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Abstract. Principles of the framework called time series forecasting automation are presented. It is
required in processing massive temporal data sets and creating completely user-oriented forecasting
software where manual data analysis and a user’s decision-making is either impractical or unde-
sirable. Its distinct features are local extrapolation models, their active training, criterion of model
performance assessment used in adding new examples to the model training set and in deciding
on which one of a group of competing models consistent with the common training set performs
best. A generalized algorithm for local model tuning on massive data series that can be run without
human intervention is presented.
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1. Introduction

Time series are an important class of data objects. They arise in financial and scientific
applications, e.g., stock price indices, volume of product sales, telecommunications data,
audio data, environmental measurement sequences, etc.

In a typical forecasting problem, there are several important steps:
1) selecting informative inputs (in case of multivariate data) and preprocessing them

if needed (noise reduction, outlier detection, etc.);
2) identifying models applicable to the data;
3) tuning the applicable models;
4) selecting the model which is the best in forecasting test data or a group of best

models to produce averaged result.
Until recently tuning models to data was rarely done in a uniform way: after carefully
eyeballing data, analysts devised tricky techniques to build good models (to be primarily
accurate) by incorporating basic extrapolation models with methods (very specific to the
concrete data they dealt with) for treating seasonality present in data, suppressing outliers,
cleaning out noise, etc. Due to poor computation resources encouraging the practice of
"touching data with fingers", analysts had to train themselves in partly computer-aided,
however altogether manual, model preparation. The most important issue in those times
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was that all needed reasoning (e.g., which of several “competing” models to choose) was
performed perfectly: people did it themselves. The task so far was not difficult: human
intuition helped software process short series. Makridakis and Wheelwright (1978) and
Makridakis et al. (1984) gave excellent examples of this.

The event was of the great importance in the time series community – the so-called
M -competition (Makridakis et al., 1984). Its aim was to determine which of 24 popular
forecasting models are best in extrapolating 1001 series from the economy and finance
domain. The competition revealed no champion(s); its most important conclusions were:
(i) there is no model a priori best in forecasting all of the series and (ii) there is no way to
know a priori which of two models X and Y will produce better prediction. (Criteria of
prediction goodness were still being discussed then.) It goes without saying that model
preparation in the competition was performed manually thus involving a great deal of hu-
man insight. Later, another group of researchers (Poulos et al., 1987) performed a similar
competition to test among others automatic procedures of identifying and tuning some
models. The experiments showed that they produced almost as accurate predictions as
those done by human experts. To summarize, at the dawn of the industry the problem
was how to obtain useful data from short historical series and to build models as accu-
rate as possible. However, there has been developed many models and useful statistical
estimators.

Emergence of massive historical databases caused new problems. Tuning even a sin-
gle model became very time-consuming and performing the above four-step forecasting
procedure cannot be completed in acceptable time at all. Furthermore, “elder” part of the
dataset included in a model’s training set worsens forecasting models (despite from the
classical statistical viewpoint that larger training sets are preferable well applicable to
non-massive temporal data, see Fig. 1 as the dataset’s later underlying process is some-
what different from earlier one. But owing to huge size of data, manual analysis of it
to tackle these new problems is nearly always impractical. Machines learning also faced
massive data and a number of interesting techniques to treat them have been devised by
now. Of primary importance to these forecasting problems are active learning and au-
tomated learning. Briefly, contrary to passive learning in which the learner is unable to
influence its training set, active learning provides the learning algorithm with some con-
trol over which data items are used in training (Cohn et al., 1996). Finally, the notion of
goodness of time series prediction has now reached its maturity.

In data mining and machine learning communities, a number of activities of auto-
mated processing massive data remind the necessity of developing their analogy in fore-
casting temporal data. To quote only a few, a scientific data set navigation and visualiza-
tion system being developed at Carnegie Mellon University (Pittsburgh, USA) uses the
autopilot principle to automatically seek out “interesting” local subsets and “fly” to them
(Mockus et al., 1996). The framework that can be called forecasting automation must
operate in the highly constructive way peculiar to most of modern massive data analysis
software. The latter promptly provides a user with initially rough results being continu-
ously updated as the system processes more data, and makes the results accessible during
all the process of their perfection.
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Fig. 1. Performance of various models (axis Q) as functions of their training set size in processing non-massive
series.

2. Local Tuning Time Series Models

2.1. Data and Models

Time series being primarily considered in this paper are those consisting of thousands
observations, such that often fitting even a single model on it can take unacceptable long
time. Given a vector of n observations Y = {y1, . . . , yn} taken at discrete time inter-
vals, we can apply the following models implemented in a typical forecasting system to
extrapolate it:

1. regression models (univariate, multivariate, stepwise);
2. moving averages (Single Moving Averages, Linear Moving Averages);
3. exponential smoothing (Single Exponential Smoothing, Adaptive Exponential

Smoothing, Linear ES by Holt, Linear ES by Brown, Quadratic ES by Brown,
Seasonal ES by Holt-Winters, Additive Seasonal ES by Winters, Seasonal ES by
Brown-Harrison);

4. ARMA and ARIMA models (Autoregression, Generalized Adaptive Filtering,
ARARMA);

5. Other types of models, e.g., neural networks.
Some of the models, e.g., neural networks, can treat also multivariate data. It de-

mands an extra step before the model tuning for analysis, e.g., search of indicators and
determining their lags, but it does not require specific treatment in case of very extensive
data. Makridakis and Wheelwright (1978) give a review of multivariate data problems
and analysis techniques that can be performed in the automatic way.

Denote the set of implemented (possible) models as M , and the set of ones applicable
to the given vector Y as MA, MA = MA(Y ), MA ∈M . The set MA here is analogous
to the version space in machine learning.

2.2. Model Scoring and Training Set Enlargement

To provide applicable models with better performance (particularly to make them more
general) their training set should be gradually enlarged with historically earlier observa-
tions as they are obviously less valuable according to the active learning concept. The
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concept requires determining a rule of the learner’s querying new examples that will be
added to the training set. Despite there are a number of machine learning criteria to per-
form the querying, the general scheme of acquiring new examples for the model training
set in time series forecasting being proposed is as follows: examples are taken in the
retrospective order until their model performs unsatisfactorily. To be used, this scheme
needs a technique to measure performance of a prediction model. Primarily, apart from
the active learning issues, the technique is required in deciding which of two competing
models consistent with their common training set performs better.

Denote the training vector of a model from MA as YL, and its test vector as YT .
All further considerations are based on the following their mapping to Y : YL =

{yi, . . . , yp}, YT = yi, . . . , yp, . . . , yn and {yp+1, . . . , yn} is the short sub-vector of
YT comprised by observations which are not used in training a model but testing it only,
hence YL ⊂ YT ⊂ Y . Denote the vector resulting from modeling the vector YT as
ŶT = {yi, . . . , yn}.

A natural treatment of the case when tuning m on YL = Y (global fit) cannot be
completed in acceptable time is using as YL a short sub-vector of Y which makes such
a tuning possible. In other words, local fit of the model is necessary. Having at least
two competing models (comprising MA) we face a problem of selecting the best one
further referred to as the best fitted model (BFM) to serve as a current model of data
in an automated system. Generally, there are several approaches to model scoring and
separation:

• Analysis of correlation between YT and ŶT produced by each competing model,
comparing their accuracy, e.g., the MSE, and the like,
• Comparing the estimate of each model’s accuracy and its complexity: Minimum

Description Length (Rissanen, 1987) and use of information criteria (Akaike,
1973 and 1974) being widely used in pattern recognition for model analysis.

However, to use the approaches one should take into account the specificity of time series:
along with (i) maximizing the generality (as in machine learning) there is another goal –
(ii) requirements to residual autocorrelation specific to forecasting. The latter motivates
one more approach:
• Analyzing an autocorrelation statistic of residuals each model yields.
Additionally, the pure forecasting view of model performance is that ideally residuals

it yields should be a white noise process. However, the straightforward idea of measuring
a residual series’ proximity to white noise is rather hard to implement.

Insignificant residual autocorrelation indicates that a model covers all the series’ un-
derlying processes, and vice versa – high autocorrelation is the indication of a structure
in residuals not reflected by the model series (Holden et al., 1990, and Makridakis and
Wheelwright, 1978). It is of primary importance to short range forecasts.

Thus, in scoring a prediction model m of a time series tested on the vector YT , the
model quality functional should cover all their three basic aspects (accuracy, complexity,
and residual autocorrelation control):

Q(m,YT ) = Q∗(A, IC,AC), (1)
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where A is a measure of accuracy, A = A(YT , ŶT ), IC is a value of an information
criterion statistic, AC is a value of an autocorrelation statistic.

The Durbin-Watson’s statistic (Durbin and Watson, 1950) is approximately normally
distributed with mean 2 and has values in the range [0,4]:

d =

∑n
i=2(ei − ei−1)2∑n

i=1 e
2
i

, (2)

where ei = yi−ŷi. Residual covariance grows as d deviates from 2.AC can be calculated
as the proximity of d to the center of its distribution: AC = DW where

DW = 1− |d− 2|/2. (3)

Motivated by practical considerations only, better separation of competing models
can be reached by means of a model quality estimate reinforced with account of the
correlation coefficient R

YT ŶT
of the vector YT and its prediction ŶT :

Q(m,YT ) = Q∗(A, IC,AC,R
YT ŶT

). (4)

An information criterion statistic is generally a likelihood function penalized with
model complexity, e.g.,:

FPE =
n+ k

n− k −
σ2(n− k)

n
− the final prognostic error (Akaike, 1970),

AIC = n log σ2 + 2p− Akaike’s information criterion (Akaike, 1973),

HQ = n log σ2 + 2k log logn− Hannan-Quinn’s statistic

(Hannan and Quinn, 1979),

BIC = n log σ2 + k logn− Bayes’ information criterion

(Geweke and Meese, 1981),

wheren is the number of observations in a model’s test vector,σ2 is the standard deviation
of residuals, and p is a model’s parameter count.

But in an all-purpose forecasting system,MA can contain models from different “fam-
ilies”, e.g., regressions and ARIMA-like models, therefore direct comparison of their
quality values calculated as functions of IC is incorrect. The set of models MA appli-
cable to the series Y can be represented as

⋃f
i=1 Mi where f is the number of model

families implemented by the system and Mi is the subset of the i-th family applicable to
Y . It dictates a two-phase procedure of determining the BFM:

1) determine the BFM among models within one (i-th) family which are applicable
to Y −BFMi = mj ∈Mi | mj ∈MA ∧maxj Q(mj , YT );

2) determine the BFM of all the families – BFM = BFMi | maxiQ2(BFMi, YT )

where
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Q2(m,YT ) = Q∗2(A,AC,R
YT ŶT

). (5)

A shortcoming of this technique is that models can be ranged within Mi but not within
MA.

Local tuning brings about a problem of determining the length of local training vector
YL. Its right bound yL as well as the minimum training vector length of each family
models Lmin = min

i
Lmin(Mi) is known.

Similar to neural network models, time series models are the more general the more
extensive data they are trained on. Therefore, starting from some initial state, incremental
enlargement of their local training vector YL = {yL1, . . . , yLp} with some reasonably
small portion of items of very large Y to the left from yL1 leads to the whole vector’s
greater generality until training takes unacceptable time.

3. Algorithms

3.1. Tentative Algorithm

The tentative algorithm insures that the current model of vector Y represented with its
training vector YL (being incrementally enlarged as well as the test vector YT ) is BFM of
the latter. It repeatedly performs BFM detection (which remains permanently accessible
to the user) and training vector enlargement until an event time-out alarms the iteration.
Fig. 2 presents a typical fragment of three competing models’ quality graph computed
with the tentative algorithm.

Tentative Algorithm:

Notation:
i – index of vector item (integer);
s – step – size of training vector enlargement portion (integer)

i = p− Lmin;

while (i > 0) do begin

if ( time-out) then

break loop

YL = yi, . . . , yp;

YT = {yi, . . . , yn};
MA = MA(YL);

BFM = BestF ittedModel(MA, YL, YT );

i = i− s
end.
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Fig. 2. Tentative algorithm illustrated.

Algorithm behind the function ‘BestFittedModel(MA, YL, YT )’:

Notation:
MA – parameter, the set of models applicable to the test vector (YT );
YL – parameter, the training vector;
YT – parameter, the test vector;
MF – set of all possible model families;
Mj – any single family of models

⋃
Mj = M ;

m – any single model;
BFMj – best fitted model within any single family Mj;

forall (Mj ∈MF ) do begin

forall (m ∈Mj and m ∈MA) do begin

fit m on YL;

calculate Q = Q(m,YT );

store m, Q

end

BFMj = m|maxQ;

calculate Q2 = Q2(BFMj , YT );

store BFMj, Q2

end

result = BFMj |Q2.

Performing model competition for each state of YL insures its timely change. How-
ever, if the portion of enlargement (s) is small the whole algorithm proceeds too slow
because model training being the most time-consuming operation is being done too fre-
quently. This shortcoming can be easily treated by retaining the BFM detected in i-th
iteration during a number of next periods of training vector growth.
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Fig. 3. Real world data: trend part of a share price series followed by stationary part.

3.2. Refined Algorithm

Often a very long series have two parts Y1 = {yh, . . . yt} and Y2 = {yt+1, . . . , yn}
having different trends, seasonality or so. In its turn, Y2 sometimes can be similarly sub-
divided into two parts, anf so forth. After a model was trained on Y2, extending its training
vector with Y1 having different underlying process will worsen predictive features of the
model, especially for short-range forecasting. Fig. 3 shows a graph of maximum daily
share price of some stock company taken from 31.12.1987 to 30.9.1996 with clear last
sub-series having distinct seasonality and trend. In other words, similarly to the observed
value yi that changes over time, its underlying process (to model) also changes over time.
Obviously the latter can be analyzed by examining the model’s performance as function
of the training set size.

In the tentative algorithm, the incremental enlargement of the current BFMmb’s train-
ing vector YL should be stopped when the value of its quality Q(mb, YT ) becomes lower
than some critical level (denote itQcr ). The value ofQcr is such that it is likely that after
training another model ma on that YL:

Q(mb, YT ) < Qcr ⇔ Q(ma, YT ) > Q(mb, YT ). (6)

The refined algorithm implements this principle.

Fig. 4. Part of a series (last 190 observations) containing change of the underlying process to serve as the test
series for the refined algorithm.
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Refined Algorithm:

i = p− Lmin;

YL = {yi, . . . , yp};
YT = {yi, . . . , yn};
MA = MA(YL);

m = BestF ittedModel(MA, YL, YT );

Q = Q(m,YT );

while (i > 0) do begin

if (time-out) then

break loop

i = i− s;
YT = {yi, . . . , yn};
Q = Q(m,YT );

if (Q < Qcr) then

begin

YL = yi, . . . , yp;

m = BestF ittedModel(MA, YL, YT )

end

end.

The value of Qcr depends on the functional Q∗ (3) and the data being processed.
For example, with A computed as the cumulated absolute percentage error (CAPE),

CAPE =
n∑
i=1

(yi − ŷi)
yi

· 100%, for Qcr to alarm 900% cumulated error it should be set

equal to 100, and model performance measured asQ = DW ·R
YT ŶT

· (α−CAPE), α =
1000%. Fig. 5 illustrates the refined algorithm processing the test series shown in Fig. 4
particularly changes of BFM each time Q < Qcr (part B) compared with the same mod-
els’ performance without retraining when it is necessary (part A).

(A)

Performance of competing models once trained on 60 observations and then tested on the vector being repeat-

edly enlarged with earlier observations. The model initially performing best (BFM) is ‘Generalized Adaptive

Filtering’.



434 A. Kharchenko

(B)

The same models re-trained and re-evaluated (dashed lines mark points of competitions). Each time perfor-

mance of the current BFM gets lower than the threshold Qcr(= 100) new BFM trained on larger set is being

selected.

Fig. 5. Refined algorithm processing series in Fig. 4 illustrated.

The algorithm works in two modes:
• express. In this mode, the algorithm proceeds enlarging the training vector YL while
quality of current BFM trained on it (denoted as Q) remains at satisfactor level (greater
than Qcr). Samples to be attached to the training vector after Q > Qcr can “spoil” the
model therefore further enlargement of YL is finished. Otherwise the algorithm proceeds
until there are no samples in Y to process. Given some Qcr the algorithm at the end
advises a user the BFM as the model of the whole vector Y . Current BFM is available to
the user all the run time.
• time-out. If alarming is enabled working in the previous mode is eventually interrupted
also when a system level event of the type time-out stops it.

Further improvement of the algorithm can be made if the portion s of vector YL en-
largement being constant were a function ofQ calculated in the preceding test. Namely, s
calculated as a function of quality differentiated, e.g., st = α exp(βqt−1) so that it could
sense the behavior of Q.

4. Conclusion and Future Work

Features of an emerging branch of forecasting software engineering – forecasting automa-
tion were presented. The key problems of creating the forecasting automation software
are automatic model identification and fitting, processing massive series, and techniques
of model estimation to support it. An algorithm for local stepwise model identification
and tuning to be applied to large temporal databases was presented.

Sometimes a database can store only a small portion of a very dense data flow there-
fore historically early data cannot be used to fit extrapolation models. Even if a database
were unlimited in size, the task of fitting a single model with desired generality on its
contents would be infeasible as it would take a lot of time to be completed. However,
little computation still could be performed in the intervals between entering subsequent
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data portions. The idea is to store in the database very few specific data only that would
make it possible to optimally train models of the whole data flow. Guyon, Matic, and Vap-
nik (1996) proposed a technique for detecting informative patterns thus cleaning data and
showed the point of optimum cleaning that can be presented by the Vapnik-Chervonenkis
theory (Vapnik, 1982). An automation technique to detect the above-mentioned specific
observations as most surprising ones taking into account that forecasting software never
implements a single model but many of them, is a challenge for future research. The fact
that procedures of prior data validation usually remove surprising observations as outliers
is an additional obstacle.
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Prognozės automatizavimas – nauja prognozės inžinerijos šaka

Andrey CHARČENKO

Pateikiami laiko eiluči ↪u prognozės automatizavimo principai, kurie reikalingi tvarkant didelius
laikin ↪u duomen ↪u masyvus, kai vartotojo sprendimai yra arba nepraktiški, arba nepageidautini.

Išskirtinės automatinės prognozės savybės yra lokalūs ekstrapoliacijos modeliai, j ↪u apmoky-
mas ir sprendimas, kurie iš konkuruojanči ↪u modeli ↪u veikia geriau. Pateikiamas lokalaus modelio
derinimo be žmogaus ↪isikišimo didelės apimties duomen ↪u sekoje apibendrintas modelis.


