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Abstract. This article gives ideas for developing statistics software which can work without user
intervention. Some popular methods of bandwidth selection for kernel density estimation (the near-
est neighbour, least squares cross-validation, “plug-in” technique) are discussed. Modifications of
the cross-validation criterion are proposed. Two-stage estimators combining these methods with
multiplicative bias correction are investigated by simulation means.
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1. Introduction

This work is related to statistics software developing problems of nonparametric distri-
bution density estimating. Procedures where estimation parameters are calculated from
the sample and not chosen by user becomes more and more popular. The computation
of such procedures is longer but it is not important because of fast computers charac-
teristics improvement. The priority is facilitation of user work. Besides that, such soft-
ware can use people without special mathematical education. This article is related with
paper by Jakimauskas (1997) from this point of view. Kernel density estimator is per-
haps the most popular nonparametric density estimation method. This method is widely
described in books by Prakasa Rao (1983), Silverman (1986) and Devroye and Györfi
(1985). Although this method has been used for several decades, attention of theorists
and practicians is still focused on it. New modifications of well known procedures have
been proposed and investigated seeking for universal and adaptive estimator. A term “sec-
ond generation methods” is even used in the survey by Jones et al. (1996). A bandwidth
selection method with good asymptotic efficiency in the class of all densities in meaning
of L1 error is proposed in article by Devroye and Lugosi (1995). An interesting bias re-
duction procedure is investigated in paper by Jones et al. (1995). This procedure is easy
to compute and analyze. Locally adaptive bandwidth function selection based on popular
cross-validation method and splines is discussed in paper by Fan et al. (1996).

This article discusses nonparametric distribution density estimation in the case where
the unknown density is a mixture of densities with different smoothness. An example of
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such densities is a Gaussian mixture with different variance component model in clus-
tering analysis discussed in paper by Rudzkis and Radavičius (1995). It’s expedient to
use local smoothing in this situation. Several density estimation procedures combining
variuos ideas presented below are discussed. Simulation results are given.

2. Methods and Motivations

Let X1, X2, . . . be i.i.d. with the distribution density function f(x), and X =

(X1, . . . , Xn) a sample. The kernel density estimator f̂h is defined as

f̂h(x) = n−1
n∑
t=1

Kh(Xt − x), (1)

where Kh(y) =
1

h
K
(y
h

)
.

In the expression above, h = h(x,X) is the bandwidth, K(y) is the kernel function
satisfying the condition

∫
K(y)dy = 1. We assume that K is a symmetric, non-negative

function supported on [−1, ·1].
The main problem in practical density estimation is selection of h. Usually h selection

is based on the analysis of smoothness of f . Here we discuss some h selection ideas.
We use a term “parameter h” if the bandwidth is independent of x, and “function h” if
h = h(x).

2.1. Asymptotic Analysis and “Plug-in” Technique

Recall some well known formulas when h is independent of the sample, i.e., h = h(x, n).
The bias of estimator (1) is

bh(x) = Ef̂h(x) − f(x) =

∫
[f(x+ hy)− f(x)]K(y)dy, (2)

and the variance

σ2
h(x) = Df̂h(x) =

1

nh

∫
K2(y)f(x+ hy)dy −

(
Ef̂h(x)

)2

n
. (3)

Hereafter, the integration interval is (−1, ·1) if not specified otherwise. Usually the band-
width h is selected so that it minimizes the mean square error. Since E(f̂h(x)−f(x))2 =

b2h(x) + σ2
h(x), denote

hopt(x) = arg min
h

(
b2h(x) + σ2

h(x)
)
. (4)
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If the sample size n is large, then it is natural to analyze asymptotic expressions besides
(4). Let n→∞, and the bandwidth h = h(x, n) satisfies well known consistency condi-
tions

h→ 0, nh→∞. (5)

Suppose that f is continuous. Then (3) could be written

σ2
h(x) =

c2f(x)

nh
+ o
( 1

nh

)
, c2 = ‖K‖22, (3’)

and if the second density derivative f ′′ is continuous, then

bh(x) =
c1f
′′(x)h2

2
+ o(h2), c1 =

∫
y2K(y)dy. (2’)

We denote by ‖· ‖p a norm in the function space Lp. If f(x) 6= 0 and f ′′(x) 6= 0,
then, from (2’) and (3’), we obtain an expression of an asymptotically optimal bandwidth
function h

hAS(x) =
( c2f(x)

c21(f ′′(x))2n

)1/5

, (6)

and optimal bandwidth parameter h

hAS =
( c2
c21‖f ′′‖22n

)1/5

. (7)

The popular usage of expression (7) in statistical density estimation is “plug-in” esti-
mators. The parameter h is calculated by plugging an estimate of the unknown ‖f ′′‖2 in
expression (7). If the kernel K has the second derivative, f ′′ estimate is obtained analo-
gously to (1)

f̂ ′′∆(x) = n−1
n∑
t=1

K ′′∆(Xt − x), (8)

where the bandwidth ∆ is usually selected to be larger than the expected hAS value.
Survey (Jones et al., 1996) proposes ∆ = ∆(h) selection method based on f ′′′ statistical
analysis and approximation of the density f by a parametric family of densities. It’s then

recommended to solve the equation h5 =
c2

c21‖f ′′∆h‖22n
. Paper by Jones et al. (1996) gives

very good results in favour of this method. Unfortunately, when the smoothing bandwidth
selected locally, i.e., using (6) instead of (7), the method proposed in paper Jones et al.
(1996) gives seemingly good practical results only in the case of very large sample sizes
as rather accurate estimator of the third derivative f ′′′(x) is needed.

To our mind, there is no need of using asymptotic expression (2’) when selecting the
kernel bandwidth h(x). It’s better to select the bandwidth h(x) by estimating the bias
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bh(x) directly. The “plug-in” estimator studied in this paper is obtained from expression
(4) after substitution of bh(x) and σ2

h(x) by their estimates

σ̂2
h(x) =

c2f̂h(x)

nh
(9)

and

b̂h,∆(x) =

∫ [
f̂∆(x+ hy)− f̂∆(x)

]
K(y)dy, ∆ = ∆(h). (10)

Thus we define the “plug-in” bandwidth function h̃PI(x) as follows.

h̃PI(x) = arg min
h

[
σ̂2
h(x) + b̂2h,∆(h)(x)

]
. (11)

Calculation of the function ∆(h) is based on asymptotical analysis. Under condition (5),
estimation of bh(x) for large n is equivalent to estimation of f ′′. It’s recommended to
use a larger bandwidth for estimation of the density derivatives than for estimation of the
density itself (see, e.g., Jones et al., 1996), i.e., ∆(h) > h. In this case, asymptotical
expressions are readily obtained

Db̂h,∆(x) =
f(x)c21c3

4

h4

n∆5
+ o
( h4

n∆5

)
, c3 = ‖K ′′‖22, (12)

and

Eb̂h,∆(x) = bn(x) + o(h2), if ∆→ 0. (13)

Expressions (12) and (13) are derived by analogy with (3’) and (2’) (Silverman, 1986).
It’s important that

Db̂h,∆(x) 6 b2h(x). (14)

In case h(x) is close to hAS(x), the condition

∆(h) > c4h, c4 =
(c3c21
c2

)1/5

(17)

follows from (2’), (6), (12) and (14). We analyzed the density estimator defined by (1)
and (11) in the case where

∆(h) = αc4h. (18)

This estimator depends on the parameter α that can be calculated using cross-validation
method descussed below.
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2.2. Cross-Validation Method

Cross-validation is a very popular method used to choose parameters of statistical esti-
mators. The estimation performance criterion is the integrated mean square error.

An estimate f̂ is optimal if it minimizes

Q(f̂)→ min, where Q(f̂) = E‖f̂ − f‖22 − ‖f‖22. (19)

Let F be the distribution function of a random variableX . Then

Q(f̂) = ‖f̂‖22 − 2

∫
f̂(x)dF (x). (20)

An estimate of the functionalQ is obtained from (20) after substitutingF by the empirical
distribution function

Q̂(f̂) = ‖f̂‖22 −
2

n

n∑
t=1

f̂(Xt|t), (21)

where f̂(x|t) denotes the value of the estimate calculated using the sample data with Xt

removed. Such a modification reduces the bias of the estimate Q̂. The essence of cross-
validation method is to choose the density estimator parameters in such a way that the
requirement

Q̂(f̂)→ min (22)

is fulfilled. Note that theorists recommend to use the smoothed empirical distribution
function to estimate the functional Q (smoothed cross-validation). Empirical research
shows that the largest local minimizer gives better performance than the global minimizer
(Jones et al., 1996).

Selection of the bandwidth h(x) using the cross-validation idea has been investigated
in paper by Fan et al. (1996). This paper proposes the following algorithm:

1) fix argument x grid x1, . . . , xp;
2) the function h(x) is defined as the third-order spline with the nodes (h1, x1), . . . ,

(hp, xp), i.e., we have h(x) = h(x, h1, . . . , hp);
3) h1, . . . , hp are chosen to minimize Q̂(f̂).
We denote by h̃CV (x) the bandwidth h(x) calculated using this algorithm. If p = 1

we have the parameter hCV calculated using the cross-validation approach.

2.3. The Nearest Neighbour Method

The nearest neighbour method is one of the oldest methods of local bandwidth h(x)

selection.
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An integer k < n is chosen (for example k ∼= n2/3). We denote ρk(x) =

min
{
a :
∑n
t=1 1{|Xt−x|6a} = k

}
, i.e., ρk(x) is the distance from x to the kth nearest

sample element. The bandwidth is defined as follows

h̃NN (x) = ρk(x). (23)

The relative error of the estimate f̂
h̃NN

(x) defined by (1) and (23) is δ(x) =

f̂(x)− f(x)

f(x)
. It is independent of the scale parameter, and its variance is asymptoti-

cally independent of x, Dδ(x) =
c2
k

+ o
(1

k

)
. The bandwidth function h̃NN(x) defined

by (23) and the estimate f̂
h̃NN

(x) are unsmooth, and their construction don’t take into
consideration local smoothness of f . The nearest neighbour estimate is fully defined by
the parameter k which can be chosen using cross-validation method.

3. Modifications of the Methods

3.1. The Modification of Cross-Validation Method

As mentioned above, the risk function in cross-validation method is E‖f̂−f‖22. Unfortu-
nately, a value of this functional has linear dependency on the scale parameter. This crite-
rion suggests to construct an estimate of the density in such a way that the relative errors
would be small in the region where the density values are large. For example, if we have
a mixture of the Gaussian densities with different means and variances σ2

1 � σ2
2 , then

usage of this criterion gives much larger relative errors of estimation of the first compo-
nent in comparison with those of the second component. The criterion based on the mean
losses in space L1 E‖f̂ − f‖1 does not have this drawback, but statistical estimation of a
value of such losses causes problems. A good way out of this situation is to define an error

Q∗(f̂) = E
∥∥∥ f̂ − f√

f

∥∥∥2

2
− 1 instead of (19). Note that a value of the functionalQ∗ is inde-

pendent of scale. If the density is defined parametrically f(x) ∈ {f(x, θ), θ ∈ Θ} then a
pseudoestimate θ̂ = arg min

θ
Q∗(f(·, θ)) of the parameter θ is asymptotically equivalent

to the maximum likelihood estimate (under natural conditions). It is an important argu-
ment to use the functionalQ∗. It is easy to calculate a statistical estimate ofQ∗. Let f̂0 be

some fixed density estimate and let g(x) = f̂0(x) +
ε√

n max
i,j=1,n

|Xi −Xj |
, where ε > 0

is a parameter. Then

Q̂∗(f̂) =

∫ +∞

−∞

f̂2(x)

g(x)
dx− 2

n

n∑
t=1

f̂(Xt|t)
g(Xt)

. (24)

We define the modified cross-validation (MCV) method analogously as in (22) by substi-
tuting of Q̂ by Q̂∗.
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3.2. “Plug-in” and the Nearest Neighbour Methods Modifications

The bandwidth functions h̃PI(x) and h̃NN (x) are not sufficiently smooth, thus it is nat-
ural to use additional smoothing, by treating h̃(x) as noisy regression functions. The
simplest way is to use the same kernel as in formula (1)

hPI(x) =
n∑
t=1

h̃PI(Xt)Kh(Xt − x)
/ n∑
t=1

Kh(Xt − x), h = h̃PI(x). (25)

We define hNN(x) analogously. We recomend to use the MCV method to calculate the
parameters α and k used in the definition of hPI and hNN .

Simulation results show that better performance is obtained using not the estimate
(10) of the bias bh but its modification∣∣∣̂bh,∆(x)

∣∣∣ =

∫ 1

0

∣∣∣f̂∆(x+ hy)− f̂∆(x− hy) + 2f̂∆(x)
∣∣∣K(y)dy (25’)

in expression (11). When the sample size n increases, estimates (10) and (25’) are asymp-
totically equivalent. Statistics (25’), however, is more stable.

3.3. Multiplicative Bias Reduction

This bias reduction method is described in paper Jones et al. (1995). Let f̂(x) be an
estimate defined by (1) and h(x) a bandwidth function. We denote

f̂∗(x) =
f̂(x)

n

n∑
t=1

Kh(Xt − x)

f̂(Xt)
. (26)

We define f̂∗PI(x) and f̂∗NN(x) using (26) with f̂ = f̂hPI and f̂ = f̂hNN respectively.
Note that the bias correction usually increases the variance of estimate. Empirical

analysis shows that modification (26) decreases smoothness of estimate. It’s natural to
use an extra smoothing procedure

̂̂
f∗(x) =

n∑
t=1

Kḣ(Xt − x)f̂∗(Xt)
/ n∑
t=1

Kḣ(Xt − x), (27)

where ḣ(x) = βh(x). The parameter β could be calculated using MCV method or simple
taken β = 1.

4. Simulation Results

The “plug-in” and the nearest neighbour estimators and parameter selection using cross-
validation and MCV has been explored. The density estimate modifications defined by
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(25)–(27) have also been studied. We give preliminary results only. Comprehensive re-
search results including analysis of the estimate modifications proposed in paper by Fan
et al. (1995) will be published in a sequel of this paper.

We give the concrete simulation description. Estimation accuracy was tested in the
metrics of the L1 space ∆1(f̂) = ‖f̂ −f‖1. We give errors in the metrics of the L2 space
∆2(f̂) = ‖f̂ − f‖2, too. The sample X1, . . . , Xn has the distribution density

f(x) = pϕ1(x) + (1− p)ϕ2(x), (28)

whereϕi is the density of Gaussian distribution N(mi, ·σi). Values of parameters σi were
chosen significantly different, because only in these cases where smoothness properties
are dependent on x values it is expedient to use estimates with the bandwidth dependent
on x. We used the Parzen kernel

K(u) =


1− 6u2 + 6|u|3, |u| < 1/2,
2(1− |u|)3, 1/2 6 |u| < 1,
0, |u| > 1,

(29)

which possesses two derivatives.
The “plug-in” and the nearest neighbour estimates were also compared with the pseu-

doestimate calculated using the theoretically optimal bandwidth function hopt(x) defined
by (9)–(11) with the density estimates substituted by true density. They were also com-
pared with the cross-validation estimate with the bandwidth hCV which gives good re-
sults in the space L2 metrics. The errors of these estimates are given in Table 1.

The results show that the nonmodified “plug-in” estimator gives smaller errors in
metrics L1 than the cross-validation and the nearest neighbour method. Cross-validation
gives better results in metrics L2. Investigations show that the nearest neighbour method
is inaccurate in the edge of the density where it gives too large value of the bandwidth.
Note that adaptive estimates give better results in comparison with the fixed bandwidth
estimates in the case where component variances σ2

i are significantly different.
It’s important that a density estimate is not only accurate in the meaning of any met-

rics, but also gives a good visual result. Therefore the estimates were compared visually,
too. We present the figures of the mentioned estimates which were calculated using the
following mixture: p = 0.5, ϕ1 = N(0, ·1), ϕ2 = N(20, ·6).

The figures show that the modified “plug-in” method restores the density shape much
better than other methods. Fig.1 shows that the fixed bandwidth estimate adapts to the
cluster with the smaller variance, but gives an inaccurate estimate of the other cluster. As
mentioned above, modifications (25)–(27) were analyzed also. Monte-Carlo simulations
showed that the additional bandwidth smoothing procedure defined by (25) decreases the
error of both the nearest neighbour (by 2–10%) and “plug-in” estimates (by 10–20%).
Multiplicative bias reduction was the second procedure applied to density estimators.
This modification decreases the “plug-in” estimate error up to 20%, but it is unfit for
the nearest neighbour estimate and increases error up to 1.5 times. The reason of this is
unsmoothness of the nearest neighbour estimate (see Fig. 4). Multiplicative bias correc-
tion makes the estimate even more unsmooth. Therefore such a correction is unsuitable
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Table 1

Simulation results

Metrics Theoretical Fixed bandwidth The nearest “Plug-in” Modified
pseudo- cross-validation neighbour estimate “plug-in”
estimate estimate estimate estimate

p = 0.5, ϕ1 = N(0, ·1), ϕ2 = N(15, ·3), n = 500

L1 0.08971 0.12208 0.14253 0.12674 0.05953

L2 0.02580 0.03387 0.05075 0.03950 0.01831

p = 0.5, ϕ1 = N(0, ·1), ϕ2 = N(20, ·6), n = 500

L1 0.09655 0.15690 0.15515 0.13882 0.06042

L2 0.02556 0.03613 0.05305 0.04414 0.01776

p = 0.5, ϕ1 = N(0, ·1), ϕ2 = N(35, ·10), n = 500

L1 0.09049 0.19022 0.16643 0.13259 0.06343

L2 0.02288 0.03587 0.04263 0.03941 0.01706

p = 0.5, ϕ1 = N(0, ·1), ϕ2 = N(20, ·6), n = 2000

L1 0.054113 0.09006 0.11379 0.08827 0.05096

L2 0.01319 0.01940 0.02657 0.02523 0.01650

for them. Smoothing of the “plug-in” estimate defined by expression (27) was applied
taking into consideration the decrease of smoothness that had been noticed in “plug-in”
estimate after multiplicative bias reduction. f̂ smoothing procedure decreased the error
of both the nearest neighbour and “plug-in” methods, but this decrease didn’t compen-
sate the increase of the error after multiplicative bias correction for the nearest neighbour
estimate.

After all these modifications the nearest neighbour method was insignificantly im-
proved in meaning of L1 error but became worse in meaning of L2. All modifications
decreased the error of the “plug-in” estimate. Errors became close to the theoretical pseu-

Fig. 1. Cross-validation fixed bandwidth distribu-
tion density estimate.

Fig. 2. “Plug-in” estimate.
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Fig. 3. “Plug-in” estimate after smoothing and
multiplicative bias correction.

Fig. 4. The nearest neighbours estimate.

doestimate errors.
From the practical point of view it is very important to compare the methods with

respect to the computation time. The nearest neighbour method didn’t give good results
but this method is very fast. The “plug-in” method is 20–100 times slower. This ratio
of the computation time increases if the sample size grows. The fixed bandwidth cross-
validation method needs less time than the “plug-in” estimate, but when the sample size
is large it becomes much slower than the “plug-in” method.

Some estimate aspects that need improvement were noticed during the simulation
tests. First of all, it is the choice of the parameters k and α. The tests showed that
cross-validation method didn’t give an optimal k value. A result of this is increase of
the error of the nearest neighbour method by 5–20%. MCV method didn’t yield an op-
timal value, too. We used the optimal value of the “plug-in” method parameter α equal
to 1, because the cross-validation and MCV methods required a lot of computing time
and gave the value close to 1. The constraint problem has been encountered during the
numerical calculations. It’s necessary to have an interval [hmin(x), ·hmax(x)] contain-
ing an optimal bandwidth value. The “plug-in” estimate becomes unstable if we use too
wide interval. This interval was chosen using the results of the nearest neighbour method
hmin(x) = ch̃NN (x), hmax(x) = ch̃NN (x).

5. Conclusions

The nearest neighbour method is fast and can be used to get a preliminary estimate. This
method, however, needs a modification to give an more accurate results in the edge of the
density and to adapt to local smoothness of the density.

The “plug-in” estimate and its modifications are accurate density estimates. All the
modifications improved estimation performance in the cases investigated by the authors.
The estimate is to be used in such problems where accurate probability density estimation
is very important.
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Apie lokal ↪u glodinimo pločio parinkim ↪a, vertinant
pasiskirstymo tank ↪i

Rimantas RUDZKIS, Mindaugas KAVALIAUSKAS

Darbe nagrinėjami pasiskirstymo tankio branduoliniai statistiniai ↪iverčiai. Aptariami keli popu-
liarūs branduolio pločio lokalaus parinkimo būdai (artimiausi ↪u kaimyn ↪u, “cross-validation", “plug-
in"). Pasiūlytos ši ↪u metod ↪u modifikacijos, papildomai panaudojančios pločio funkcijos ↪iverčio
glodinim ↪a bei tankio ↪iverčio poslinkio multiplikatyv ↪u mažinim ↪a. Pateikiami palyginam ↪uj ↪u tyrim ↪u
Monte-Karlo metodu rezultatai.


