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Abstract. We discuss an age-sex-structured population dynamics deterministic model taking into
account random mating of sexes, females’ pregnancy and its dispersal in whole space. This model
can be derived from the previous one (Skakauskas, 1995) describing migration mechanism by the
general linear elliptic operator of second order and includes the male, single (nonfertilized) female
and fertilized female subclasses. Using the method of the fundamental solution for the uniformly
parabolic second-order differential operator with bounded Hölder continuous coefficients we prove
the existence and uniqueness theorem for the classic solution of the Cauchy problem for this model.
In the case where dispersal moduli of fertilized females are not depending on age of the mated male
we analyze population growth and decay.
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1. Introduction

In the paper (Skakauskas, 1994) we have developed a general deterministic model for
an age-sex-structured population dynamics taking into account random mating of sexes
without formation of permanent male-female couples, female’s pregnancy, possible de-
struction of the fetus (abortion), and female’s sterility periods after abortion and delivery.
The population is divided into five components: one male and four female, the latter
four being the single (nonfertilized) female, fertilized female, female from sterility pe-
riod after abortion, and female from sterility one following delivery. Each sex has three
age-grades: pre-reproductive, reproductive, and post-reproductive. It is assumed that for
each sex the commencement of each grade as well as the duration of the gestation and
female’s sterility periods are independent of individuals or time. Latter, in (Skakauskas,
1995), we generalized this model for the spatially dispersing population in whole space.
Spatial dispersal mechanism in this model is described by an integral operator.

In the present paper we simplify the model in (Skakauskas, 1995) by neglecting abor-
tion and female’s sterility periods, replace the integral describing operator migration by
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the general linear elliptic differential one of second order and prove classical solvabil-
ity of the initial problem for this model. The special case of the present model for the
population dispersing in the whole space, where all vital rates of fertilized female are
independent of age of mated partner, has been considered in (Skakauskas, 1997), and the
existence and uniqueness theorems for the steady (i.e., time independent) and nonstation-
ary cases have been proved.

This paper is organized as follows. In Section 3 we formulate the problem, Section 4
represents main hypotheses and results. In Section 5 we recall some classical results
concerning unique solvability of the Cauchy problem for the linear differential parabolic
operator of second order with parameter. Section 6 is devoted to proving the solvability
theorem. In Sections 7 and 8 in the case where dispersal moduli of fertilized females are
independent of age of mated males, we obtain upper estimates for population growth and
extinction.

2. Notations

We follow the notations used in (Skakauskas, 1995):
τ1, τ2, τ3: the ages of male, female, and embryo, respectively;
t: time;
Em: Euclidean space (habitat of population) of dimensionm;
x = (x1, x2, . . . , xm): the spatial position in Em;
u1(x, t, τ1): the age-space density of males at age τ1, location x and time t;
u2(x, t, τ2): the age-space density of single (nonfertilized) females at age τ2, location

x and time t;
u3(x, t, τ1, τ2, τ3): the age-space density of fertilized females at age τ2, position x

and time t whose embryo is at age τ3 and that were fertilized by males at age τ1;
p(x, t, τ1, τ2): the density of probability to become fertilized for a female from the

male-female pair formed of male at age τ1 and female at age τ2, at location x and time t;
ν1(x, t, τ1) (resp. ν2(x, t, τ2)): the death rate of males at age τ1 (resp. single females

at age τ2), position x and time t;
ν3(x, t, τ1, τ2, τ3): the death rate of fertilized females at age τ2, position x and time t

whose embryo is at age τ3 and that were fertilized by males at age τ1; ;
X(u3)(x, t, τ2): the single female gain rate by the females which have had a delivery

at age τ2, position x and time t;
Y (u1)(x, t, τ2)u2: the single female loss due to conception at age τ2, location x and

time t;
σ1 = (τ11, τ12], 0 < τ11 < τ12 < ∞: the female sexual activity interval, σ1 =

[τ11, τ12];
σ3 = (0, T ], 0 < T <∞: the female gestation interval, σ3 = [0, T ];
σ2(τ3) = (τ21 + τ3, τ22 + τ3], 0 < τ21 < τ22 <∞, σ2(τ3) = [τ21 + τ3, τ22 + τ3];
σ2(0), σ2(T ): the female fertilization and reproductivity intervals, respectively;
n1(x, t): the spatial density of males with ages from σ1;
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b1(x, t, τ1, τ2) and b2(x, t, τ1, τ2): the average numbers of male and female offspring,
respectively, produced at time t at the position x by a fertilized female of characteristics
(τ1, τ2, T );

u0
1(x, τ1), u0

2(x, τ2), u0
3(x, τ1, τ2, τ3): the initial distributions;

σ = σ1 × σ2(T ), σ = σ1 × σ2(T ), dσ = dτ1dτ2;

τ0
2 = 0, τ1

2 = τ21, τ
2
2 = min (τ21 +T, τ22), τ3

2 = max (τ21 +T, τ22), τ4
2 = τ22 +T,

τ5
2 =∞;

I = (0,∞), I = [0,∞), I4 = (τ4
2 ,∞), Is = (τs2 , τ

s+1
2 ], s = 0, 3;

I∗ = (0, t∗], I
∗

= [0, t∗], t∗ <∞;

Q1 =
{

(x, t, τ1) ∈ Em × I × I
}
, Q2 =

{
(x, t, τ2) ∈ Em × I × (I \

4
∪
s=1

τs2 )
}

;

Q3 =
{

(x, t, τ1, τ2, τ3) ∈ Em × I × σ1 × σ2(τ3)× σ3

}
;

Q1 = Q2 = Em × I × I, Q3 = Em × I × σ1 × σ2(τ3)× σ3;

[u2|τ2=τj2
] : the jump of function u2 at the plane τ2 = τ j2 ;

D̂1 = ∂/∂t+ ∂/∂τ1, D̂2 = ∂/∂t+ ∂/∂τ2, D̂3 = D̂2 + ∂/∂τ3;

D1 =
√

2D̃1, D2 =
√

2D̃2, D3 =
√

3D̃3;
D̃i, i = 1, 2, 3: the directional derivative in the positive direction of characteristics of

the operator D̂i;
akij(x, t, τk), aki (x, t, τk), k = 1, 2, a3

ij(x, t, τ1, τ2, τ3), a3
i (x, t, τ1, τ2, τ3), i, j =

1,m: the space dispersal moduli of males (k = 1), single females (k = 2), and fer-
tilized females;

Lk(x, t, τk) =
m∑

i,j=1

akij∂
2/∂xi∂xj +

m∑
i=1

aki ∂/∂xi − νk(x, t, τk), k = 1, 2,

L3(x, t, τ1, τ2, τ3) =
m∑

i,j=1

a3
ij∂

2/∂xi∂xj +
m∑
i=1

a3
i ∂/∂xi − ν3(x, t, τ1, τ2, τ3).

C0(Em × J1 × . . . × Js), Js = (Js1, Js2), Js1 < Js2 < ∞: the Banach space of
bounded continuous in Em × J1 × . . .× Js functions f(x, ξ1, ξ2, . . . , ξs);

Cα,0,...,0(Em × J1 × . . . × Js): the Banach space of functions f(x, ξ1, ξ2, . . . , ξs)

belonging toC0(Em×J1×. . .×Js), which are Hölder continuous in (Em×J1×. . .×Js)
with exponent α ∈ (0, 1) in x uniformly with respect to (ξ1, ξ2, . . . , ξs), i.e., having the
finite Holder seminorm with respect to x (see [2]).

Cα,α/2,...,α/2(Em×J1× . . .×Js): the Banach space of functions f(x, ξ1, ξ2, . . . , ξs)

belonging toC0(Em×J1×. . .×Js),which are Hölder continuos in (Em×J1×. . .×Js)
with exponent α ∈ (0, 1) in x and α/2 in ξk, k = 1, s, i.e., having the finite Hölder
seminorm with respect to x, ξ1, . . . , ξs.

C1,0,...,0(Em × J1 × . . . × Js): the Banach space of functions f(x, ξ1, ξ2, . . . , ξs)

such that ∂f/∂xi ∈ C0(Em × J1 × . . .× Js), i = 1,m.
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For more details concerning population densities and vital rates we refer the reader to
(Skakauskas, 1995).

3. Problem Formulation

The model to be discussed in this paper consists of the following nonlinear system of
integrodifferential equations for u1, u2, u3,

(D1 − L1)u1 = 0 in Q1, (1)

(D2 − L2)u2 = X(u3)− u2Y (u1) in Q2, (2)

Y (u1) =

 0, τ2 6∈ σ2(0),

n−1
1

∫
σ1
pu1 dτ1, n1 =

∫
σ1
u1 dτ1, τ2 ∈ σ2(0),

(3)

X(u3) =

 0, τ2 6∈ σ2(T ),∫
σ1
u3|τ3=T dτ1, τ2 ∈ σ2(T ),

(4)

(D3 − L3)u3 = 0 in Q3, (5)

which supplemented with the conditions

uk|t=0 = u0
k, k = 1, 2 in Em × I,

u3|t=0 = u0
3 in Em × σ1 × σ2(τ3)× σ3, (6)

uk|τk=0 =

∫
σ

bku3|τ3=T dσ, k = 1, 2 in Em × I, (7)

u3|τ3=0 = pu1u2/n1 in Em × I × σ1 × σ2(0), (8)[
u2|τ2=τs

2

]
= 0, s = 1, 4 in Em × I, (9)

describes evolution of the population with dispersal in whole space. In addition we as-
sume that the initial distributions u0

1, u0
2, u0

3 satisfy the following compatibility conditions

u0
k|τk=0 =

∫
σ

bk|t=0u
0
3|τ3=T dσ, k = 1, 2 in Em,

u0
3|τ3=0 = p|t=0u

0
1u

0
2/

∫
σ1

u0
1 dτ1 in Em × σ1 × σ2(0). (10)

As it follows from the foregoing, given functions ν1, ν2, ν3, p, b1, b2, u0
1, u0

2, u0
3 and

the unknown ones u1, u2, u3 must be positive-valued, otherwise they have no biological
significance. Our purpose is to find u1, u2, u3.
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Observe that replacing Lk uk, k = 1, 2 and L3 u3 in (1)–(10) by∫
Em

qk(x, t, τk, ξ)uk(ξ, t, τk) dξ − uk(x, t, τk)

∫
Em

qk(ξ, t, τk, x) dξ, k = 1, 2,

and ∫
Em

q3(x, t, τ1, τ2, τ3, ξ)u3(ξ, t, τ1, τ2, τ3)dξ

− u3(x, t, τ1, τ2, τ3)

∫
Em

q3(ξ, t, τ1, τ2, τ3, x)dξ,

respectively, with given nonnegative q1, q2, q3 we obtain a model analyzed in
(Skakauskas, 1995).

4. Hypotheses and Main Results

Unless otherwise stated, the assumptions listed in this section hold throughout the paper:

(H1) p(x, t, τ1, τ2) ∈ C1,0,0,0(Em × I × σ1 × σ2(0)) is a nonnegative function with a
compact support in x (supp p(·, t, τ1, τ2)) and such that
pt−1/2 ∈ C0,0,0,0(Em × [0, ε]× σ1 × σ2(0)) for any small ε > 0;

(H2) bk(x, t, τ1, τ2) ∈ C0(Em × I × σ1 × σ2(T )), k = 1, 2 are nonnegative functions;

(H3) νk(x, t, τk) ∈ Cα,0,0(Qk), k = 1, 2, ν3(x, t, τ1, τ2, τ3) ∈ Cα,0,0,0,0(Q3) are
nonnegative functions;

(H4) akij(x, t, τk) ∈ Cα,α/2,α/2(Qk), aki (x, t, τk) ∈ Cα,0,0(Qk), k = 1, 2,

i, j = 1,m and a3
ij(x, t, τ1, τ2, τ3) ∈ Cα,α/2,α/2,α/2,α/2(Q3), a3

i (x, t, τ1τ2, τ3) ∈
Cα,0,0,0,0(Q3), i = 1,m are such that operators L1, L2, L3 are uniformly elliptic
(see Garoni and Menaldi, 1992; Ladyzhenskaya et al., 1967);

(H5) u0
1(x, τ1) ∈ C0(Em × I) is positive and u0

2(x, τ2) ∈ C0(Em × I),
u0

3(x, τ1, τ2, τ3) ∈ C0(Em × σ1 × σ2(τ3)× σ3) are nonnegative functions
verifying (10).

Now we list theorems for solvability of model (1)–(10), population growth and its
decay which will be proved in Sections 6 and 7.

Theorem 1. Under the hypotheses (H1)–(H5) problem (1)–(10) has for t ∈ I∗ a unique
nonnegative classic solution (see Garoni and Menaldi, 1992; Ladyzhenskaya et al., 1967)
such that u1 ∈ C0(Em × I∗ × I), u2 ∈ C0(Em × I∗ × I), u3 ∈ C0(Em × I∗ × σ1 ×
σ2(τ3)× σ3).
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Let us introduce the following notions

b̂ = max

{∫
σ2(T )

sup
Em×I×σ1

b1 dτ2,

∫
σ2(T )

sup
Em×I×σ1

b2 dτ2

}
,

p̂ = sup
Em×I×σ1×σ2(0)

p,

û = max
{

sup
Em×I

u0
1, sup

Em×I
u0

2

}
, û3 = sup

Em×σ2(T )

∫
σ1

u0
3|τ3=T dτ1.

ν̃2 = inf
Em×I×(I2∪I3)

ν2,

Q3
∗ = {(x, t, τ1, τ2, τ3): x ∈ Em, 0 < t 6 τ3, τ1 ∈ σ1, τ2 ∈ σ2(τ3), τ3 ∈ σ3} ,

Q3∗ = {(x, t, τ1, τ2, τ3): x ∈ Em, t > τ3, τ1 ∈ σ1, τ2 ∈ σ2(τ3), τ3 ∈ σ3} .

Theorem 2. Let (H1)–(H5) hold, assume that a3
ij , a

3
i , i, j = 1,m are independent of τ1,

and let ν̃2 > 0.

Then

(i)
∫
σ1
u3 dτ1 6


û3 in Q3∗,

p̂ sup
y∈Em

u2(y, t− τ3, τ2 − τ3) in Q∗3 for t− τ3 ∈ I
∗
,

(ii) uk 6 δγsû for t ∈ (sT, (s+ 1)T ] ∩ [0, t∗], x ∈ Em, τk ∈ I ,

with s = 0, 1, . . . , k = 1, 2, and γ = max(̂bp̂, 1, p̂/ν̃2), δ = max
(
b̂û3/û, 1, û3/ûν̃2

)
(or more roughly uk 6 δûγt/T ).

Define

q = b̂û3/û, ν̃ = min
(
inf
Q1

ν1, inf
Q2

ν2

)
,

ω0 =
{

(x, t, ξ): x ∈ Em, 0 6 t 6 ξ, ξ ∈ I
}
,

ωs =
{

(x, t, ξ): x ∈ Em, (s− 1)τ4
k < t− ξ 6 sτk2 , t 6 t∗, ξ ∈ I

}
,

s = 1, 2 . . . .

Theorem 3. Assume the hypotheses of Theorem 2 hold and let b̂p̂ 6 q 6 min(1, ν̃b̂),
ν̃ > 0. Then:

(i)
∫
σ1
u3 dτ1 6


û3 in Q3∗,

p̂ supy∈Em u2(y, t− τ3, τ2 − τ3) in Q∗3 for t− τ3 ∈ I
∗
,

(ii) max
{

sup
ωs

u1, sup
ωs

u2

}
6 ûqs.
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COROLLARY 1. Let assumptions of Theorem 3 hold. If q < 1, then population vanishes
as t increases.

5. Some Properties of Parabolic Operators of Second Order

In this section we collect some classical results concerning the solvability and uniqueness
of the Cauchy problem for the linear differential parabolic operator of second order (see
Garoni and Menaldi, 1992; Ladyzhenskaya et al., 1967).

Lemma 1. Let

Λ(x, t, β) = ∂/∂t−
m∑

i,j=1

bij∂
2/∂xi∂xj −

m∑
i=1

b̃i∂/∂xi + b0

be a uniformly parabolic operator depending on a parameter β ∈ J = [β1, β2], β1 <

β2 <∞ with coefficients satisfying the following conditions

bij(x, t, β) ∈ Cα,α/2,0(Em × I∗ × J), i, j = 1,m,

b̃i(x, t, β) ∈ Cα,0,0(Em × I∗ × J), i = 0,m,

and assume that

0 < u0(x, β) ∈ C0(Em × J),

0 < f(x, t, β) ∈ Cα,0,0(Em × I∗ × J), 0 < α < 1.

Then problem

Λu = f in Em × I∗ × J,

u(x, 0, β) = u0 in Em × J (11)

has a unique positive in Em × I∗ × J classic solution (see Garoni and Menaldi, 1992)

u(x, t, β) =

∫
Em

Γ(x, t; y, 0;β)u0(y, β) dy

+

∫ t

0

dτ

∫
Em

Γ(x, t; y, τ ;β)f(y, τ, β)dy, (12)

where Γ(x, t; y, τ ;β) is the fundamental solution of the operator Λ(x, t, β).

Lemma 2 (The comparison principle (see Friedman, 1968)). Assume b′0, b′′0 , f ′, f ′′ and
u0′, u0′′ verify 0 6 b′′0 6 b′0, 0 6 f ′ 6 f ′′ and u0′ 6 u0′′ in Em × I

∗ × J and
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Em × J , respectively. Then the corresponding solutions of problem (11) are such that
0 6 u′ 6 u′′.

REMARK 1. Let u0, Λ(x, t, β) and its coefficients be as in Lemma 1. Then the conclusion
of Lemma 1 holds true for f verifying

f(x, t, β) ∈ C0(Em × I∗ × J), |f(x, t, β)− f(y, t, β)| 6 κt−γ |x− y|α

with κ a constant and constant γ ∈ (0, 1).

The proof is the same as that of Lemma 1 in (Garoni and Menaldi, 1992) and based
on the estimate

∣∣∣ ∫
Em

F (x, t; y, τ ;β)f(y, τ, β) dy
∣∣∣ 6 κ1(t− τ)−(2−α)/2τ−γ

for F = ∂2Γ/∂xi∂xj , ∂Γ/∂t,

which can be established by using the following inequality given in (Garoni and Menaldi,
1992; Ladyzhenskaya et al., 1967)

∣∣∣ ∫
Em

F (x− y, y, t, τ, β) dy
∣∣∣ 6 κ1(t− τ)−(2−α)/2

for F = ∂2Γ0/∂xi∂xj , ∂Γ0/∂t,

where κ1 is a constant and Γ0 signifies the parametrix

Γ0(x− y, y, t , τ, β) =
{

[4π(t− τ)]
m/2 (

detB(y, τ)
)1/2}−1

× exp

{
− {4(t− τ)}−1

m∑
i,j=1

Bij(y, τ) (xi − yi)(xj − yj)
}
,

B means the matrix with elements bij(x, t, β), B−1 its inverse with elements Bij .
We can also prove the estimate∣∣∣ ∫

Em
{Γ(x, t; y, τ ;β) − Γ(x′, t; y, τ ;β)} f(y, ξ, β) dy

∣∣∣
6 κ1|x− x′|(t− τ)−1/2 (13)

for f ∈ C0(Em × I∗ × J), where κ1 is a constant.

REMARK 2. Under the hypotheses of Remark 1, u ∈ C0(Em × I∗ × J).
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The proof is based on the estimate

|Γ(x, t; y, τ ;β′′)− Γ(x, t; y, τ ;β′)|

< εc(t− τ)−m/2 exp
{
−C|x− y|2/(t− τ)

}
(14)

for every ε > 0 and sufficiently small |β′′−β′|, where c andC are two positive constants.
This estimate can be proved by parametrix method, used in (Ladyzhenskaya et al., 1967)
for construction of Γ(x, t; y, τ ;β), as follows. According to Ladyzhenskaya et al. (1967)
we have

Γ(x, t; y, τ ;β) = Γ0(x− y, y, t, τ, β)

+

∫ t

τ

dλ

∫
Em

Γ0(x− ξ, ξ, t, λ, β)R(ξ, λ; y, τ ;β) dξ,

R(x, t; ξ, τ ;β) +

∫ t

τ

dλ

∫
Em

K(x, t; y, λ;β)R(y, λ; ξ, τ ;β) dy

+K(x, t; ξ, τ ;β) = 0,

K(x, t; y, λ;β) =
m∑

i,j=1

(
bij(y, λ, β)− bij(x, t, β)

) ∂2

∂xi∂xj
Γ0(x− y, y, t, λ, β)

+
{
−

m∑
i=1

bi(x, t, β)∂/∂xi + b0(x, t, β)
}

Γ0(x− y, y, t, λ, β),

|K(x, t; y, τ ;β)| 6 c(t− τ)−(m+2−α)/2 exp
{
−C|x− y|2/(t− τ)

}
,

|R(x, t; ξ, τ ;β)| 6 c(t− τ)−(m+2−α)/2 exp
{
−C|x− ξ|2/(t− τ)

}
,

|Γ(x, t; ξ, τ ;β)| 6 c(t− τ)−m/2 exp
{
−C|x− ξ|2/(t− τ)

}
.

Letting

g(x, ξ, t, τ, β′′, β′) = R(x, t; ξ, τ ;β′′)−R(x, t; ξ, τ ;β′),

we obtain

g(x, ξ, t, τ, β′′, β′) +

∫ t

τ

dλ

∫
Em

K(x, t; y, λ;β′′)g(y, ξ, λ, τ, β′′, β′)dy

+

∫ t

τ

dλ

∫
Em

(
K(x, t; y, λ;β′′)−K(x, t; y, λ;β′)

)
R(y, λ; ξ, τ ;β′)dy

+K(x, t; ξ, τ ;β′′)−K(x, t; ξ, τ ;β′) = 0,
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which by

|Γ0(x− y, y, t, τ, β′′)− Γ0(x− y, y, t, τ, β′|

6 ε1c(t− τ)−m/2 exp
{
−C|x− y|2/(t− τ)

}
and

|K(x, t; y, λ;β′′)−K(x, t; y, λ;β′)|

6 ε1(t− λ)−(m+2−α)/2 exp
{
−C|x− y|2/(t− λ)

}
yields

|g(x, ξ, t, τ, β′′, β′)| 6 ε1c(t− τ)−(m+2−α)/2 exp
{
−C|x− ξ|2/(t− τ)

}
for every ε1 > 0 and sufficiently small |β′′ − β′|. Combining these estimates proves
(14) which, by (12) and due to continuity of u for fixed value of parameter, enables us to
estimate difference u(x′′, t′′, β′′)− u(x′, t′, β′′) + u(x′, t′, β′′)− u(x′, t′, β′). This ends
the proof of Remark 2.

6. Proof of Theorem 1

Now we are in position to prove Theorem 1. We limit ourselves to the case of multiple
deliveries including overlapping between successive generations, i.e., T < τ22 − τ21,
τ2
2 = τ21 + T, τ2

3 = τ22. The opposite case can be considered by similar argument.
Set

Q1 = Q1
∗ ∪Q1∗,

Em × I × I =
4
∪
s=0

Q2
k, Q2

k = Em × I × Ik = Q2
k∗ ∪Q2∗

k , k = 0, 4,

Q3 = Q3
∗ ∪Q3∗,

where

Q1
∗ = {(x, t, τ1): x ∈ Em, 0 < t 6 τ1, τ1 ∈ I} ,

Q1∗ = {(x, t, τ1): x ∈ Em, t > τ1, τ1 ∈ I} ,
Q2
k∗ =

{
(x, t, τ2): x ∈ Em, 0 < t 6 τ2 − τk2 , τ2 ∈ Ik

}
,

Q2∗
k =

{
(x, t, τ2): x ∈ Em, t > τ2 − τk2 , τ2 ∈ Ik

}
,

Q3
∗ = {(x, t, τ1, τ2, τ3): x ∈ Em, 0 < t 6 τ3, τ1 ∈ σ1, τ2 ∈ σ2(τ3), τ3 ∈ σ3} ,

Q3∗ = {(x, t, τ1, τ2, τ3): x ∈ Em, t > τ3, τ1 ∈ σ1, τ2 ∈ σ2(τ3), τ3 ∈ σ3} .
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Let τ1 = t + η1 and τ2 = t + η2 be characteristics of the operators D̂1 and D̂2,
respectively, and assume that τ2 = t + η3, τ3 = t + η4 mean the characteristics of D̂3.

Here η1, η2, η3, η4 denote parameters of the characteristics. Letting

L1(x, t, t+ η1) = L1∗(x, t, η1), u1(x, t, t+ η1) = u1∗(x, t, η1) in Q1
∗,

L1(x, τ1 − η1, τ1) = L∗1(x, τ1,−η1),

u1(x, τ1 − η1, τ1) = u∗1(x, τ1,−η1) in Q1∗,

L2(x, t, t+ η2) = L2∗(x, t, η2), u2(x, t, t+ η2) = u2∗(x, t, η2),

Y (x, t, t+ η2) = Y∗(x, t, η2), X(x, t, t+ η2) = X∗(x, t, η2) in
4
∪
k=0

Q2
k∗,

L2(x, τ2 − η2, τ2) = L∗2(x, τ2,−η2), u2(x, τ2 − η2, τ2) = u∗2(x, τ2,−η2),

Y (x, τ2 − η2, τ2) = Y ∗(x, τ2,−η2),

X(x, τ2 − η2, τ2) = X∗(x, τ2,−η2) in
4
∪
k=0

Q2∗
k ,

L3(x, t, τ1, t+ η3, t+ η4) = L3∗(x, t, τ1, η3, η4),

u3(x, t, τ1, t+ η3, t+ η4) = u3∗(x, t, τ1, η3, η4) in Q3
∗,

L3(x, τ3 − η4, τ1, τ3 + η3 − η4, τ3) = L∗3(x, τ3, τ1,−η4, η3 − η4),

u3(x, τ3 − η4, τ1, τ3 + η3 − η4, τ3) = u∗3(x, τ3, τ1,−η4, η3 − η4) in Q3∗,

L̃2∗ = L2∗ − Y∗, L̃∗2 = L∗2 − Y ∗,

and taking (1)–(10) on the respective characteristics we obtain:

(∂/∂t− L1∗)u1∗ = 0 in Q1
∗, u1∗(x, 0, η1) = u0

1(x, η1),

(∂/∂τ1 − L∗1)u∗1 = 0 in Q1∗, u∗1(x, 0,−η1) = u1(x,−η1, 0),

(∂/∂t− L̃2∗)u2∗ = X∗ in
4
∪
k=0

Q2
k∗, u2∗(x, 0, η2) = u0

2(x, η2),

(∂/∂τ2 − L̃∗2)u∗2 = X∗ in Q2∗
k ,

u∗2(x, τk2 ,−η2) = u2(x, τk2 − η2, τ
k
2 ), k = 0, 4,

(∂/∂t− L3∗)u3∗ = 0 in Q3
∗,

u3∗(x, 0, τ1, η3, η4) = u0
3(x, τ1, η3, η4),

(∂/∂τ3 − L∗3)u∗3 = 0 in Q3∗,

u∗3(x, 0, τ1,−η4, η3 − η4) = u3(x,−η4, τ1, η3 − η4, 0).

(15)

By virtue of (H3)–(H5), operators Lk∗, L∗k, k = 1, 2, 3 and initial distributions
u1∗(x, 0, η1), u2∗(x, 0, η2), u3∗(x, 0, τ1, η3, η4) satisfy all the conditions of Remark 1.
If Y∗, Y ∗, u1(x,−η1, 0), u2(x, τk2 − η2, τ

k
2 ), u3(x,−η4, τ1, η3 − η4, 0), and X∗, X∗

are known and satisfy all the conditions of Remark 1, then system (15) degenerates into
separate problems for u1∗, u∗1, u2∗, u∗2, u3∗, u∗3, respectively, of type (11).

Denoting by

Γ1
∗(x, t; y, ξ; η1), Γ1∗(x, τ1; y, ξ;−η1),
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Γ2
k∗(x, t; y, ξ; η2), Γ2∗

k (x, τ2; y, ξ;−η2),

Γ3
∗(x, t; y, ξ; τ1, η3, η4), Γ3∗(x, τ3; y, ξ; τ1,−η4, η3 − η4)

the fundamental solutions of operators

∂/∂t− L1∗, ∂/∂τ1 − L∗1, ∂/∂t− L̃2∗, ∂/∂τ2 − L̃∗2,

∂/∂t− L3∗, ∂/∂τ3 − L∗3

in Q1
∗, Q

1∗, Q2
k∗, Q

2∗
k , Q3

∗, Q
3∗, respectively, from (15), applying general formula (12)

to uk∗, u∗k, k = 1, 2, 3, we obtain the system

u1∗(x, t, η1) =

∫
Em

Γ1
∗(x, t; y, 0; η1)u0

1(y, η1)dy in Q1
∗,

u∗1(x, τ1,−η1) =

∫
Em

Γ1∗(x, τ1; y, 0;−η1)u1(y,−η1, 0)dy in Q1∗,

u2∗(x, t, η2) =

∫
Em

Γ2
k∗(x, t; y, 0; η2)u0

2(y, η2)dy

+

∫ t

0

dξ

∫
Em

Γ2
k∗(x, t; y, ξ; η2)X∗(y, ξ, η2)dy in Q2

k∗,

u∗2(x, τ2,−η2) =

∫
Em

Γ2∗
k (x, τ2; y, τk2 ;−η2)u2(y, τk2 − η2, τ

k
2 )dy

+

∫ τ2

τk2

dξ

∫
Em

Γ2∗
k (x, τ2; y, ξ;−η2)X∗(y, ξ,−η2)dy in Q2∗

k ,

u3∗(x, t, τ1, η3, η4) =

∫
Em

Γ3
∗(x, t; y, 0; τ1, η3, η4)u0

3(y, τ1, η3, η4)dy in Q3
∗,

u∗3(x, τ3, τ1,−η4, η3 − η4)

=

∫
Em

Γ3∗(x, τ3; y, 0; τ1,−η4, η3 − η4)u3(y,−η4, τ1, η3 − η4, 0)dy in Q3∗,

which by (4), (6)–(8) can be written as follows

u1(x, t, τ1) =

∫
Em

Γ1
∗(x, t; y, 0; τ1 − t)u0

1(y, τ1 − t) dy in Q1
∗, (16)

u1(x, t, τ1) =

∫
Em

Γ1∗(x, τ1; y, 0; t− τ1)u1(y, t− τ1, 0) dy in Q1∗, (17)

u2(x, t, τ2) =

∫
Em

Γ2
k∗(x, t; y, 0; τ2 − t)u0

2(y, τ2 − t) dy in Q2
k∗,

k = 0, 1, 4, (18)
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u2(x, t, τ2) =

∫
Em

Γ2
k∗(x, t; y, 0; τ2 − t)u0

2(y, τ2 − t) dy

+

∫ t

0

dξ

∫
Em

dyΓ2
k∗(x, t; y, ξ; τ2 − t)

∫
σ1

u3(y, ξ, τ1, ξ + τ2 − t, T ) dτ1 (19)

in Q2
k∗, k = 2, 3,

u2(x, t, τ2) =

∫
Em

Γ2∗
k (x, τ2; y, τk2 ; t− τ2)u2(y, τk2 + t− τ2, τk2 ) dy (20)

in Q2∗
k , k = 0, 1, 4,

u2(x, t, τ2) =

∫
Em

Γ2∗
k (x, τ2; y, τk2 ; t− τ2)u2(y, τk2 + t− τ2, τk2 ) dy

+

∫ τ2

τk2

dξ

∫
Em

dyΓ2∗
k (x, τ2; y, ξ; t− τ2)

×
∫
σ1

u3(y, ξ + t− τ2, τ1, ξ, T ) dτ1 in Q2∗
k , k = 2, 3, (21)

u3(x, t, τ1, τ2, τ3) =

∫
Em

Γ3
∗(x, t; y, 0; τ1, τ2 − t, τ3 − t)

× u0
3(y, τ1, τ2 − t, τ3 − t) dy in Q3

∗, (22)

u3(x, t, τ1, τ2, τ3) =

∫
Em

Γ3∗(x, τ3; y, 0; τ1, t− τ3, τ2 − τ3)

× u3(y, t− τ3, τ1, τ2 − τ3, 0) dy in Q3∗, (23)

u3(x, t, τ1, τ2, 0) = p(x, t, τ1, τ2)u1(x, t, τ1)u2(x, t, τ2)/n1(x, t),

n1 =

∫
σ1

u1 dτ1, (24)

u1(x, t, 0) =

∫
σ

b1u3(x, t, τ1, τ2, T ) dσ, (25)

u2(x, t, 0) =

∫
σ

b2u3(x, t, τ1, τ2, T ) dσ. (26)

We must add to (20) and (21) the continuity condition [u|τ2=τk2
] = 0, k = 1.4.

Now we will prove that (16)–(26) represent the solution of (1)–(10). Consider system
(16)–(26) going along the axis t by step T. Since L1∗, L2∗ in Q2

0∗ ∪Q2
4∗ and L3∗ satisfy

the conditions of Remark 1, functions (16), (18) for k = 0 and (22) express positive u1,
u2 and u3 in Q1

∗, Q
2
0∗ ∪ Q2

4∗ and Q3
∗, respectively. Hence, by virtue of (H1) we observe

that n1|suppa p(·,t,τ1,τ2) > ñ1 and

p(x, t, τ1, τ2)u1(x, t, τ1)/n1(x, t) ∈ C0 (Em × [0, τ11]× σ1 × σ2(0)) ,
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where ñ1 is a positive constant, while from (22) by (13) it follows that

|u3(x, t, τ1, τ2, τ3)− u3(y, t, τ1, τ2, τ3)| 6 κ1|x− y|t−1/2 in Q3
∗, (27)

with κ1 a constant.
Let t ∈ [0, T ] and assume ω1 = Em × [0, T ] × I. By means of (25), (26), (H2)

and due to the continuity of u3 (see Remark 1) we obtain continuos u1(x, t, 0) and
u2(x, t, 0) ∀(x, t) ∈ Em × [0, T ]. Now from (17) and (20) for k = 0 we get contin-
uos u1 and u2 in Q1∗ ∩ ω1 and Q2∗

0 ∩ ω1, respectively. Then by (H1) it follows that

Y (x, t, τ2) ∈ C0 (Em × [0, T ]× σ2(0)) ,

|Y (x, t, τ2)− Y (y, t, τ2)| =
∣∣∣∣ ∫ 1

0

(x− y) · ∇zY (z, t, τ2)|z=y+γ(x−y) dγ

∣∣∣∣
6 |x− y| sup

Em×(0,T ]×σ2(0)

|∇xY (x, t, τ2)| ,

where ∇x and (x− y) · ∇z mean the gradient operator and scalar product, respectively.
Since

|∇xY (x, t, τ2)| 6 n−1
1

∣∣∣∣∫
σ1

(
u1∇xp+ p∇xu1

)
dτ1

∣∣∣∣+ n−2
1 |∇xn1|

∫
σ1

pu1 dτ1,

we have:

n−1
1

∣∣∣∣∫
σ1

u1∇xp dτ1
∣∣∣∣ 6 κ2

by (H1) and because

n1|suppa p(·,t,τ1,τ2) > ñ2,

and

n−1
1

∫
σ1

p|∇xu1| dτ1 + n−2
1 |∇xn1|

∫
σ1

pu1dτ1 6 κ3

∫
σ1

pt−1/2dτ1 6 κ2

by (H1) and boundedness of u1 and because of the estimates

n1|suppa p(·,t,τ1,τ2) > ñ2,

|∇xu1|
∣∣
τ1∈σ1

6 κ4

{
t−1/2, t 6 τ1
1, t ∈ (τ1, T ]

}
6 κ4t

−1/2 for t ∈ (0, T ],

where κ2, κ3, κ4 and ñ2 are some positive constants. The estimate for |∇xu1| follows
from (16), (17) and is based on the estimates (see Garoni and Menaldi, 1992; Ladyzhen-
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skaya et al., 1967)∣∣∇xΓ1∗(x, τ1; y, 0;−η)
∣∣ 6 cτ−(m+1)/2

1 exp {−C|x− y|/τ1} ,∣∣∇xΓ1
∗(x, t; y, 0; η1)

∣∣ 6 ct−(m+1)/2 exp {−C|x− y|/t} ,

c and C being some positive constants.
Thus |Y (x, t, τ2) − Y (y, t, τ2)| 6 κ|x − y| with κ a constant. Hence Y (x, t, τ2)

is Lipshitz continuous with respect to x in Em × [0, T ] × σ2(0) (i.e., Y ∈ C(Em ×
[0, T ] × σ2(0)), and (H4) shows that L̃2∗ and L̃∗2 satisfy all the conditions of Remark 1
in
(
Q2

1∗ ∪ Q2
2∗
)
∩ ω1 and

(
Q2∗

1 ∪ Q2∗
2

)
∩ ω1, respectively. Therefore we can construct

Γ2
1∗, Γ2

2∗, Γ2∗
1 , Γ2∗

2 . Then (18) and (20) for k = 1 yield u2 in
(
Q2

1∗ ∪ Q2∗
1

)
∩ ω1, while

from (19) and (21) by (22), (27) we get u2 in
(
Q2

2∗ ∪Q2
3∗
)
∩ ω1 and

(
Q2∗

2 ∪Q2∗
3

)
∩ ω1,

respectively. Eq. (20) for k = 4 gives u2 in Q2∗
4 ∩ ω1.

Let t ∈ (T, 2T ] and assume ω2 = Em×[T, 2T ]×I.Knowing u1 and u2 for t ∈ [0, T ]

by (24), (H1) and because n1|suppa p(·,t,τ1,τ2) > ñ1 we get continuous u3(x, t, τ1, τ2, 0)

for t ∈ (τ3, T ], then by (23) obtain u3(x, t, τ1, τ2, τ3) for t ∈ (τ3, τ3 + T ]. Observe
that, by Remark 1, |∇xu3|τ3=T | for t > T is bounded. From (25), (26), by using (H2)
and known continuous u3|τ3=T we get continuous u1|τ1=0 and u2|τ2=0 too. Then by
virtue of (17) with known u1|τ1=0 and (20) with known u2|τ2=0 we obtain u1 and u2

in Q1∗ ∩ ω2, Q2∗
0 ∩ ω2, respectively. Now we can construct Y ∗, Y∗ and, by the same

arguments as before, prove that L̃∗2 and L̃2∗ satisfy the conditions of Remark 1. Thus we
can obtain Γ2∗

1 , Γ2∗
2 and Γ2

2∗ (if τ22− τ21 > 2T ), which allows us by (20) for k = 1, (21)
for k = 2, (19) for k = 2, (21) for k = 3, (20) for k = 4, and (18) for k = 4 to construct

u2 in
( 4
∪
s=1

Q2∗
k ∪Q2

2∗
)
∩ ω2.

Proceeding our reasoning we obtain u1, u2 and u3 for t ∈ [2T, t∗]. Restrictions (10)
ensure the continuity of u1, u2, u3 across the lines t = τ1, t = τ2, t = τ3, respectively.
So Theorem 1 is proved.

COROLLARY 2. Under the hypotheses (H3)–(H5) for k = 1, 2, there exists continuous
u1 and u2 satisfying problem (1)–(10) in Q1

∗ and Q2
4∗, respectively. If inf

Qk

νk > 0 and

u0
k(x, τk) → 0 as τk → ∞, k = 1, 2, then so does uk(x, t, τk) for t 6 min(τ1, τ2),
x ∈ Em.

The proof of Corollary follows from the maximum principle (see Friedman, 1968;
Garoni and Menaldi, 1992; Ladyzhenskaya et al., 1967).

7. Population Growth and Decay

In this section we consider the case where dispersal moduli a3
ij and a3

i , i, j = 1,m are
not depending on age τ1 of the mated male, and prove Theorem 2 and Theorem 3.
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Proof of Theorem 2

Set L̃3(x, t, τ2, τ3) =
m∑

i,j=1

a3
ij∂

2/∂xi∂xj +
m∑
i=1

a3
i ∂/∂xi.

Let Γ̃3∗(x, t; y, ξ; η3, η4)
(

resp. Γ̃∗3(x, τ3; y, ξ;−η4, η3 − η4)
)

be the fundamental so-

lution of operator ∂/∂t − L̃3∗ in Q3
∗( resp. ∂/∂τ3 − L̃3∗ in Q3∗). Then classic solution

of the problem

(∂/∂t− L̃3)ũ3 = 0 in Q3,

ũ3|t=0 = u0
3 in Em × σ1 × σ2(τ3)× σ3,

ũ3|τ3=0 = u3(x, t, τ1, τ2, 0) in Em × I × σ1 × σ2(0)

with given suitable u0
3 and u3(x, t, τ1, τ2, 0) = pu1u2/n1 reads

ũ3(x, t, τ1, τ2, τ3) =



∫
Em

Γ̃3
∗(x, t; y, 0; τ2 − t, τ3 − t)
×u0

3(y, τ1, τ2 − t, τ3 − t) dy in Q3
∗,∫

Em Γ̃3∗(x, τ3; y, 0; t− τ3, τ2 − τ3)

×u3(y, t− τ3, τ1, τ2 − τ3, 0)dy in Q3∗,

and by Lemma 2 verifies u3 6 ũ3 in Q3. Hence by (22)–(24),∫
σ1

u3 dτ1 6
∫
Em

dyΓ̃3
∗(x, t; y, 0; τ2 − t, τ3 − t)

∫
σ1

u0
3(y, τ1, τ2 − t, τ3 − t) dτ1

in Q3
∗,∫

σ1

u3 dτ1 6
∫
Em

dyΓ̃3∗(x, τ3; y, 0; t− τ3, τ2 − τ3)

×
∫
σ1

(
pu1u2/n1

)
|(y,t−τ3,τ1,τ2−τ3) dτ1 in Q3∗,

and since

∫
Em

Γ̃3
∗(x, t; y, ξ; τ2 − t, τ3 − t) dy 6 1,

∫
Em

Γ̃3∗(x, τ3; y, ξ; t− τ3, τ2 − τ3) dy 6 1,

we have∫
σ1

u3 dτ1 6
{
û3 in Q3

∗,

p̂ sup
y∈Em

u2(y, t− τ3, τ2 − τ3) in Q3
∗ for t− τ3 ∈ I

∗
. (28)
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So assertion (i) is proved.
It remains to prove assertion (ii). We establish inequality (ii) going along the axis t by

the step T.
Let t ∈ [0, T ]. From (25), (26), by (28)1 with τ3 = T we conclude that

uk|τk=0 6 b̂û3 6 δû, k = 1, 2 in Em × [0, T ], (29)

then from (16)–(21), by (28), (29) and the maximum principle that

u2 6 δû for (x, t, τ2) ∈ Em × [0, T ]× I, (30)

and finally that∫
σ

u3 6 p̂δû for x ∈ Em, t ∈ (τ3, τ3 + T ], τ2 ∈ σ2(τ3), τ3 ∈ σ3. (31)

Let t ∈ (T, 2T ]. Estimate (31) with τ3 = T and (25), (26) yield

uk|τk=0 6 b̂p̂δû 6 γδû, k = 1, 2 in Em × (T, 2T ]. (32)

Then from (18)–(21) by using (32), (31) and the maximum principle we get

u2 6 γδû in Em × (T, 2T ]× I, (33)

which together with (28) yields,∫
σ1

u3 dτ1 6 p̂γδû in Em × (τ3, τ3 + 2T ]× σ2(τ3)× σ3. (34)

Proceeding our argument we prove (ii) for u2, while this one for u1 follows from the
maximum principle. More rough estimate uk 6 δûγt/T in Qk, k = 1, 2 immediately
follows. So Theorem 2 is proved.

Proof of Theorem 3

We consider the case τ21 > T. One can analyze the opposite case in the similar way. The
assertion (i) is the same as that in Theorem 2. Therefore we have to prove the statement
(ii).
Let t ∈ [0, T ]. As in the proof of Theorem 2, we obtain

∫
σ1

u3|τ3=T dτ1 6 û3 in Em × [0, T ]× σ2(T ),

uk|τk=0 6 b̂û3 = qû for t ∈ [0, T ],
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u2 6 qû in Em × [0, T ]× [0, t),

u2 6 ûmax
(
1, û3/

(
ν̃û)
)

6 ûmax
(
1, q/(̂bν̃)

)
6 û in Em × [0, T ]× [t,∞). (35)

Let t ∈ (T, 2T ]. From (i) and (35) it follows that∫
σ1

u3|τ3=T dτ1 6 p̂û in Em × (T, 2T ]× σ2(T ), (36)

which together with (25) and (26) gives

uk|τk=0 6 b̂p̂û 6 qû for t ∈ (T, 2T ].

Hence, by (18)-(21), (36) and because of τ2
2 > 2T ,

u2 6 qû in Em × (T, 2T ]× [0, t),

u2 6 max
(
û, ûp̂/ν̃

)
6 ûmax

(
1, q/b̂ν̃

)
6 û in Em × (T, 2T ]× [t,∞).

In a similar way we obtain∫
σ1

u3|τ3=T dτ1 6 p̂û in Em × [0, τ2
2 ]× σ2(T ), (37)

u2 6 û
{
q in Em × [0, τ2

2 ]× [0, t),

1 in Em × [0, τ2
2 ]× [t,∞).

(38)

Let t ∈ (τ2
2 , τ

4
2 ]. From (25), (26), by (i), one can write

uk|τk=0 6 p̂
∫
σ2(T )

sup
τ1∈σ1

bk sup
y∈Em

u2(y, t− T, τ2 − T ) dτ2,

and taking into account (38) get

uk|τk=0 6 p̂
(
qû

∫ t

τ2
2

sup
τ1∈σ1

bkdτ2 + û

τ4
2∫

t

sup
τ1∈σ1

bkdτ2

)
.

Hence

uk|τk=0 6 p̂ûb̂ 6 qû in Em × (τ2
2 , τ

4
2 ], k = 1, 2.) (39)

From (20), by (38), (39), it follows that

u2 6 qû in Em × (τ2
2 , τ

4
2 ]× [0, τ2

2 ]. (40)
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Eqs. (19) (in the case τ3
2 > 2τ2

2 ) and (21), estimates (i) with τ3 = T , (38), (40), and the
maximum principle show that

u2 6 û
{
q in Em × (τ2

2 , τ
4
2 ]× [0, t),

1 in Em × (τ2
2 , τ

4
2 ]× [t,∞).

Let t ∈ (τ4
2 , 2τ4

2 ]. Reasoning as above we obtain

uk|τk=0 6 p̂b̂qû 6 q2û in Em × (τ4
2 , 2τ

4
2 ],

and

u2 6 û


q2 in Em × (τ4

2 , 2τ
4
2 ]× [0, t− τ4

2 ),

q in Em × (τ4
2 , 2τ4

2 ]× [t− τ4
2 , t),

1 in Em × (τ4
2 , 2τ4

2 ]× [t,∞).

Continuing our argument we prove the assertion (ii) for u2, then, from (16), (17) and
the maximum principle, statement (ii) follows for u1. This ends the proof.

8. One More Estimate for u1 and u2 Growth.

In this section we obtain upper estimates for u1, u2 and
∫
σ1
u3 dτ1 based on the popu-

lation intrinsic growth rate λ0. Under the hypotheses of Theorem 2 by the comparison
principle we can prove that u1, u2 and

∫
σ1
u3 dτ1 possess majorants U(t, τ1), U(t, τ2)

and U3(t, τ2, τ3), respectively, satisfying the following problem

(D1 − ν1∗)U1 = 0 in I × I,

(D2 − ν2∗)U2 = −U2

{
0, τ2 6∈ σ2(0),
p∗, τ2 ∈ σ2(0)

+

{
0, τ2 6∈ σ2(T ),
U3|τ3=T , τ2 ∈ σ2(T )

in I × (I \ 4
∪
s=1

τs2 ),

(D3 − ν3∗)U3 = 0 in I × σ2(τ3)× σ3,

U1|t=0 = U0
1 , U2|t=0 = U0

2 , U3|t=0 = U0
3 ,

U1|τ1=0 =

∫
σ2(T )

b∗1U3|τ3=T dτ2, U2|τ2=0 =

∫
σ2(T )

b∗2U3|τ3=T dτ2,

U3|τ3=0 = p∗U2, [U2|τ2=τs
2
] = 0, s = 1, 4,

where:

ν1∗(τ1) = inf
(x,t)∈Em×I

ν1, ν2∗(τ2) = inf
(x,t)∈Em×I

ν2,
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ν3∗(τ2, τ3) = inf
(x,t,τ1)∈Em×I×σ1

ν3,

U0
1 (τ1) = sup

x∈Em
u0

1, U0
2 (τ2) = sup

x∈Em
u0

2, U0
3 (τ2, τ3) = sup

x∈Em

∫
σ1

u0
3 dτ1,

b∗1(τ2) = sup
(x,t,τ1)∈Em×I×σ1

b1, b∗2(τ2) = sup
(x,t,τ1)∈Em×I×σ1

b2,

p∗(τ2) = inf
(x,t,τ1)∈Em×I×σ1

p, p∗(τ2) = sup
(x,t,τ1)∈Em×I×σ1

p.

In (Skakauskas, 1997) we have constructed the following largetime (max(τ1, τ2) < t)
asymptotic behavior of U1, U2 and U3:

U1 ∼ c1 exp{λ0(t− τ1)−
∫ τ1

0

ν1∗(η)dη},

U2 ∼ c2f2(τ2) exp{λ0(t− τ1)},

U3 ∼ c2p∗(τ2 − τ3)f2(τ2 − τ3) exp{λ0(t− τ2)−
∫ τ3

0

ν3∗(η + τ2 − τ3, η) dη},

where c1, c2 are two positive constants, λ0 is a unique real root of the characteristic
equation∫

σ2(0)

b∗2(η + T )g(η)f2(η) exp{−λη} dη = 1,

and f2(τ2) satisfies the following equation

( d

dτ2
− ν2∗

)
f2 = −

{
0, τ2 6∈ σ2(0),

p∗, τ2 ∈ σ2(0)

+

{
0, τ2 6∈ σ2(T ), f2(0) = 1, [f2(τ i2)] = 0, i = 1, 4,

g(τ2)f2(τ2 − T ), τ2 ∈ σ2(T ), [f2(τ i2)] = 0, i = 2, 3

with g(τ2) = p∗(τ2 − T ) exp
{
−
∫ T

0
ν3∗(η + τ2 − T, η) dη

}
.

Clearly, u1, u2 vanish as t increases and λ0 < 0.
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Vieno migruojančios populiacijos amžiaus ir lyči ↪u struktūros
dinamikos modelio matematinė analizė, ↪iskaitant atsitiktin ↪i
kryžminim ↪asi ir pateli ↪u nėštum ↪a

Vladas SKAKAUSKAS

Tiriamas vieno migruojančios populiacijos amžiaus ir lyči ↪u struktūros dinamikos modelio
klasikinis išspendžiamumas. Populiacij ↪a sudaro patinėliai, neapvaisintos ir apvaisintos patelės. Re-
produktyvieji intervalai ir nėštumo trukmė laikomi fiksuotais, o kryžminimosi sistema, nesudarant
pastovi ↪uj ↪u vedybini ↪u por ↪u, yra atsitiktinė. Individ ↪u migracijos mechanizmas aprašomas bendruoju
tiesiniu tolygiai elipsini ↪u 2-osios eilės operatoriumi daugiamatėje erdvėje. ↪Irodytas klasikinio
sprendinio egzistavimas ir vienatis.


