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Abstract. The sample-based rule obtained from Bayes classification rule by replacing unknown
parameters by ML estimates from stratified training sample is used for classification of random
observations into one of two widely applicable Gamma distributions. The first order asymptotic
expansions of the expected risk regret for different parametric structure cases are derived. These
are used to evaluate performance of the proposed classification rule and to find the optimal training
sample allocation minimizing the asymptotic expected risk regret.
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1. Introduction

Suppose that individuals come from one of two mutually exclusive and exhaustive popu-
lations Ω1,Ω2 with positive prior probabilities π1, π2, respectively, where

∑2
i=1 πi = 1.

Let X ∈ X ⊂ R be a random feature variable which is measured on each individual.
Assume that the distribution of X for the individual from Ωi has the probability density
function (p.d.f.) pi(x; Θi) which belongs to the parametric family of regular densities
Fi = {pi(x; Θi), Θi ∈ K ⊂ Rm}, (i = 1, 2).

Further, the dependence of any functions on any distribution parameters will be sup-
pressed in the cases when functions are evaluated at the true values of these parameters
denoted by asterisk ∗, e.g., pi(x; Θ∗i ) = pi(x). A decision is to be made as to which

population an individual randomly chosen from Ω =
2
∪
i=1

Ωi, belongs on the basis of

an observed value of X . Let d(· ) denote a classification rule (CR) formed for this pur-
pose, where d(x) = i implies that an individual with feature vector X = x is to be
assigned to the population Ωi (i = 1, 2). In effect, CR divides the feature space X into
L mutually exclusive and exhaustive assignment regions U1, U2, where if X falls in Ui,
then the individual is allocated to Ωi (i = 1, 2). Let C(i, j) denote the cost of alloca-
tion when an individual from Ωi is allocated to Ωj and let C(i, j) always be finite, i.e.,
max
i,j=1,2

C(i, j) = C0 <∞.
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When prior probabilities {πi} and densities {pi(x)} are known, the risk R(d(· )) as-
sociated with rule d(· ) can be expressed as

R (d(· )) =
2∑
i=1

πi

∫
X
C (i, d(x)) pi(x)dx. (1)

Then Bayes classification rule (BCR) dB(x) minimising the risk R(d(· )) is defined
as

dB(x) = arg max
i=1,2

lipi(x), (2)

where

li = πi (C(i, 3− i)− C(i, i)) , (i = 1, 2). (3)

Therefore, Bayes risk RB is

RB =
2∑
i=1

πi

∫
X
C (i, dB(x)) pi(x)dx = inf

{d(·)∈D}
R (d(· )) , (4)

where D is the set of all CR d(· ) defined before.
The risk becomes the probability of misclassification (PMC) when C(i, j) = 1− δij ,

where δij is Kronecker’s delta.
In practical applications, the density functions {pi(x)} are seldom completely known.

Often they are only known up to the parameters {Θi}, i.e., we can only assert that pi(x)

is an element of the parametric family of density functions Fi. Under such conditions, it
is customary to estimate unknown parameters from given data.

Suppose that in order to estimate unknown parameters Θ1, Θ2 there are M individu-
als of known origin on which feature vector X has been recorded. That data is referred
to in pattern recognition literature as training sample (TS). The only case of indepen-
dent observations in TS will be considered in this paper. Suppose that TS realized under
separate sampling (SS) design. This sample often is called stratified sample. Then the
feature vectors are observed for a sample of Mi individuals taken separately from each
population Ωi (i = 1, 2).

Suppose that there are m1 elements of all {Θi} known a priori to be distinct and
let θ0 be the vector of m0 elements known a priori to be equal, i.e., Θi = (θ′0, θ

′
i)
′ =

(θ1
0, . . . , θ

m0
0 , θ1

i , . . . , θ
m1
i ), where θki 6= θkj for i 6= j, (i, j = 1, 2; k = 1, . . . ,m1), and

m0 +m1 = m. The prime denotes vector transpose.
Denote by α an n = m0 + 2m1-dimensional vector, which consists of θ0 and (θ1,θ2),

i.e.,

α = (θ′0, θ
′
1, θ
′
2)
′

= (α1, . . . , αn). (5)
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Let P ⊂ Rn be the set of all possible α, such that Θi ∈ K (i = 1, 2). Then suppose
that

d(x, α) = arg max
i=1,2

lipi(x,Θi), (6)

and

RA(α) =
2∑
i=1

πi

∫
X
C (i, d(x, α)) pi(x)dx. (7)

The so-called estimative approach to the choice of sample-based classification rule
ds(x) is used. The unknown parameters θ0, θ1, θ2 are replaced by appropriate estimates
θ̂0, θ̂1, θ̂2 obtained from the training data T in the BCR, i.e., ds(x) = d(x, α̂), where
α̂′ = (θ̂′0, θ̂

′
1, θ̂
′
2)′. The case when m0 = 0 means that all components of Θi are distinct

for both populations.
The actual risk for the rule d(x, α̂) is the risk of classifying a randomly selected

individual with feature X and is designated by

RA(α̂) =
2∑
i=1

πi

∫
X
C (i, d(x, α̂)) pi(x)dx. (8)

For C(i, j) = 1 − δij , the actual risk becomes the actual error rate (AER), which is
usually used for evaluation of performance of a sample-based rule.

It is obvious that RA(α∗) = RB , where α∗ is the true value of α.

DEFINITION 1. Risk regret (RR) for d(x, α̂) is the difference between the actual risk
RA(α̂) and Bayes risk RB , and the expected regret risk (ERR) is the expectation of
RR, i.e.,

ERR = ET {RA(α̂)} −RB, (9)

where ET {RA(α̂)} denotes the expectation with respect to TS distribution.

It is obvious from (4), that RR is nonnegative random variable.
Unfortunately the exact distributions of RR usually are difficult to obtain. In those

cases, large sample approximations to and asymptotic expansions for the distributions
and expectations ofRR are required. Only the situations when the feature variableX has
the Gamma distribution for the individuals from Ωi (i = 1, 2) are considered.

The purpose of this paper is to find expansions ofERRwhen the maximum likelihood
estimates (MLE) of unknown parameters of Gamma distributions for different parametric
structure cases are used. These are used to evaluate the performance of sample-based CR
and to find the optimal training sample allocation.

This is an extension of the result of Dučinskas (1995), who presented the asymptotic
expansion of expected error regret in the situation when parameter vectors of classified
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distributions a priori had different all components. Kao et al. (1991) had also presented
the asymptotic distribution of AER and asymptotic expansion for the expectation of AER.
However, only the case of two normal populations with different means and common co-
variance was considered. Neil (1980) has found the general asymptotic distribution of
AER for the classification into one of two populations. The probabilities of misclassifica-
tion for exponential distributions (the special case of Gamma distributions) was obtained
by Adegboye (1993).

The general asymptotic distribution of RR and asymptotic expansion of ERR in
case of several populations and MLE of unknown parameters of classified distributions
are derived in paper of Dučinskas (1997).

2. Notations and Auxiliary Results

Let ∇α be the vector partial differential operator given by

∇tα =

(
∂

∂α1
, . . . ,

∂

∂αn

)
and |∇α|2 =

n∑
i=1

(
∂

∂αi

)2

for any α = (α1, . . . , αn) ∈ Rn.
Similarly,∇2

α denote the matrix second order differential operator

∇2
α =

∥∥∥∥ ∂2

∂αi∂αj

∥∥∥∥
i,j=1,2

.

Let

G0(x) = l1p1(x)− l2p2(x)

and the real roots of the equation G0(x) = 0 belonging to the support of pi(x) will be
called threshold points and denoted by x01, . . . , x0k .

Assume that Ii denotes the m×m Fisher information matrix for Θi, i.e.,

Ii = Ei
{
∇Θi ln pi(x)∇′Θi ln pi(x)

}
, (10)

where Ei{· } represents the expectation based on the distribution with the density func-
tion pi(x) (i = 1, 2).

It is obvious that matrix Ii can be expressed as a block matrix

Ii =

(
Ii0 Ii0

I0i Ii

)
, (11)

where

Ii = Ei
{
∇θi ln pi(x)∇′θi ln pi(x)

}
, Ii0 = Ei

{
∇θ0 ln pi(x)∇′θ0 ln pi(x)

}
, (12)



Analysis of the Risk Regret 405

Ii0 = I′0i = Ei
{
∇θi ln pi(x)∇′θ0 ln pi(x)

}
, (i = 1, 2). (13)

Denote convergence in law by
L→.

Let the training sample realized under SS scheme is

T = (T ′1, T
′
2) , (14)

where

T ′i =
(
X ′i1, . . . , X

′
iMi

)
,

Xij is the j-th observation from Ωi, i = 1, 2 and M = M1 +M2.
Suppose that the regularity assumptions S for Lemma 3 of Dučinskas (1997) hold.

Then the MLE α̂ from T is a consistent estimate and as Mi → ∞, Mi/M → ri > 0

(i = 1, 2) satisfies

√
M(α̂− α∗) L→ Nn(0, J−1

0 ), (15)

where

J0(α) =


2∑
i=1

riI
i
0 r1I01 r1I02

r1I1 0

r2I2

 . (16)

Let the random variable Xi has p.d.f. pi(x) (i = 1, 2) and

Vj =
2∑
i=1

lr(−1)r
(
∇θ0pr(x0j)− I0rI

−1
r ∇θrpr(x0j)

)
. (17)

Theorem 1. Let the regularity assumption S holds and let RA(α) be twice continuously
differentiable as a function of α in some neighborhood Uα∗ and let F (x1, x2) be a real
valued function defined on R2 that satisfies

M(RA −RB) < F (X1, X2), (18)

where E{F (X1, X2)} < H , 0 < H <∞.
Then the first order asymptotic expansion of the EER is

EER = β/M +
2∑
i=1

ρi/Mi + o(M−1), (19)
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where

β =
k∑
j=1

V ′jΛVj |∇xG0(x0j)|−1 /
2, (20)

ρi =
k∑
j=1

l2i∇′θipi(x0j)I−1
i ∇θipi(x0j) |∇xG0(x0j)|−1 /

2, (21)

Λ =

( 2∑
i=1

ri(Ii0 − I0iI
−1
i Ii0)

)−1

. (22)

Proof. The assertion of the stated theorem directly follows from one of Theorem 5 of
Dučinskas (1997), after collection the terms at M−1 for two populations case.

REMARK 1. Let m0 = 0, i.e., all true values of components of unknown distribution
parameters are distinct. Then β = 0 in the first order asymptotic expansion of ERR
defined in (19).

REMARK 2. If m0 6= 0, but θ∗0 are known, i.e., θ0 is a nuisance parameter, then also
β = 0 in (19).

Define the asymptotic expected risk regret as

AERR = β/M +
2∑
i=1

ρi/Mi. (23)

The training sample allocation problem is viewed as follows. For a fixed value of
M , let Wi = Mi/M denote the proportions of observations taken from Ωi. The design
problem is to choose a value W ∗i for Wi that minimizes the AERR defined in (23).

The W ∗1 could be expressed explicitly (see Theorem 3 in Dučinskas (1995))

W ∗1 = 1
/(

1 +
√
ρ2/ρ1

)
. (24)

3. Asymptotic Expansions of ERR for Gamma Populations

Suppose that distribution of X for the individual from Ωi is Gamma with p.d.f.

pi(x;λi, ηi) = ληii x
ηi−1e−λix

/
Γ(ηi), x > 0, λi > 0, ηi > 0 (i = 1, 2). (25)

Clearly, λi is a scale parameter and ηi is a shape parameter (i = 1, 2).
The Gamma distributions are used by many authors in various models of reliability

theory and in queing system analysis. This model is often suggested as a lifetime dis-
tribution. Special cases of Gamma distribution are Chi Square, Erlang and Exponential
distributions.
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Three parametric structure cases will be considered in this paper.

Case A. λ∗1 > λ∗2, η
∗
1 = η∗2 = η∗, (η ln(λ∗2/λ

∗
1)− γ)

/
(λ∗2 − λ∗1) > 0. (26)

Case B. λ∗1 = λ∗2 = λ∗, η∗1 > η∗2 ,

exp {−γ + (η∗2 − η∗1) lnλ+ ln (Γ(η∗2)/Γ(η∗1))}
/

(η∗1 − η∗2) > 0. (27)

Case C. λ∗1 > λ∗2, η
∗
1 > η∗2 . (28)

Further superscripts A, B and C will be used to identify the considered cases.
Threshold points and assignment regions for these parametric structure cases will be

shown in Figs. 1–3, assuming π1 = π2 = 0.5 and C(i, j) = 1− δij for simplicity.
Let Ψ(η) = d ln Γ(η)/dη and Ψ′(η) = d2 ln Γ(η)/dη2 are “digamma” and

“trigamma” functions, respectively. Values of Ψ(η) and Ψ′(η) are tabulated in Abramo-
witz et al. (1964) for 1 6 η 6 2. For η > 2 and η < 1, these functions can be evaluated
from tabulated values and the recurrence relations

Ψ(η + 1) = Ψ(η) + 1/η, Ψ′(η + 1) = Ψ′(η)− 1/η2.

Unfortunately, the MLE of parameters of Gamma distribution usually can not be
found in explicit form (see, e.g., Stacy and Mihram (1965)). So, further methods for solv-
ing of the MLE equations for three considered cases of parametric structure are proposed.
Denote a = Ψ′(η∗) and ai = Ψ′(η∗i ), (i = 1, 2).

The ML equations in the case A are

∂ lnL

∂λi
=

Mi∑
i=1

(
η̂/λ̂i − xij

)
= 0 (i = 1, 2), (29)

∂ lnL

∂η
=

2∑
i=1

Mi

(
ln λ̂i + lnxiG

)
−MΨ(η̂) = 0 (i = 1, 2), (30)

where L is the likelihood function for training sample T and xiG =
Mi∏
j=1

x
1/Mi

ij is the

geometric mean for sample Ti (i = 1, 2). Combining the ML equations (29), (30) gives

ln(η̂)−Ψ(η̂) = g, (31)

where g =
∑2
i=1Wi ln(xi/xiG).

The ML estimates η̂ can be obtained from (31) by inverse interpolation for a given
value of g. Alternatively, the following highly accurate approximation (see Greenwood
and Durand (1960)) can be used to obtain η̂ directly:

η̂ = (0.5001 + 0.1649g− 0.0544g2)/g, 0 < g 6 0.577, (32)
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Fig. 1. Threshold point and assignment regions for the Case A (λ∗1 = 2, λ∗2 = 1, η∗ = 2).

Fig. 2. Threshold point and assignment regions for the Case B (λ∗ = 2, η∗1 = 4, η∗2 = 2).
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Fig. 3. Threshold point and assignment regions for the Case C (λ∗1 = 2, λ∗2 = 1, η∗1 = 4, η∗2 = 2).

η̂ = (8.899 + 9.060g+ 0.9775g2)/
(
(17.80 + 11.97g+ g2)g

)
, (33)

0.577 6 g 6 17.

The error of either formula is less than 0.01%. The ML estimates λ̂1, λ̂2 follow from
(29).

The ML equations in the Case B are

W1η̂1 +W2η̂2 = λ̂x, (34)

and

ln λ̂+ lnxiG = Ψ(η̂i), (i = 1, 2), (35)

where x =
∑2
i=1Wixi is the total mean of T .

These nonlinear equations could be solved numerically by root isolation procedure
described by Wingo (1987).

In the Case C, the ML equations can be written as

λ̂i = η̂i/xi, (36)

ln η̂i −Ψ(η̂i) = gi, (37)
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where gi = ln(xi/xiG) (i = 1, 2).
For solving of (37) the approximations given in (32), (33) are used substituting g by

g1 and g2. Further the ML estimates λ̂1, λ̂2 are obtained from (36).
Let D =

∑2
i=1 ri(aiη

∗
i − 1)/ai.

Theorem 2. Suppose that the ML estimates of parameters of the classified Gamma dis-
tributions are used in the sample-based rule. Then the coefficients of the first order ex-
pansions of ERR in parametric structure Cases A and B are

βA = l1p1(xA0 )γ2/ ((aη∗ − 1)(λ∗1 − λ∗2)η∗) , (38)

ρAi = l1p1(xA0 )(η∗ − xA0 λ∗i )2/ ((λ∗1 − λ∗2)η∗) , (39)

and

βB = l1p1(xB0 )xB0

(
η∗1 − η∗2 + ln(λ∗x)

(
1

a1
− 1

a2

)
+Ψ(η∗2)/a2 −Ψ(η∗1)/a1

)2/
(η∗1 − η∗2)D, (40)

ρBi = l1p1(xB0 )xB0 (η∗i − xB0 λ∗)2
/(

(η∗1 − η∗2)ai(λ
∗)2
)
, (41)

where

xA0 = (η ln(λ∗2/λ
∗
1)− γ)

/
(λ∗1 − λ∗2), (42)

xB0 = exp {−γ + (η∗2 − η∗1) ln λ+ ln (Γ(η∗2)/Γ(η∗1))}
/

(η∗1 − η∗2), (43)

are the threshold points for the Cases A and B, respectively.

Proof. In the Case A, the common shape parameter η corresponds to θ0 and the scale
parameters λ1 and λ2 correspond to θ1 and θ2, respectively. Then

∇θipi(x) = ∂pi(x)/∂λi = pi(x)(η∗/λ∗i − x),

∇θ0pi(x) = ∂pi(x)/∂η = pi(x) (ln(λ∗i x)−Ψ(η∗)) ,

Ii = η∗/(λi)
2, I0i = −1/λ∗i , Ii0 = Ψ′(η),

∇xG0(x) =
η∗ − 1

x
G0(x)− (l1p1(x)λ∗1 − l2p2(x)λ∗2) .

Let xA0 be a positive root of G(xA0 ) = 0.
Evaluating these expressions in the threshold point x = xA0 and using the assertion of

the Theorem 1 the proof was completed.
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In the Case B, the common scale parameter corresponds to θ0 and the shape parame-
ters η1 and η2 correspond to θ1 and θ2, respectively.

Then

∇θ0pi(x) = ∂pi(x)/∂λ = pi(x)(η∗i /λ
∗ − x),

∇θipi(x) = ∂pi(x)/∂ηi = pi(x) (ln(λ∗i x)−Ψ(η∗i )) ,

Ii = Ψ′(η∗i ), I0i = −1/λ∗, Ii0 = η∗i /(λ
∗)2,

∂G0/∂x = l1p1(x)

(
η1 − 1

x
− λ1

)
− π2p2(x)

(
η2 − 1

x
− λ2

)
.

Substituting corresponding terms in (20), (21) the formulae (40), (41) were obtained.

REMARK 3. If γ = 0, then from (38) follows that βA = 0. Thus the first order asymp-
totic expansion of the EER is the same as in the situation when η∗ is known.

The threshold points xA0 , coefficients βA, {ρAi } andW ∗1 forC(i, j) = 1−δij , λ∗2 = 1,
η∗ = 2 are given in Table 1. The threshold points xB0 , coefficients βB , {ρBi } and W ∗1 for
C(i, j) = 1− δij , λ∗ = 2, η∗2 = 1 are given in Table 2.

Theorem 3. Let the assumptions of Theorem 2 hold. Then the coefficients of the first
order expansion of ERR in parametric structure Case C are equal

βC = 0, (44)

ρCi = l1

k∑
j=1

p1(xC0j)

((
ln(λ∗i x

C
0j)−Ψ(η∗i )

)2
η∗i

+2(η∗i − λ∗i xC0j)
(
ln(λ∗i x

C
0j)−Ψ(η∗i )

)
+(η∗i − λ∗i xC0j)2ai

)/(
(aiη

∗
i − 1)

∣∣∣∣∣η∗1 − η∗2xC0j
+ λ∗2 − λ∗1

∣∣∣∣∣
)
, (45)

where {xC0j} are the positive roots of the equation

x(λ∗2 −λ∗1) + lnx(η∗1 − η∗2) + γ+ η∗1 lnλ∗1 − η∗2 lnλ∗2 + ln (Γ(η∗2)/Γ(η∗1)) = 0.(46)

The proof of the stated theorem is directly analogous to one of Theorem 2 of this
paper.

REMARK 4. If equation (46) has no positive roots, then ρCi = 0. This is because the
support of Gamma p.d.f. is the set of all positive real numbers.

The results of Theorems 2 and 3 can be used in evaluation of performance for
the sample-based CR with plugged ML estimates of the shape and scale parameters
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Table 1

The values of xA0 , βA, {ρAi } and W ∗1 for λ∗2 = 1, η∗ = 2

λ∗1 xA0 βA ρA1 ρA2 W ∗1

π1 = 0.5

2 1.38629 0.00000 0.05172 0.03263 0.44268

3 1.09861 0.00000 0.07687 0.03719 0.41022

4 0.92420 0.00000 0.08800 0.03537 0.38800

5 0.80472 0.00000 0.09211 0.03214 0.37135

6 0.71670 0.00000 0.09260 0.02882 0.35810

7 0.64864 0.00000 0.09118 0.02580 0.34723

8 0.59413 0.00000 0.08878 0.02315 0.33803

9 0.54931 0.00000 0.08588 0.02086 0.33014

10 0.51169 0.00000 0.08278 0.01887 0.32316

11 0.47958 0.00000 0.07962 0.01716 0.31705

12 0.45180 0.00000 0.07651 0.01567 0.31156

13 0.42749 0.00000 0.07350 0.01436 0.30652

14 0.40601 0.00000 0.07061 0.01322 0.30202

15 0.38686 0.00000 0.06786 0.01221 0.29784

16 0.36968 0.00000 0.06525 0.01132 0.29404

17 0.35415 0.00000 0.06277 0.01052 0.29047

18 0.34004 0.00000 0.06044 0.00981 0.28718

19 0.32716 0.00000 0.05823 0.00917 0.28410

20 0.31534 0.00000 0.05615 0.00859 0.28116

π2 = 0.8

2 2.77259 0.03861 0.21779 0.01034 0.17891

3 1.79176 0.03327 0.17011 0.00065 0.05822

4 1.38629 0.02574 0.14519 0.00435 0.14755

5 1.15129 0.02028 0.12844 0.00656 0.18434

6 0.99396 0.01639 0.11560 0.00745 0.20246

7 0.87969 0.01356 0.10516 0.00764 0.21231

8 0.79217 0.01142 0.09641 0.00748 0.21786

9 0.72259 0.00977 0.08893 0.00716 0.22103

10 0.66572 0.00847 0.08245 0.00677 0.22273

11 0.61821 0.00742 0.07677 0.00636 0.22350

12 0.57783 0.00657 0.07175 0.00596 0.22373

13 0.54302 0.00586 0.06729 0.00558 0.22358

14 0.51265 0.00526 0.06330 0.00522 0.22310

15 0.48589 0.00476 0.05971 0.00489 0.22250

16 0.46210 0.00432 0.05646 0.00459 0.22187

17 0.44080 0.00395 0.05350 0.00431 0.22108

18 0.42159 0.00363 0.05081 0.00405 0.22017

19 0.40418 0.00334 0.04835 0.00382 0.21941

20 0.38830 0.00309 0.04608 0.00360 0.21845
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Table 2

The values of xB0 , βB , {ρBi } and W ∗1 for λ∗2 = 1, η∗ = 2

η∗1 xB0 βB ρB1 ρB2 W ∗1

π1 = 0.2

2 2.00000 0.491125721972 0.090877575641 0.080168927531 0.484

3 0.70711 0.000071605740 0.054731161047 0.000896540668 0.113

4 0.43679 0.062239130662 0.023257603988 0.000006561420 0.016

5 0.31947 0.013758025648 0.002515806805 0.000002320187 0.029

6 0.25325 0.001083157093 0.000141107831 0.000000125527 0.028

7 0.21042 0.000046986756 0.000005008052 0.000000003622 0.026

8 0.18033 0.000001326421 0.000000123978 0.000000000070 0.023

9 0.15796 0.000000026637 0.000000002273 0.000000000001 0.020

π1 = 0.8

2 0.12500 0.306642814028 0.046227155626 0.003328974161 0.211

3 0.17678 0.198095844344 0.027516323925 0.000394189966 0.106

4 0.17334 0.046735602810 0.005336322964 0.000029445362 0.069

5 0.15974 0.005042310896 0.000498583963 0.000001418139 0.050

6 0.14545 0.000303233532 0.000027147656 0.000000046164 0.039

7 0.13256 0.000011561928 0.000000965771 0.000000001073 0.032

8 0.12135 0.000000304299 0.000000024199 0.000000000018 0.027

9 0.11169 0.000000005864 0.000000000450 0.000000000001 0.023

of Gamma distributions. The presented first order expansions of the ERR enable re-
searchers to find the optimal stratified training sample allocation, i.e.,W ∗1 , when the total
training sample size M is fixed. The calculations given in Tables 1 and 2 show that equal
training sample sizes for both populations often are not optimal, even when the prior
probabilities of populations are equal, i.e., π1 = π2.
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Dučinskas, K. (1995). Optimal training sample allocation and asymptotic expansions for error rates in discrim-

inant analysis. Acta Appl. Math., 38, 3–11.
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K. Dučinskas graduated from the Vilnius University in 1976 in applied mathematics,
where he received Doctor Degree in 1983. He is a head of System Research Depert-
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Gama skirstini ↪u klasifikavimo rizikos analizė

K ↪estutis DUČINSKAS

Straipsnyje nagrinėjamas stebėjim ↪u, pasiskirsčiusi ↪u pagal Gama dėsn ↪i, klasifikavimo už-
davinys. Pateikti pirmos eilės asimptotiniai skleidiniai laukiamam klasifikavimo rizikos pa-
didėjimui, kai nežinomos parametr ↪u reikšmės vertinamos iš mokymo imties, panaudojant maksi-
malaus tikėtinumo metod ↪a. Gautos formulės gali būti naudojamos vertinant klasifikavimo taisyklės
“kokyb ↪e”, nustatant optimalius mokymo imči ↪u dydžius.


