
INFORMATICA, 1998, Vol. 9, No. 4, 437–448 437
 1998 Institute of Mathematics and Informatics, Vilnius

Parallel Implementation of a Generalized Conjugate
Gradient Algorithm

Jonas KOKO, Aziz MOUKRIM
ISIMA, Université Clermont–Ferrand II
Campus des Cézeaux – BP 125
63173 Aubière cedex, France.
e-mail: koko@sp.isima.fr

Received: February 1998

Abstract. This paper presents a parallel version of a Generalized Conjugate Gradient algorithm
proposed by Liu and Story in which the search direction considers the effect of the inexact line
search. We describe the implementation of this algorithm on a parallel architecture and analyze the
related speedup ratios. Numerical results are given for a shared memory computer (Cray C92).

Key words: parallel algorithms, unconstrained high-dimensional optimization, conjugate gradient
methods, parallelism, shared memory computer.

1. Introduction

Conjugate gradient methods have been used successfully for the solution of unconstrained
high–dimensional minimization problems. When exact line searches are used, conjugate
gradient methods give finite termination for quadratic problems. Since the exact line
search can cause excessive computational effort, conjugate gradient algorithms are gen-
erally used with an inexact line search, Fletcher and Reeves (1964), Polak and Ribière
(1969), Shanno (1985), Touati–Ahmed and Storey (1990).

Liu and Storey (1991) proposed a new conjugate gradient algorithm in which the
search direction considers the effect of the inexact line search. They proved that the
method is globally convergent when the function to be minimized is twice continuously
differentiable with a bounded level set.

In this paper we describe parallel versions of two conjugate gradient algorithms, LSA
and LSH, proposed by Liu and Story. Whereas algorithm LSH is based on the computa-
tion of the Hessian matrix at each iteration, algorithm LSA uses some form of finite dif-
ference approximation in order to avoid the computation and the storage of the Hessian
matrix. Numerical results for an implementation on a shared memory computer (Cray
C92) are given. Then, we evaluate the advantages of parallel versions by computing the
related speedup ratios.

438 J. Koko and A. Moukrim

2. Generalized Conjugate Gradient

We are concerned with unconstrained minimization problem

(P) min
x∈Rn

f(x)

for a twice continuously differentiable function f with a bounded level set.
Several algorithms for solving (P) use the concept of conjugacy. The classical conju-

gate gradient algorithms aim is to solve (P) by a sequence of line searches

xk+1 = xk + tkdk, k = 1, 2, . . . ,

where tk is the step length and dk, the search direction, is of the form

dk = −gk + βkdk−1,

with gk = ∇f(xk). There are various formulas for computing the coefficient βk; see, e.g.,
Fletcher and Reeves (1964), Polak and Ribière (1969) or Gilbert and Nocedal (1992).

Liu and Storey (1991) proposed a new conjugate gradient algorithm in which the
search direction dk takes into account the effect of the inexact line search. The search
direction of the conjugate gradient algorithm of Liu and Storey is of the form

dk = −αkgk + βk dk−1, αk > 0.

Coefficients αk and βk are given by

αk =
[
vk(gTk gk)− wk(gTk dk−1)

]
/Dk, (1)

βk =
[
wk(gTk gk)− uk(gTk dk−1)

]
/Dk, (2)

Dk = ukvk − (wk)2, (3)

where

uk = gTkHkgk, vk = dTk−1Hkdk−1, wk = gTkHkdk−1. (4)

The formal description of the conjugate gradient algorithm LSH of Liu and Storey (1991)
which uses the computation of the Hessian matrix is as follows.

Algorithm LSH

Step 1. k← 0, d0 = ∇f(x0).

Step 2. Line search
Compute the steplength tk and set xk+1 = xk + tk dk,
k ← k + 1.

Parallel Implementation of a Generalized Conjugate Gradient Algorithm 439

Step 3. If ||gk|| < ε then STOP.

Step 4. Compute uk, vk and wk with (4).

Step 5. If uk > 0, vk > 0, 1− w2
k/(ukvk) > 1/(4R) and

(uk/||gk||2)/(vk/||dk−1||2) 6 R, R > 0, then
Compute αk, βk with (1)–(3).
dk = −αkgk + βk dk−1. Go to Step 2

else x0 ← xk . Go to Step 1.

In order to avoid the computation of matrices, Liu and Storey (1991) proposed com-
puting uk, vk and wk in Step 4 of algorithm LSH using finite–difference approximation.
We call this version algorithm LSA. It is only different from LSH in Step 4 which is
changed as follows.

uk = gTk
(
∇f(xk + γkgk)− gk

)
/γk, (5)

vk = dTk−1

(
∇f(xk + δkdk−1)− gk

)
/δk, (6)

wk = gTk
(
∇f(xk + δkdk−1)− gk

)
/δk, (7)

where δk and γk are suitable small positive numbers. This requires the storage of 5 vectors
of length n.

Let φ be the real–valued function given by

φ(t) = f(xk + tdk), t > 0.

Then the first order derivative of φ is given by

φ′(t) = ∇f(xk + tdk)T dk.

The conjugate gradient algorithm of Liu and Storey converges under the line search con-
ditions

φ(tk)− φ(0) 6 σ1tk∇f(xk)T dk, 0 < σ1 < 1/2, (8)

|φ′(tk)| 6 −σ2∇f(xk)T dk, 0 < σ1 < σ2 < 1. (9)

The step length tk is determined by a line search algorithm. The formal description of a
line search algorithm is as follows, Lemarechal (1981).

1. Initialization: tl ← 0, tr ← +∞.
Choose t > 0.

2. Compute φ(t) and φ′(t)
If φ(t) − φ(0) 6 σ1 t φ

′(0) then
If |φ′(t)| 6 −σ2φ

′(0) then tk ← t, STOP.
Else

t is too small, tl ← t.

440 J. Koko and A. Moukrim

Compute a new t by interpolation over (tl, 10tl).
Else

t is too large, tr ← t.
Compute a new t by interpolation over (tl, tr).

3. Go to 2.

3. Parallel Implementations

Many studies have been devoted to the construction of unconstrained optimization al-
gorithms for minimizing differentiable nonlinear functions on computers with parallel
processors. The main idea in these algorithms is to evaluate simultaneously the func-
tion and its gradient at different points. This strategy is well suited for a SIMD (single
instruction-multiple data stream) multiprocessor. In the well known Newton or quasi–
Newton algorithms, the search direction dk at the kth iteration is constructed through the
following relation

dk = −Hk · gk,

where Hk is computed using
(i) parallel finite–difference approximation in the case of Newton algorithms

Lootsma and Ragsdell (1988), Conforti and Musmanno (1993);
(ii) parallel updating formulas in the quasi–Newton case Laarhoven (1985), Schnabel

(1987).
In both cases, matrix Hk must be stored. Consequently, the use of these methods is

limited to middle–size problems, due to storage requirements. In this section, we propose
parallel versions of Liu and Storey algorithms LSH and LSA.

3.1. Algorithm PLSH

The parallelization of algorithm LSH is based on the parallel finite–difference approxi-
mation of Hessian Hk in order to compute uk, vk and wk defined in (4), without storage
of matrices. In algorithm LSH, we need matrix Hk only for the computation of uk, vk
and wk through the calculation of some vector yk in the form

yk = Hk · bk,

where bk is gk or dk−1. The best opportunity for parallelism of algorithm LSH is the eval-
uation of components of matrix Hk in parallel, and then the computation of components
of vector Hkbk in parallel too. The number of available processors, denoted by p, is lim-
ited. So a suitable decomposition of the algorithm into tasks must be done. The algorithm
LSH can be viewed as composed of p tasks T1, ..., Tp. Each task Tl corresponds to the
processing of about n/p rows, denoted by Rows(Tl). To each processor πl, we assign a
task Tl. In order to avoid the computation of Hk two times, Hk · gk and Hk · dk−1 are

Parallel Implementation of a Generalized Conjugate Gradient Algorithm 441

done simultaneously. Note that for balancing the processing load between processors, if
a processor treats a row i, it also treats row n − i since generally n � p. In addition,
with the scheme described below, we do not need the storage of the Hessian matrix for
the computation of the symmetric part.

The componentHk[i, j] is computed by using the following central finite–difference
formulas. If i 6= j, then

Hk[i, j] =
(
f(xk + δie

i + δje
j)− f(xk + δie

i)− f(xk + δje
j)

+ f(xk)
) /

(δiδj), (10)

and,

Hk[i, i] =
(
f(xk + δie

i)− 2f(xk) + f(xk − δiei)
) /

δ2
i , (11)

where ei is the ith unit vector and δi a suitable, small positive number.
Since the different tasks could update concurrently vector yk, each processor πl stocks

the part of yk it computes in a local vector ylk. At the end, the different local vectors are
summed to obtain yk = Hk · bk.
Task Tl: For each row i of matrix Hk in Rows(Tl) do

For each j in 1, ..., i− 1 do
Let h be the componentHk[i, j] computed as in (10)
ylk[j] = ylk[j] + h · bk[i]

ylk[i] = ylk[i] + h · bk[j]

Let h be the componentHk[i, i] computed as in (11)
ylk[i] = ylk[i] + h · bk[i]

3.2. Algorithm PLSA

For LSA, we propose a parallel version which is similar to PLSH. The central problem is
the computation of some inner products

s = xT y

at each iteration k to obtain uk, vk or wk . An inner product s can be decomposed as
follows

s =

p−1∑
l=0

sl,

where

sl =

(l+1)np∑
lnp

x[i] ∗ y[i].

442 J. Koko and A. Moukrim

So, each processor πl computes a partial inner product sl. At the completion of the com-
putation of these different sl, (l ∈ 0, ..., p−1), they are summed to obtain s. The instanti-
ation of vector y during the computation of uk, vk orwk suppose the computation of some
gradient∇f(x) which we determine by using the central finite-difference approximation:

∇f(x)[i] =
(
f(x+ δiei)− f(x− δiei)

) /
(2δi).

3.3. Parallel Line Search

For the line search algorithm, only the computation of φ′(t), in Step 2, is parallelized.
The interpolation routine used for computing the step length tk reduces to one scalar
operation. The parallelization of the computation of φ′(t) is the same as the one used in
§3.2 for computing uk, vk and wk given by (5)–(7).

4. Experimental Results

Computational experiments have been carried out on a shared memory parallel computer
Cray C92. The test problems are given in the appendix.

The number of variables varies according to the following values: 128, 256, 800, 1000.
We have used the line search algorithm given by Gilbert and Lemaréchal (1989), with

the initial step length taken to be

t0 = 2 min{1, (f(xk)− f̃)/gTk dk},

where f̃ is the estimate of the optimal function value. For all test problems, we set f̃ = 0.
The line search parameters , in (8)–(9), are σ1 = 0.0001 and σ2 = 0.1. In all cases, the
stopping condition is

‖ gk ‖< 10−5 Max{1, ‖ xk ‖}.

The global convergence is ensured by setting R = 1010.
In order to compare the performances of the two versions PLSH and PLSA, we use

the speedup Γp defined as Γp = C1/Cp where p is the number of processors and Ci
the execution time required on i processors. For both algorithms PLSH and PLSA, we
present in Table 1 the number of iterations NI , the number of restarts NR and central
processor unit CPU with 16 processors.

Numerical experiments of parallel algorithms are satisfactory from the convergence
point of view. Both algorithms PLSH and PLSA always find a minimum. As can be seen
from Table 1, in terms of CPU time PLSA is very good compared with PLSH even for
cases where number of iterations in PLSA is greater than number of iterations in PLSH
(problems 5, 8–10). The given approximations in (5), (6) and (7) are suitable to all test
problems.

Parallel Implementation of a Generalized Conjugate Gradient Algorithm 443

Table 1

Performances of algorithms PLSH and PLSA with 16 processors

Problems PLSH PLSA

No n NI NR CPU NI NR CPU

1 800 10 0 23.94 7 0 0.13

1 1000 11 0 19.10 10 2 0.17

2 800 10 2 65.77 9 2 0.59

2 1000 14 1 137.48 14 0 1.18

3 800 32 0 378.37 14 0 1.59

3 1000 15 0 229.82 14 0 1.44

4 800 14 0 25.91 14 0 0.26

4 1000 14 0 39.38 14 0 0.31

5 800 56 16 59.99 65 19 0.78

5 1000 52 13 80.71 54 8 0.79

6 800 18 5 19.20 14 3 0.20

6 1000 15 7 21.88 13 5 0.25

7 800 24 1 269.19 14 0 0.26

7 1000 52 0 79.14 14 0 0.31

8 800 28 1 22.13 41 3 0.34

8 1000 35 2 43.94 82 1 0.80

9 800 280 0 322.57 309 5 2.99

9 1000 289 0 529.26 365 7 4.44

10 800 21 0 22.19 39 0 0.39

10 1000 65 0 380.21 21 0 0.26

Due to round-off errors on finite differences approximation, the CPU time for an iter-
ation for a dimension n can be lower than the one required for a dimension n̄ > n.

Generally the CPU time is an increasing function of the dimension n. However for
certain problems, this is not the case as in problems 1 and 7 (for PLSH algorithm). This
due to round-off errors introduced by the finite difference approximation of the Hessian
matrix. Note that this is never the case for PLSA algorithm (among the 10 test problems).

In Figures 1 and 2, we present the average speedup for PLSH and PLSA related to
test problems. The behavior of algorithms PLSH and PLSA is the same for all test prob-
lems. The speedup increases in terms of the processors number and vector length. It is
noticeable that when the dimension n is small, it is useless to consider many processors.
For example, problems with dimension n = 128 reach the maximal speedup with p = 8

in PLSH as in PLSA. This is was expected since task Tl has been constructed such that
it sequentially treats 2 × 7 = 14 rows in order to reduce the number of memory locks.
Although, problems in which the dimension n is sufficiently large, the behavior of the
speedup is almost linear in terms of the processor number.

444 J. Koko and A. Moukrim

Fig. 1. Average speedup in terms of n for algorithm PLSA.

Fig. 2. Average speedup in terms of n for algorithm PLSH.

Parallel Implementation of a Generalized Conjugate Gradient Algorithm 445

5. Conclusion

Liu and Storey have proposed a new Conjugate Gradient algorithm in which the search
direction considers the effect of inexact line search. We have proposed a parallel ver-
sion which is based on the parallel finite–difference approximation of some gradient and
Hessian matrix without storage. Computational experiments have been carried out on a
shared memory parallel computer Cray C92. We have noticed that problems in which the
dimension is sufficiently large, the behavior of the speedup is almost linear in numerical
experiments have also shown that PLSA algorithm is less sensitive to round-off errors
that PSLH algorithm.

Appendix: Test Problems

Problem 1: Extended Beale function

f(x) =

n/2∑
i=1

[(
1.5− x2i−1(1− x3

2i)
)2

+
(
2.25− x2i−1(1− x2

2i)
)2

+
(
2.625− x2i−1(1− x3

2i)
)2]

, n = 2, 4, 6, . . .

with x0 = (1, 1, . . . , 1)T .

Problem 2: Brown function.

f(x) =

n/2∑
i=1

(x2i−1 − 3)

2

+ 0.0001

n/2∑
i=1

[
(x2i−1 − 3)2 − (x2i−1 − x2i)

+ exp
(
20(x2i−1 − x2i)

)]
, n = 2, 4, 6, . . .

with x0 = (0,−1, 0,−1, . . . , 0,−1)T .

Problem 3: Cragg and Levy function

f(x) =
∑
i∈J

[
(exi − xi+1)4 + 100(xi+1 − xi+2)6 + tan4(xi+2 − xi+3)

+x8
i + (xi+3 − 1)2

]
,

where n is a multiple of 4 and J = {1, 5, 9, . . . , n− 3}, x0 = (1, 2, 2, . . . , 2).

Problem 4: Generalized tridiagonal function

f(x) = 1 +
n∑
1

∣∣ (3− 2xi)xi − xi−1 − xi+1 + 1
∣∣7/3,

446 J. Koko and A. Moukrim

with x0 = xn+1 = 0 and x0 = (−1,−1, . . . ,−1).

Problem 5: Penalty 1 function

f(x) = 10−5
n∑
i=1

(xi − 1)2 +

(n∑
i=1

x2
i − 0.25

)2

, n = 1, 2, . . .

with x0
i = i, i = 1, 2, . . . , n.

Problem 6: Penalty 2 function

f(x) =
n∑
i=1

(xi − 1)2 + 10−3

(n∑
i=1

x2
i − 0.25

)2

, n = 1, 2, . . .

with x0
i = i, i = 1, 2, . . . , n.

Problem 7: Extended Powell function

f(x) =

n/4∑
i=1

[
(x4i−3 + 10x4i−2)2 + 5(x4i−1 − x4i)

2

+ (x4i−2 − 2x4i−1)4 + 10(x4i−3 − x4i)
4

]
, n = 4, 8, . . .

with x0 = (3,−1, 0, 3, 3,−1, 0, 3, . . . , 3,−1, 0, 3)T .

Problem 8: Extended Rosenbrock function

f(x) =

n/2∑
i=1

[
100(x2i − x2

2i−1)2 + (1− x2i−1)2
]
, n = 2, 4, 6, . . .

with
x0

2i = 1.0

i = 1, 2, . . . , n/2.
x0

2i−1 = −1.2 + 0.4i/n

Problem 9: Tridiagonal function

f(x) =
n∑
i=2

[
i
(
2xi − xi−1

)2]
with x0 = (1, 1, . . . , 1)T .

Parallel Implementation of a Generalized Conjugate Gradient Algorithm 447

Problem 10: Extended Wood function

f(x) =

n/4∑
i=1

[
100(x4i−2 − x2

4i−3)2 + (1− x4i−3)2 + 90(x4i − x2
4i−1)2

+ (1− x4i−1)2 + 10(x4i−2 + x4i − 2)2 + 0.1(x4i−2 − x4i)
2

]
, n = 4, 8, . . .

with x0 = (−3,−1,−3,−1, . . . ,−3,−1)T .

References

Conforti, A., and R. Musmanno (1993). A parallel asynchronous Newton algorithm for unconstrained optimiza-
tion. Journal of Optimization Theory and Applications, 77(2), 305–323.

Dayde, M. (1989). Parallel algorithms for nonlinear programming problems. Journal of Optimization Theory
and Applications, 61(1), 23–46.

Fletcher, R., and C.M.Reeves (1964). Function minimization by conjugate gradients. Computer Journal, 7,
149–154.

Gilbert, J.C., and C. Lemarechal (1989). The modules M1QN2, N1QN2, M1QN3 and N1QN3. INRIA Technical
Report, Rocquencourt. 12pp. (in French).

Gilbert, J.C., and J. Nocedal (1992). Global properties of conjugate gradient methods for optimization. SIAM
Journal on Optimization, 2(1), 21–42.

Laarhoven, P.J.M. (1985). Parallel variable metric algorithms for unconstrained optimization. Mathematical
Programming, 33, 68–81.

Lemaréchal, C. (1980). A view of line searches. In A. Auslender, W. Oettli and J. Stoer (Eds.), Lecture Notes
in Control and Information Sciences, Vol. 30, Springer–Verlag. pp 59–78.

Liu, Y., and C. Storey (1991). Efficient generalized conjugate gradient algorithms, part 1 : theory. Journal of
Optimization Theory and Applications, 69(1), 129–137.

Lootsma, F.A., and K.M. Ragsdell (1988). State of the art in parallel nonlinear optimization. Parallel Comput-
ing, 6, 133–155.

Minoux, M. (1981). Programmation Mathématique: Tome 1. Dunod, Paris (in French).
Polak, E., and G. Ribière (1969). Note sur la convergence des méthodes de directions conjuguées, RAIRO–RO,

16, 35–43.
Schnabel, R.B. (1987). Concurrent function evaluations in local and global optimization. Computer Methods in

Applied Mechanics and Engineering, 64, 537–552.
Shanno, D.F. (1985). Globally convergent conjugate gradient algorithms. Mathematical Programming, 33, 61–

67.
Touati-Ahmed, D., and Storey C. (1990). Efficient hybrid conjugate gradient techniques. Journal of Optimiza-

tion Theory and Applications, 64(2), 379–397.

J. Koko is Assistant Professor in Applied Mathematics at ISIMA, University of
Clermont-Ferrand II (France). His research interests are conjugate gradient methods,
augemnted larangian, nonlinear orthotropic elasticity.

A. Moukrim received his PhD in computer science from University of Clermont-Ferrand
2 in 1995. He is currently with LIMOS, University of Clermont-Ferrand 2. His research
interests include parallel and distributed processing with a focus on multiprocessing
scheduling and interconnection networks.

448 J. Koko and A. Moukrim

Lygiagreti apibendrinto jungtini ↪u gradient ↪u algoritmo realizacija

Jonas KOKO, Aziz MOUKRIM

Aprašyta apibendrint ↪u jungtini ↪u gradient ↪u algoritmo, pasiūlyto Liu ir Storey, lygiagreti versija.
Šiame algoritme nusileidimo kryptis parenkama atsižvelgiant ↪i tai, kad vienmatė paieška nebus tik-
sli. Aprašyta algoritmo realizacija, skirta lygiagrečiai Cray tipo architektūrai. Analizuotas pasiekia-
mas pagreitinimas, pateikti eksperiment ↪u rezultatai.

