × id) ◦ outF× ◦ [( 〈 {|ϕ |}F , in−1
F 〉 )]F×

= – ana-CHARN –
(f × id) ◦ (id× F [( 〈 {|ϕ |}F , in−1

F 〉 )]F×)◦
◦〈 {|ϕ |}F , in−1

F 〉
= – pairing –

(f × F [( 〈 {|ϕ |}F , in−1
F 〉 )]F×) ◦ 〈 {|ϕ |}F , in−1

F 〉
= – pairing –
〈 f ◦ {|ϕ |}F , F [( 〈 {|ϕ |}F , in−1

F 〉 )]F× ◦ in
−1
F 〉

= – pairing –
(id× F [( 〈 {|ϕ |}F , in−1

F 〉 )]F×) ◦ 〈 f ◦ {|ϕ |}F , in−1
F 〉

ψ ◦ F [( 〈 f ◦ {|φ |}F , in−1
F 〉 )]F×{|ψ |}F

Similarly to paramorphisms, histomorphisms can be viewed as a generalization of
catamorphisms:

(|ϕ |)F = {|ϕ ◦ F (fst ◦ outF×) |}F histo-CATA

This fact is verified by the following calculation:



(|ϕ |)F
= – histo-CHARN –

(|ϕ |)F ◦ inF
= – cata-CHARN –
ϕ ◦ F (|ϕ |)F

= – pairing –
ϕ ◦ F (fst ◦ 〈 (|ϕ |)F , in−1

F 〉)
= – pairing –
ϕ ◦ F (fst ◦ (id× F [( 〈 (|ϕ |)F , in−1

F 〉 )]F×) ◦ 〈 (|ϕ |)F , in−1
F 〉)

= – ana-CHARN –
ϕ ◦ F (fst ◦ outF× ◦ [( 〈 (|ϕ |)F , in−1

F 〉 )]F×)
= – F functor –
ϕ ◦ F (fst ◦ outF×) ◦ F [( 〈 (|ϕ |)F , in−1

F 〉 )]F×{|ϕ ◦ F (fst ◦ outF×) |}F



Primitive (Co)Recursion and Course-of-Value (Co)Iteration, Categorically 23

Futumorphisms. We now introduce a construction dual to histomorphisms. Let F+
A

denote the functor F+
A X = A + F X , F+

A h = idA + F h. Then, given a morphism
ϕ : C → F (µF+

C ), we define the morphism [{ϕ }]F : C → νF by letting

[{ϕ }]F = [( [ϕ, id ] ◦ in−1
F+ )]F ◦ inF+ ◦ inl futu-DEF

Our name for morphisms of the form [{ϕ }]F is futumorphisms. The construction [{ · }]F
is the dual of a course-of-value coiterator (a “cocourse-of-argument” coiterator). The
characterizing universal property for futumorphisms is the following:

outF ◦ f = F (| [ f, out−1
F ] |)F+ ◦ ϕ ⇔ f = [{ϕ }]F futu-CHARN

The type information is summarized in the following diagram:

C
ϕ

f

F (µF+
C )

F (| [ f,out−1
F

] |)F+

νF
outF

F νF

A straightforward dualization of the laws for histomorphisms gives laws for futumor-
phisms:

outF ◦ [{ϕ }]F = F (| [ [{ϕ }]F , out−1
F ] |)F+ ◦ ϕ futu-CANCEL

idνF = [{F (inF+ ◦ inl) ◦ outF }]F futu-REFL

ψ ◦ f = F (| inF+ ◦ (f + id) |)F+ ◦ ϕ ⇒ [{ψ }]F ◦ f = [{ϕ }]F futu-FUSION

[(ϕ )]F = [{F (inF+ ◦ inl) ◦ ϕ }]F futu-ANA

EXAMPLE 14. The function exch : StreamA → StreamA, which pairwise exchanges
the elements of any given argument, is characterized by the equation system

head ◦ exch = head ◦ tail

∧ head ◦ tail ◦ exch = head

∧ tail ◦ tail ◦ exch = exch ◦ tail ◦ tail .

This function is nicely definable as a futumorphism:

exch = [{ 〈 head ◦ tail , in(SA)+ ◦ inr ◦ 〈 head , in(SA)+ ◦ inl ◦ tail ◦ tail 〉 〉 }]SA.

6. Conclusion and Further Work

We presented a categorical treatment of the function definition schemes of primitive re-
cursion and course-of-value iteration and their duals. These schemes are generalizations



24 T. Uustalu and V. Vene

of more basic schemes–iteration and coiteration. While the value of an iterative func-
tion for a given argument depends solely on the values for its immediate subparts, the
value of a primitive recursive function may additionally depend on these immediate sub-
parts directly; the value of a course-of-value iterative function depends on the values for
any subparts of the argument. Dually, the argument of a coiterative function for a value
may only determine the argument for the immediate subparts of the value, whereas the
argument of a primitive corecursive function may alternatively determine these imme-
diate subparts directly; the argument of a “cocourse-of-argument coiterative” function
may determine the arguments for any subparts of the value. Primitive (co)recursion and
course-of-value (co)iteration, being more “liberal” than (co)iteration, make it easier to
write programs and to prove properties about programs.

Codatatypes and the associating notions such as coinduction and bisimulation are used
widely in the analysis of processes specifiable by transition systems or state machines
(Jacobs and Rutten, 1997). If processes are understood as functions from states (and,
optionally, streams of input tokens) to behaviors, sequential composition of processes
becomes a natural example of a function elegantly definable as an apomorphism, whereas
any concrete process specified by a finite transition or state machine becomes a natural
example of a function elegantly definable as a futumorphism. This leads us to believe that
apomorphisms and futumorphisms may turn out viable constructions in the modelling of
processes. To check out this conjecture is one possible direction for continuing the work
reported here.

Acknowledgement. The work reported here was partially supported by the Estonian
Science Foundation grant no. 2976. The diagrams were produced using the Xy-pic macro
package by Kristoffer H. Rose.

References

Bird, R. S. (1987). An introduction to the theory of lists. In M. Broy (Ed.), Logic of Programming and Calculi
of Discrete Design (NATO ASI Series F), Vol. 36. Springer-Verlag, Berlin. pp. 5–42.

Fokkinga, M. M. (1992). Law and Order in Algorithmics. PhD thesis, University of Twente. iv+161 pp.
Geuvers, H. (1992). Inductive and coinductive types with iteration and recursion. In B. Nordström, K. Petters-

son, and G. Plotkin (Eds.), Informal Proceedings of the Workshop on Types for Proofs and Programs, Båstad,
June 1992. Dept. of Computer Sciences, Chalmers Univ. of Technology and Göteborg Univ. pp. 193–217.
URL ftp://ftp.cs.chalmers.se/pub/cs-reports/baastad.92/.

Grundy, J. (1996). A browsable format for proof presentation. Mathesis Universalis, 2.
URL http://saxon.pip.com.pl/MathUniversalis/2/.

Hagino, T. (1987). A Categorical Programming Language. PhD thesis CST-47-87, Univ. of Edinburgh.
vii+180 pp.

Jacobs, B., and J. Rutten. (1997). A tutorial on (co)algebras and (co)induction. Bulletin of the EATCS, 62,
222–259.

Lambek, J. (1968). A fixpoint theorem for complete categories. Mathematische Zeitschrift, 103, 151–161.
Malcolm, G. (1990). Data structures and program transformation. Science of Computer Programming, 14(2–3),

255–279.
Meertens, L. (1992). Paramorphisms. Formal Aspects of Computing, 4(5), 413–424.
Turner, D. A. (1995). Elementary strong functional programming. In P. H. Hartel and R. Plasmeijer (Eds.),

Proceedings of the 1st Internat. Symp. on Functional Programming Languages in education, FPLE’95,
(Lecture Notes in Computer Science), Nijmegen, Dec. 1995, Vol. 1022. Springer-Verlag, Berlin. pp. 1-13.



Primitive (Co)Recursion and Course-of-Value (Co)Iteration, Categorically 25

Uustalu, T., and V. Vene. (1997). A cube of proof systems for the intuitionistic predicate µ-,ν-logic. In
M. Haveraaen and O. Owe (Eds.), Selected Papers of the 8th Nordic Workshop on Programming Theory,
NWPT’96, Oslo, Dec. 1996, Research Report 248, Dept. of Informatics, Univ. of Oslo. pp. 237–246.

Vene, V., and T. Uustalu. (1998). Functional programming with apomorphisms (corecursion). Proceedings of
the Estonian Academy of Sciences: Physics, Mathematics, 47(3), 147–161.

Vesely, P. (1997). Typechecking the Charity term logic. Unpublished notes. 21 pp.
URL http://www.cpsc.ucalgary.ca/projects/charity/home.html.

Vos, T. (1995). Program Construction and Generation Based on Recursive Types. MSc thesis INF/SCR-95-12,
Univ. of Utrecht. 235 pp.

T. Uustalu received the MSc degree in system and computer sciences from the Tallinn
Technical University in 1992 and the PhD degree in computer science from the Royal In-
stitute of Technology, Stockholm, Sweden, in 1998. Presently, he is a senior lecturer at
the Royal Institute of Technology. His scientific interests include structural proof theory
and theorem proving, semantics of programming languages, program verification, trans-
formations, and construction, philosophy of logic and computing.

V. Vene obtained the MSc degree in computer science from the University of Tartu,
Estonia, in 1994. He is a researcher and PhD student in computer science at the University
of Tartu. His scientific interests are programming language design and implementation,
functional programming, type theory, semantics based program manipulation, category
theory.



26 T. Uustalu and V. Vene

Primytivioji (ko)rekursija ir reikšmi ↪u srautu valdoma (ko)iteracija
kategorij ↪u teorijos požiūriu

Tarmo UUSTALU, Varmo VENE

Taikant kategorij ↪u teorijos aparat ↪a tipizuotam (totaliajam) funkciniam programavimui, duomen ↪u
tipai dažniausiai modeliuojami inicialinėmis algebromis, kodo tipai – baigtinėmis ko-algebromis.
Bazinės iteracinės ir ko-iteracinės funkcij ↪u apibrėžties schemos modeliuojamos konstrukcijomis,
vadinamomis katamorfizmais ir anamorfizmais. Primityvioji rekursija modeliuojama paramor-
fizmu. Straipsnyje išnagrinėta dualioji apomorfizmo konstrukcija ir pavyzdžiais pademonstruota,
kad primytivioji ko-rekursija taip pat yra naudinga funkcij ↪u apibrėžties schema. Be to, išnagrinėtos
dvi naujos konstrukcijos, histomorfizmai ir futumorfizmai, kuriomis aprašomos didelės galios
reikšmi ↪u srautu valdomos iteracinės schemos.


