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Abstract. Laplace equations were used for modeling of electrotonic potential in three-dimensional
isotropic double-space RC medium. Solutions of Laplace equations for the case of rectangular cur-
rent pulse stimulation using spherical electrode we obtain using Laplace transforms in imaginary
space. Solutions in original space we got using numerical invert Laplace transform. It showed that
the rising front of the transmembrane potential becomes less steep in regard to rising radius of the
stimulating electrode and asymptotically reaches single-dimensional cable case (evenly distributed
RC-circuit). The steady state value of transmembrane potential decreases with the increasing dis-
tance from stimulating electrode. It remains always positive when stimulus current is negative.

Key words: RC-model, electrical stimulation, transmembrane potential, Laplace equations, passive
electrical properties of the tissue.

1. Introduction

Some cardiac arrhythmia do not respond to pharmaceutical treatment and implantation
of a cardiac pacemaker remains the only possibility to rescue the patient. It has been
experimentally established that the parameters of cardiac pacing (the threshold current,
potential, power) depend on the size and shape of the electrode, the shape and duration
of the pulse (Bredikis et al., 1978; Irnich, 1975). There are some published results of
modeling of the excitation spread in myocardial tissue during anode or cathode stimu-
lating pulses in single-dimensional case (Krassowska et al., 1992), two-dimensional case
(Sepulveda et al., 1989), and three-dimensional case (Roth and Wikswo, 1994). However
in these publications there are no data about influence of electrode size or stimulating
pulse length on threshold stimulating parameters for typical myocardial tissue. Such data
could be very important for optimization of stimulating mode.
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2. The Mathematical Model of the Cardiac Tissue

The cardiac tissue consists of two conductive spaces: the intracellular and the extracellu-
lar, separated by the plasmic membrane from each other. The intracellular space consists
of the cells coupled via low resistance intercellular junctions. Let assume that the resis-
tance of contacts is evenly distributed over the whole volume of the cell. Each point of the
double-space medium, r, at the time moment t is characterized by the intracellular poten-
tial Vi, and the density of intracellular current ji, as well as by extracellular potential Ve
and extracellular current density je.

Let consider a homogeneous infinite three-dimensional double-space medium in
which the specific resistance of the intracellular continuum is ρi, and the specific re-
sistance of the extracellular space is ρe. The equation of the electric field (Peskoff, 1979)
is applicable for the both: intracellular and extracellular areas:

ρiji = −∇Vi, (1a)

ρeje = −∇Ve. (1b)

The law of charge conservation looks following:

∇· ji = −∂qi
∂t
, (2a)

∇· je = −∂qe
∂t

, (2b)

where qi, qe are the charge densities in the intracellular and extracellular areas, respec-
tively. Let assume the source of current is placed in the extracellular area and ∇ is the
Hamilton operator (∇ ≡ ∂

∂x i + ∂
∂y j + ∂

∂zk in Decart coordinate system). So far the dif-
ference of intracellular charge density is opposite to extracellular one (∆qi = −∆qe) and
∂qi
∂t = jm/b (Bukauskas et al., 1975), we obtain:

∇· ji = −jm/b, (3a)

∇· je = jm/b, (3b)

where jm – the density of transmembrane current oriented from the intracellular to the
extracellular area (the hyperpolarizing current is positive). jm is described by the equa-
tion:

jm =
1

Rm
(Vi − Ve) + Cm

∂

∂t
(Vi − Ve), (4)

where Rm is the specific resistance of the electrogenic membrane, Cm is the specific
capacitance. Assume that Rm is not dependent upon the time and potential. Substitution
of (3a), (3b) and (4) in Eqs. 1a and 1b yields:

∇2Vi −
ρi
Rmb

(Vi − Ve)−
Cmρi
b

∂

∂t
(Vi − Ve) = 0, (5)
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∇2Ve +
ρe
Rmb

(Vi − Ve) +
Cmρe
b

∂

∂t
(Vi − Ve) = 0. (6)

Eqs. 5 and 6 are coupled partial differential equations. They may be decoupled in the
following way: we subtract the Eq. 6 from the Eq. 5 and obtain:

∇2(Vi − Ve)−
ρi + ρe
b

(
1

Rm
(Vi − Ve) + Cm

∂

∂t
(Vi − Ve)

)
= 0. (7)

Multiplication of Eq. 5 by ρe/ρi and term by term addition to the Eq. 6 yields

∇2
(ρe
ρi
Vi + Ve

)
= 0. (8)

The equations (7) and (8) make the system of coupled differential equations. By setting

Vi − Ve = Vm, (9)

Vi
ρe
ρi

+ Ve = Ψ, (10)

Rmb/(ρi + ρe) = λ2, (11)

τm = RmCm, (12)

where Vm = transmembrane potential, Ψ – we introduce this variable to convert the dif-
ferential equation into the form of Laplace equation (see below (14)), λ – constant of
electrotonic decay, τm – time constant of the electrogenic membrane. In normed coordi-
nate system (R, T ) where R = r/λ, and T = t/τm, we obtain:

∇2Vm − Vm −
∂Vm
∂T

= 0, (13)

∇2Ψ = 0. (14)

Laplace transforms of Eqs. 13 and 14 yield

∇2V m − (1 + s)V m = 0, (15)

∇2Ψ = 0, (16)

where V m = V m(R, s) and Ψ = Ψ(R, s) are Laplace transforms of functions Vm =

Vm(R, T ) and Ψ = Ψ(R, t). The general solution of Eq. 15 is

V m =
1

R

{
A(s) exp(−R

√
1 + s) +B(s) exp(R +

√
1 + s)

}
, (17)

where A(s) and B(s) are indices that depend on boundary conditions. Vm(R, T ) → 0

when R→∞, therefore Vm(R, s)→ 0 when R→∞. This condition is satisfied when
B(s) = 0. We obtain that

V m =
A(s)

R
exp(−R

√
1 + s). (18)
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The general solution of Eq. 16 is:

Ψ = C(s)
1

R
. (19)

The values of indices A(s), B(s), C(s) depend on the initial and boundary condi-
tions. Assume that before the stimulation moment the electrogenic membrane was in the
state of rest, i.e.

Vi(R, 0) = Ve(R, 0) = 0.

3. Stimulation Using Rectangular Pulse

Let assume that ro is the radius of the extracellular spherical pacing electrode in the
metric system of axes, and the pulse of current is set as: I = Io, when Tst > T > 0 and
I = 0, when T < 0 and T > Tst. Laplace transform of the pulse of current is:

I =
I0
[
1− exp(−sTst)

]
s

. (20)

The change in extracellular potential ∆Ve on the spherical layer, with thickness ∆r,
of the extracellular space next to the electrode is equal to:

∆Ve ∼= −
I0ρe
4πr2

0

∆r. (21)

As r = Rλ, and ro = Roλ, we obtain that(∂Ve
∂R

)
R=R0

= − I0ρe
4πR2

0λ
(22)

In point R = Ro the whole stimulating current flows to the extracellular space, therefore

Vi(R0, T ) = 0, (23)

Vm(R0, T ) = −Ve(r0, T ). (24)

Making the Laplace transform of the Eq. 22 and taking into account (24), we obtain

(dV m
dR

)
R=R0

=
I0
[
1− exp(−sTst)

]
ρe

4πR2
0λs

. (25)

We substitute the value (18) of V m in Eq. 25 and obtain:

A(s) = −
I0ρe

[
1− exp(−sTst)

]
exp(R0

√
s+ 1)

4πλs(R0

√
s+ 1 + 1)

. (26)
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The final expression of the solution when R > Ro, is following:

V m = −
I0ρe

[
1− exp(−sTst)

]
exp

[
(R0 −R)

√
s+ 1

]
4πRλs(R0

√
s+ 1 + 1)

. (27)

For a point-type source of current (Ro = 0), when Tst →∞, Eq. 27 is analogous to
the expression of intracellular potential ((Jack et al., 1975), equation 5.34). From Eqs. 10,
19, 23 and 24 we obtain

C(s) = −R0V m(R0, s). (28)

From Eq. 27 we derive the expression V m(R0, s) and make the substitution in equa-
tion (28):

C(s) =
I0ρe

[
1− exp(−sTst)

]
4πλs(R0

√
s+ 1 + 1)

. (29)

Substitution of C(s) with (29) in Eq. 19 and the Laplace transform of Ψ(R, s) ex-
pression (10) yield:

ρe
ρi
V i + V e =

I0ρe
[
1− exp(−sTst)

]
4πλsR(R0

√
s+ 1 + 1)

. (30)

From Eqs. 9, 27 and 30 we derive the values of intracellular and extracellular poten-
tials in the imaginary space:

V i =
ρiρe
ρi + ρe

·
I0
[
1− exp(−sTst)

]
4πRλs(R0

√
s+ 1 + 1)

{
1− exp

[
(R0 −R)

√
s+ 1

]}
, (31)

V e =
ρiρe
ρi + ρe

·
I0
[
1− exp(−sTst)

]
4πRλs(R0

√
s+ 1 + 1)

{
1 +

ρe
ρi

exp
[
(R0 −R)

√
s+ 1

]}
. (32)

Solutions (27), (31), (32) remain valid for the imaginary space. To receive the actual
values of potentials, inverse Laplace transform must be made.

Vm(R, T ) =
1

2πj

∫ γ+j∞

γ−j∞
V m(R, s) exp(Ts) ds. (33)

As the stimulating current is of finite magnitude, the integral (34) converges:∫ ∞
0

|Vm(R, T )| dT <∞. (34)

According (Aramanovich et al., 1968), the inverse Laplace transform can be substi-
tuted by the inverse Fourier transform using s = jω:

Vm(R, T ) =
1

2π

∫ ∞
−∞

Vm(R, jω) exp(jωT ) dω. (35)
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Fig. 1. Dependency of the alteration of the normalized transmembrane potential Vmn on normalized time in
case of stimulation by a rectangular current pulse. Curves 1–4 are obtained in a three-dimensional medium in
which Vm was calculated in point Ro(Ro – radius of the electrode). Curve 1: Ro = 0.1; curve 2: Ro = 0.5;
curve 3: Ro = 1.0; curve 4: Ro = 3.0. Curve 5 reflects the alteration of Vm in a single-dimensional infinite
cable when the points of pacing and recording coincide. Curve 6 – dependency Vmn = 1−exp(−t/τm) (case
of point membrane).

Fig. 2. Dependency of half-time T1/2 on the distance between the center of the pacing electrode and the poten-
tial of the recording point R, for different radius of the pacing electrode. The dotted line shows the dependency
T1/2 = R/2, and the figures near the curves indicate Ro, the radius of the pacing electrode.

Analogous expressions can be derived for the intracellular and extracellular potential.
The inverse Fourier transform was performed in a numerical way using the Fillon

method (Hamming, 1962). We found that the speed of alteration of the anterior frontier of
Vm depends on radiusRo of the stimulating electrode and the distance between the center
of the electrode and the recording point R. With increase ofRo, when the point of record-



Modeling of Electric Stimulation 393

Fig. 3. Steady state values of Vm, Vi, Ve in regard to the distance from pacing electrode of radius Ro = 1.0.
For further details, see the text.

ing R = Ro, the rising front of transmembrane potential flattens and asymptotically
approaches that in a single-dimensional cable, when the points of stimulation and record-
ing coincide (Fig. 1). Away from the surface of the stimulating electrode (Ro = const.),
the rising front of Vm also flattens, i.e. time T1/2 in which Vm reaches half the stationary
amplitude increases. Fig. 2 provides the dependency of T1/2 on R for different values of
Ro: with increase of R, the functional dependency T1/2 = f(R) asymptotically reaches
the straight line whose tangent of the sloping angle is equal to 0.5.

To calculate the absolute values of Vm, Vi, Ve for a stationary case, with T →∞, the
values of parameters ρi, ρe, Rm, Cm, b must be known. As our model is concerned with
an isotropic case whereas the cardiac tissue is anisotropic, we take the specific resistance
of intracellular and extracellular spaces in the x, y, z axis directions from reference
(Plonsey and Barr, 1982), and in accordance with (Bukauskas et al., 1975) we assume
that, ρi = 3

√
ρixρiyρiz , ρe = 3

√
ρexρeyρez, where ρix, ρiy , ρiz are the specific resistance

of the intracellular space of the cardiac tissue, ρex, ρey , ρez are the specific resistance
of the extracellular space of the cardiac tissue taken from reference (Plonsey and Barr,
1982). We take Rm = 2000Ω· cm2 (Sepulveda et al., 1989), Cm = 1µF/cm2 (Barr
and Plonsey, 1984), b = 5· 10−4cm (Sepulveda et al., 1989), ρi = 2500Ω·cm, ρe =

300Ω·cm, Io = −0.1 mA and find that close to the spherical stimulating electrode with
radius equal to 1λ, the transmembrane potential is equal to 63 mV. The steady state value
of transmembrane potential decreases with the distance from the surface of the pacing
electrode. At the same time the transmembrane potential always remains positive when
the pacing current is negative (Fig. 3).

The elaborated the mathematical model of electrical stimulation which could allow
to find a stimulation mode with minimal energy resources. Such stimulating mode could
be very useful for maximizing of life time of the power source of a cardiac pacemaker.
On the other hand minimal stimulating energy will reduce the inescapable injury of the
cardiac tissue during stimulation.
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Elektrinės stimuliacijos modeliavimas trimatėje izotropinėje
dvisritėje ominėje – talpuminėje terpėje:
stimuliavimas stačiakampiu srovės šuoliuku

R. Veteikis, A. Kriščiukaitis

Elektrotoninio potencialo pasiskirstymas dvisritėje trimatėje RC-terpėje yra aprašomas Laplaso
lygtimis. Atlikus Laplaso transformacij ↪a vaizd ↪u erdvėje yra gauti ši ↪u lygči ↪u sprendiniai, kai sti-
muliuojama stačiakampiu srovės impulsu ekstral ↪asteliniu sferiniu elektrodu. Sprendiniai original ↪u
erdvėje yra gauti skaitmeniniu būdu atlikus atvirkštin ↪e Laplaso transformacij ↪a. Gauta, kad trans-
membraninio potencialo priekinio fronto kitimo greitis, didėjant elektrodo spinduliui, mažėja ir
asimptotiškai artėja prie vienmačio kabelio atvejo. Stacionari transmembraninio, intral ↪astelinio ir
ekstral ↪astelinio potencialo reikšmė tolstant nuo elektrodo paviršiaus mažėja, tačiau transmembrani-
nis potencialas visada išlieka teigiamas, kai stimuliuojanti srovė yra neigiama.


