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Abstract. Self-tuning control with recursive identification of 
extremal dynamic systems is considered. The systems can be rep
resented by combinations of linear dynamic and extremal static 
parts, their output being disturbed by a coloured noise. Minimum
variance controllers for Hammerstein, Wiener, and Wiener-Ham
merstein-type systems are designed taking into consideration re
strictions for control signal magnitude and/or change rate. The 
estimates of unknown parameters in the controller equations are 
obtained in the identification process in the closed loop. The effi
ciency of self-tuning control algorithms is illustrated by statistical 
simulation. On the basis of worked out methods, adaptive sys
tems for optimization of fuel.combustion and steam condensation 
processes in thermal power units are developed. 

Key words: stochastic extremal systems, minimum-variance 
control, self-tuning control, recursive identification. 

Introduction. Industrial processes often involve sto
chastic dynamic systems with extremal characteristics. 

The control law synthesis for linear stochastic systems 
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is often based on the minimization of the variance of output 
signal deviations from the desired value (Astrom, 1970; Iser
mann, 1981). Such an approach deals with the design of an op
timal predictor of the controlled object's output and with the 
control strategy determination according to the equality con
dition between a corresponding number step-prediction value 
and a desired one. . 

In self-tuning control systems the unknown parameters 
are replaced by their current estimates obtained in the iden
tification process in the closed loop (Isermann, 1981, Ast
rom, 1983). 

There are some works in which minimum-variance con
trollaws for extremal dynamic systems are synthesized. Ke
viczky, Vajk, and Hetthessy (1979) proposed self-tuning mini
mum-variance control algorithms for single input-single out
put (SISO) Hammerstein-type systems, Kaminskas and Tal
lat-Kelpsa (1983) developed analogous algorithms for multiple 
input-single output Hammerstein-type systems taking into ac
count restrictions for the control signal magnitude. Works by 
Kaminskas and Sidlauskas (1984, 1985) deal with the applica
tion of minimum-variance control strategies to SISO Wiener
and Wiener-Hammerstein-type systems. Kaminskas, Tallat
Kelpsa, and Sidlauskas (1986, 1987) proposed self-tuning con
trol algorithms for systems of the latter type. 

In this paper self-tuning minimum-variance control of 
SISO stochastic extremal systems with time delay is consid
ered. The systems consist of various interconnections of linear 
dynamic and extremal static parts. System's outputs are cor
rupted by disturbances with a general fractional-rational spec
tral density. Restrictions for control signal magnitude and/or 
change rate are taken into account. 

Problem statement. Discrete-time extremal dynamic 
systems are considered with an observed output signal Yt, de-
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Yt = W2(z-1; ,8)f(Vt; 8) + H(z-l; h)~t, 

Vt - W1(z-1;a)z-T Ut , 
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(1) 

(2) 

where Ut is an observed input (control) signal; ~t - an un
observed white noise sequence with a zero mean and a finite 
variance O'i ; . 

(3) 

is an extremal characteristic of the static element with param
eters 8T = (BI,B2)' B2 =I 0; 

(4) 

(5) 

np 

-1 1 + L: Pi Z - i 
H(Z-l. h) = P(z ) = i=l 

, R( -1) nr 
Z 1 + 2: ri z - i 

(6) 

i=1 

are fractional-rational transfer functions of linear dynamic 
parts of the control channel (WI and W2 ) and of the distur
bance channel (H) with parameters 

aT =(a1,a2, ... ,ana,bo,bl, ... ,bnb) } 

,8T=(gl,92, ... ,gng ,do,d1 , ••. ,dnJ; (7) 

h T = (rI, r2, ... , r nr , PI, P2, ... , Pn p ) 
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Fig. 1. Stochastic extremal systems of 'Wiener-Ham
merstein (a), Hammerstein (b), and \Viener (c) 
types. 
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z-Z is an i-step backward time-shift operator; T represents 
pure delay of the system; t is a time inde=$; T denotes trans
position. 

The equations (1 )-( 3) specify the most general class of 
stochastic extremal systems with the extrernal static element 
standing between two linear dynamic parts and the system's 
output being disturbed by a coloured noise with a general 
fractional-rational spect'ral density (see Fig. 1, a). Such sys
tems are usually called stochastic extremal vViener-Hammer
stein-type systems. In particular cases, by removing the first 
linear dynamic part, stochastic extremal Hammerstein-type 
systems are obtained (Fig. 1, b) and, by removing the second 
linear dynamic part, we obtain stochastic extremal vViener
type systems (Fig. 1, c). 

vVe assume that the control and disturbance channels are 
stable and minimum-phase, the polynomials in the numerator 
and the denominator of each of the transfer functions (4)--(6) 
have no common roots, the linear dynamic parts in the control 
channel have a unit gain: 

(8) 

T T T T T and the parameters c = (a ,j3 ,h ,9 ) of the system 
(1)-(3) are unknown (though the orders n a , nb, n g, nd, nr, np 
and the time delay T are known). 

Let it be required to drive the system (1 )-(3) from an 
initial state (llo, Yo) to the steady state of the extremal opera
tion 

y* = f( 1l*' 9) = - 8? 1l* = arg extr f( 1l: 9) = -~ (9) , 482 ' x - 282 ' 

and to ensure the minimum variance of the errors arising due 
to uncontrolled disturbances. Th'erefore, the optimal current 
control signalllt+l at the discrete time t must be determined 
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from the condition 

where 

is the domain of admissible control values characterized by re
strictions for the control signal magnitude (Umin, Umax ) and/or 
change rate (l5t > 0) often arising in practice; M is the sign of 
mathematical expectation. 

The system parameters being unknown, it is impossible 
to obtain the optimal current control value (10). If the genuine 
parameters C are replaced by their current estimates ci 

T '" T '" ",T 
= (a t ,(3 t ,hi, 8 t ) determined from the condition 

(12) 

~ 1 ~ 2 
Qt(C) = t L.)Yk - Yklk-l(C)] , 

k=l 
(13) 

the self-tuning system, including control and identification al
gorithms, ca!"l provide only the minimum value of the asymp
totic variance 

where 

Ytlt-l(C) = z[l - H-1(z-1; h)]Yt-l 

+H-1(z-1; h)W2(z-1; (3)f[lV1(z-1; a)z-T Uti 8] , 
(15) 

is the optimal (in the sense of a minimum error variance) one
step ahead prediction of the output signal Yt at the discrete 
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time t -1 (Kaminskas, 1985); nc is the admissible domain for 
the parameters c, defined by stability, minimum-phase and 
unit gain conditions, Y; is the current estimate of y* obtained 
by inserting lit into (9). 

Thus, a self-tuning controller design requires two prob
lems to be solved: minimum-variance controller synthesis on 
the assumption that system parameters are known and iden
tification of the controlled system in a closed loop. 

Minimum-variance controllers. The transfer func
tion (6) of the disturbance channel can be expressed as a sum 
of two components (Astrom, 1970; Isermann, 1981): 

where 
(17) 

L( -1) 1 + 1 -1 1 -n/' Z = 0 l Z + ... + n/ Z , (18) , 

(19) 

nl = max{ nr, np - T} - 1 . (20) 

Then the output signal of the system may be represented as 

where 

Yt+r+llt = zr+l[1 - ii-1(z-l; h)]Yt 

+ ii-I (z-l; h)W2(z-l; ,8)j[WI (z-l; a )11.1+1; 0] 
(22) 
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is a (r + 1 )-step ahead optimal prediction of the output signal 
at the discrete time t; 

In accordance with (21), the control performance crite
rion (10) can be transformed into 

ne 

Qt(Ut+l) = M[Yt+r+l(C) - y*j2 + (1 + Lena~ (24) 
i=l 

Therefore, the optimal current control signal U;+l at the dis
crete time t may be determined from the condition 

Further simple transformations yield the minimum-va
riance controller equation for stochastic extremal vViener
Hammerstein-type systems (Kaminskas and Sidlauskas, 1985; 
Kaminskas, 1986): 

where 

- {y*, Yk -
- Yk+r+l!k(C), 

if k = t , 

if Ut+l 2::u;, 
if Ut+l < u;, 

if k = t - 1, t - 2, . . . , 

(26) 

(29) 
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and 
qt =zr+1 [1- H(Z-I; h)]etlt-r-I(C) 

. =zr+1 [E(z-I) - H(z-I; h)] etlt-I( c). 
(30) 

In the latter equation 

is the ( T + 1 )-step prediction error at the discrete time t - T -1, 
and 

etlt-I(C) = Yt - Ytlt-I(C) (32) 

represents the one-step prediction error at the time t ~ l. 
Introducing WI (z-I; it )= 1 into equation (27) gives us 

~ (h . v' 
Ut+1 = - 28

2 
± max{O, vd , (33) 

and (26), (33), (28)-(30) are the minimum-variance controller 
equations for extremal Hammerstein-type systems (Kamins
kas and Tallat-Kelpsa, 1983; Kaminskas, 1986). 

Similarly, in the case of W2(z-I;,8) = 1, we obtain 

1 ( ~ *) Vt = 82 qt + Yt - Y , (34) 

and therefore, (26), (27), (34), (29), (30) are the minimum-va
riance controller equations for extremal Wiener-type systems 
(Kaminskas and Sidlauskas, 1984; Kaminskas, 1986). 

The alternate sign + / - in controller equations (27),(33) 
precedes the square root operation, indicating that Ut+1 is 
obtained as the solution of a quadratic equation. The sign 
must be selected so that signal magnitude and change rate 
restricti<?ns were violated as little as possible. 
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The sequence qt is a realization of an autoregressive
moving average process because it can be defined as 

Therefore, at random discrete time moments k with Vk < 0 
the feedback is interrupted. If the restrictions (11) are not 
taken into acco1..l.nt, we have u; = Ut, and the control error 
sequence can be represented as 

- * et = Yt - Y 

Z[W2(Z-1;,8)~do] 
xf [W1(z-1; a)z-TUt _ 1 ; 8] (36) 

-y*(l - do) + H(z-l; h)et, if Vt-l < 0 , 

if Vt-l ~ 0 . 

The control error sequence in the case of a Wiener-type system 
can be expressed in a less complex form: 

If the control signal is restricted, it is impossible to obtain 
an analytical expression for control error sequence. 

Identification in the closed loop. The current esti
mates Ct, used instead of the unknown parameters c of the 
system (1)-(3) in the minimum-variance controller equations 
(26)-(30), (33), (34), are .obtained in the identification pro
cess in the closed loop by the following recursive algorithm 
(Kaminskas, 1982): 
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k _ Tt~Hl 
t+l - T 

~HITt..\t+l 

Tt+1 = [l- kt+l..\T+l]Tt, To = I, 

IIHI =IIt - kt+l..\T+lIIt - IIt..\t+lk T+l + 
+ [1 + "\:+1 IIt..\Hl] kt+lki+l' IIo = 0 

for t < n c , or 

k _ IIt..\t+l 
HI - T 

1 + ..\t+l IIt..\t+l 

. IIt+l = [I - kt+l..\T+l] IIt 
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(39) 

(40) 

(41) 

(42) 

(43) 

(44) 

for t ~ n c ; ..\t+l = V cCt+llt(Ct) is the current value of a predic
tion error CH1It(C) gradient; IHI is a scalar factor, ensuring 
the presence of an estimate trajectory within the admissible 
area f!c, as lH-atll~Ctll is the distance in the direction ~Ct 
from the point Ct to the boundary of this area; 0, I are the 
zero and identity matrices correspondingly, their dimensions 
being nc x nc; nc = na + nb + ng + nd + nr + np + 4 is 
the number of the unknown parameters; o-y is a small positive 
constant; II II is the Euclidian norm sign. 

The identification algorithm (38)-(44) is derived by 
means of the quasi-linearization of the one-step prediction er
ror (32) in (13). In this algorithm the pseudoinversion tech
nique is used at the initial steps and later, when the number 
of control steps exceeds nc , a common inversion of the corre
sponding matrices is performed. 

The admissible area nc is a set of such parameter values 
which provide stable and minimum-phase transfer functions of 
control and disturbance channels in (15) and convex charac
teristic (3). Different modifications and properties of recursive 
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Fig. 2. The diagram of self-tuning minimum-variance 
control system. 
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algorithms of the same kind as (38),(39) were considered by 
Kaminskas (1982). 

The control and identification algorithms employ the pre
diction error (32) as the input information. This property is 
illustrated by Fig. 2, where a self-tuning minimum-variance 
control system for stochastic extremal Wiener--Hammerstein
type systems is shown. 

Simulation results. Because of the nonlinear charac
teristics of the system (1 )-(3) and of the minimum-variance 
controllers, an analytical investigation of the self-tuning con
trol system properties becomes complex. For this reason, the 
efficiency of self tuning algorithms was examined by means of a 
statistical simulation using typical examples of extremal sys
tems under discussion. 

In this work the self-tuning control process is illustrated 
on the example of a stochastic extremal Wiener-Hammerstein
type system 

Yt = 1 + ~·.~z-l (2vt - vi) + 1 _ 0.~5z-1 ~t } 
(45) 

0.6 -2 . 
Vt = 1 _ 0.4z- 1 Z Ut 

The current estimates of the system parameters were calcu
lated by means of the component version of the recursive 
identification algorithm (38)-(44) with the initial zero val
ues (Kaminskas, 1982). The control signal was determined 
according to the algorithm (26)-(30) in which the unknown 
parameters were substituted by their current estimates. The 
admissible area for the control signal was 

u min=-l, u max =3, 8t =8=4. (46) 

Fig. 3 illustrates the identification process in the closed 
loop. The sign before the square root in (26}-(30) was being 
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Fig. 3. The convergence of current parameter estimates 
for the system (45) in the self-tuning control pro
cess. 

constantly alternated with the purpose of improving the con
vergence of parameter estimates (thus the informativity of the 
input (control) .signal was increased). 

In Fig. 4 the estimates of control error autocovariance 
functions are shown. Fig. 5 demonstrates the diagrams of con
trol and output signals. The stages I and II represent a self
tuning control process. At the first (initial) stage parameter 
estimation errors are large and at the second stage parameter 
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Fig. 4. The autocovariance function estimates for the 
system (45): 1 - for the white noise, 2 - for the 
disturbances at the output, 3 - for the control 
error: a - control with genuine system param
eters without restrictions (46), b - self-tuning 
control without restrictions (46), c - self-tuning 
control with restrictions (46). 

estimates are close to their genuine values in (45). The stage 
III illustrates the case of the self-tuning controller being dis
connected, i.e., the argument value u* of the extremal charac
teristic being applied to the input. Control efficiency degrades 
because the compensation of uncontrolled disturbances is ter
minated. 
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Fig. 5. Processes in the system (45) under self-tuning 
control. 

Application. The designed self-tuning control algo
rithms were applied for the optimization of fuel combustion 
and steam condensation processes in power units of a ther
mal power plant. The main characteristics of power unit sub
systems are for the most extremal. In the course of oper
ation process these characteristics change due to the ageing 
of equipment, contamination of working surfaces and under 
the influence of other uncontrolled disturbances. Therefore, it 
is possible to provide optimal operation regimes for separate 
subsystems and for the whole power unit only by applying self
tuning control. The control aim is to minimize the deviations 
of the given to a user active power from its highest possible 
value at a fixed fuel expenditure level. 

In Fig. 6 the results of a numerical experiment on self-
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Fig. 6~ The results of a numerical experiment on self-
tuning control of fuel combustion process. 

tuning control of a fuel combustion process in a power unit are 
given. The control is executed by means of changing the fan 
wings angle, influencing the oxygen concentration in smoke 
gases, the latter being considered as an input signal. The 
active power given to a user (pure power) is considered as the 
output signal. 

According to the results of the first stage of experiment 
(I), the controlled plant model from real,data is designed in 
the form of a stochastic extremal Hammerstein-type system 

Ut = 
0.16 2 

1 _ 0.83z-1 (286.8 + 3.05Ut - 3.4llt ) 

1 + 0.44z-1 

+ 1 - 0.97z-1 tt , 
(47) 

where Ut is the oxygen concentration (%); and Yt is the pure 
power (1VIVll). Off-line identification algorithms (Kaminskas, 
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1985) and pseudorandom input sequences are used for this 
purpose. 

At the second stage (II) self-tuning control of a fuel com
bustion process, described by (47), is simulat~d using a com
puter. The self-tuning control algorithms (26)-(30), (38)-(44) 
are applied. 

Conclusions. Methods for self-tuning control of SISO 
stochastic extremal systems with time delay are considered. 
The systems can be represented as various interconnections of 
linear dynamic and extremal static parts. The system output 
is disturbed by a coloured noise. The technique of minimum
variance controller synthesis for these systems, considering 
possible restrictions for control signal magnitud~ and/or chan
ge rate is presented. Parametric identification algorithms in 
the closed loop are designed to estimate the unknown param
eters in the controller equations. 

Convergence of self-tuning control algorithms is shown 
experimentally. On the basis of the proposed methods adap
tive systems for optimization of processes in power units are 
being designed. 
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