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Abstract. In the previous papers (Masreliez and Martin, 1977; Novovičova, 1987; Schick and Mit-
ter, 1994) the problem of recursive estimation of linear dynamic systems parameters and of the
state of such systems in the presence of outliers in observations have been considered. In this con-
nection various ordinary recursive techniques are worked out, when systems output is corrupted by
an additive noise with a time homogeneous contamination of outliers. The aim of the given paper is
the development of an approach for robust recursive state estimation of linear dynamic systems in a
case of additive noises with time-varying outliers. The recursive technique based on the abovemen-
tioned theoretical results is obtained and proved by state estimation of the real chemical process
(Box and Jenkins, 1970). The results of numerical simulation by computer (Fig. 1–3) are given.
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1. Introduction

The Kalman optimal recursive filter applied in state estimation appeared to be inefficient,
in the presence of outliers in observations (Masreliez and Martin, 1977). That is why
multivariate recursive robust approaches and algorithms are worked out (Schick and Mit-
ter, 1994). On the other hand, the theoretical ground of those alternatives is based on the
classical robust theory of the estimate of a location parameter using the stochastic models
with time-homogeneous contamination of outliers (Huber, 1964). It is known, that the
accuracy of estimates, which are invariant for the permutation of observations, doesn’t
depend on the disposition of outliers in observations to be processed. However, refer-
ring to the dynamic discrete-time processes, the disposition of outliers turns out to be
very important. If various recursive robust algorithms some times turns out to be efficient
in the presence of rare and isolated outliers, but not when the outliers occur in batches
(Schick and Mitter, 1994), then there always arise special problems in the presence of
time-varying outliers in observations (Pupeikis and Huber, 1997). In this case it is impor-
tant to solve the generalized problem of a model of outliers, which are varying in time,
including, as an extreme case, the patchy outliers. A new approach to be proposed here is
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based on the robust filtering by means of a bank of parallel Kalman filters, at each time
moment generating, correspondingly, a bank of state estimates, and in the procedure of
optimization of the state estimation itself, choosing, at each time moment, the optimal
current estimate with the current minimal filtering error. It is theoretically shown here
that a vector of state estimates, guaranteeing the minimal variance of reconstructed input,
also guarantees a minimal square filtering error, which is actually unknown. That is why
it is possible to construct an optimization procedure in order to choose from a bank of
state estimates at each time moment such an estimate, which would be the optimal one in
the sense of a minimal square filtering error.

2. Statement of the Problem

Assume that we consider a single input µk and single output xk of a linear discrete-time
system, described by the difference equation

xk = µk + a1xk−1 + . . .+ anxk−n, (1)

and that xk is observed under additive noise Zk, i.e.,

uk = xk + zk, (2)

where

xk = W (q−1; a)µk (3)

is the value of unobserved output at a time moment k, and

W (q−1; a) =
1

1−A(q−1; a)
(4)

is a system transfer function,

A(q−1; a) =
n∑
i=1

aiq
−i, (5)

aT = (a1, . . . , an), (6)

a1, . . . , an are parameters of a polynomial (5), q−1 is the backward shift operator defined
by

xk−n = xkq
−n, (7)

uk is the observed value of output; µk−1, . . . , µk−n, and xk−1, . . . , xk−n are unobserved
values of input and output, respectively; µk ∼ N (0, σ2

µ) is a sequence of independent
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identically distributed variables; Zk is a sequence of independent identically distributed
variables with an ‘ε – contaminated’ distribution of the form

p(zk) = (1− εk)N (0, σ2
ξ ) + εkN (0, σ2

ν) (8)

and the variance

σ2
z = (1− εk)σ2

ξ + εkσ
2
ν ; (9)

p(zk) is a probability density distribution of the sequence Zk;

zk = (1− γk)ξk + γkνk (10)

is the value of additive noise at time moment k; γk is a random variable, taking values
0 or 1 with probabilities p(γk = 0) = 1 − εk, p(γk = 1) = εk; ξk, νk are sequences
of independent Gaussian variables with zero means and variances σ2

ξ , σ
2
ν , respectively;

besides, σξ < σν ; 0 6 εk 6 1 is the unknown fraction of ‘contamination’ varying in
time.

It is supposed that the roots of A(q−1; a) are outside the unit circle of the q−1. The
true order n of the polynomialA(q−1; a) and true values of the parameters a1, . . . , an are
known. The input signalµk corresponds to the persistent exitation conditions of arbitrary
order according to Eykhoff (1974).

The aim of the given paper is the development of an approach for a robust recursive
estimation of states xk, xk−1, . . . , xk−n of a linear dynamic system (1), (2) in the pres-
ence of time-varying outliers (8)–(10) in observations u1, u2, . . . , uN of an output Uk.

3. Robustifying the Kalman Filter

Linear discrete-time system (1), (2) can be described using the state equations of the form

β(k + 1) = Aβ(k) + hµk+1, (11)

uk = cTβ(k) + zk, (12)

where

β(k + 1) = (β1(k + 1), β2(k + 1), . . . , βn(k + 1))T , (13)

β1(k + 1) = xk+1, β2(k + 1) = xk, . . . , βn(k + 1) = xk−n+2, (14)

A =


a1 a2 . . . an
1 0 . . . 0
...

...
...

...
0 . . . 1 0

 , (15)

β(k) = (β1(k), β2(k), . . . , βn(k))T ,
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β1(k) = xk, β2(k) = xk−1, . . . , βn(k) = xk−n+1, (16)

hT = cT = [1 0 . . . 0]. (17)

It is known (Meyr and Spies, 1984), that it is possible to reduce the influence of
outliers on the accuracy of estimates by discarding the observations, after their processing
yielding relatively ‘too large’ residuals. In this case, for the state-estimation of linear
dynamic system (11), (12) the robust Kalman filter

β̂(k + 1) = Aβ̂(k) + k(k + 1)ψ(ek+1), (18)

k(k + 1) = Q(k + 1)c[σ2
z + cTQ(k + 1)c]−1, (19)

Q(k + 1) = AP(k)AT + σ2
µ, (20)

P(k) = Q(k)− k(k)cTQ(k) (21)

can be used, where

ek+1 = uk+1 − cTAβ̂(k) (22)

is an innovation at a time moment k + 1;

ψ(ek+1) =


−∆ if ek+1 < −∆,

ek+1 if −∆ 6 ek+1 6 ∆,

∆ if ek+1 > ∆

(23)

is Hubers’ ψ function, β̂(k) is the estimate of β(k) at a time moment k.
The threshold ∆ in (23) depends on the standard deviation σξ of the ground-

distribution (normal distribution) and on a fraction of a ‘contamination’ ε. In general
case, σξ is a priori unknown. Drewelow, (1990) proposed to estimate the value of σξ
according to the iterative formula

σ̂2
ξ (i+ 1) =

τ

s

s∑
j=1

ψ

(
ej
σ̂ξ(i)

)2

,

where τ is a constant,

ψ(t) =


−∆ if t < −∆,

t if −∆ 6 t 6 ∆,

∆ if t > ∆,

t =
ej
σ̂ξ(i)

;

σ̂ξ(i) is the estimate of σξ at the i-th iteration; s is a sample size; i is the i-th iteration of
calculations.

There also exist other propositions for determination of a threshold (Hampel et al.,
1986; Ljung, 1991; Verboon, 1994). The Huber monotone ψ–function or other functions
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(Huber, 1981; Hampel et al., 1986; Stockinger and Dutter, 1987) may be used as a ψ–
function.

4. Determination of Criteria for Optimizing the State Estimation

In order to select a function to be minimized in the problem of optimization of the state es-
timation it is important to determine a relation between the of used but unknown filtering
error and the characteristics, which are known beforehand or could be easily calculated.
Further such a relation between the filtering error (to be more precise, the averaged square
error of prediction of the state) and the variance of reconstructed input µk will be used.

Suppose, that N observations u1, u2, . . . , uN of an output Uk are obtained. Then the
bank of state estimates x̂1(1), . . . , x̂N (1); x̂1(2), . . . , x̂N (2); . . . ; x̂1(L), . . . , x̂N (L) is
calculated by processing u1, u2, . . . uN using the bank of robust parallel L Kalman filters

β̂i(k+ 1) = Aβ̂i(k) + k(k+ 1)ψi(uk+1 − cTAβ̂i(k)) for i = 1, 2, . . . , L.(24)

Here

β̂i(k + 1) = (β̂1(k + 1), β̂2(k + 1), . . . β̂n(k + 1))Ti

= (x̂k+1(i), x̂k(i), . . . , x̂k−n+2(i))T for i = 1, 2, . . . , L, (25)

β̂i(k) = (β̂1(k), β̂2(k), . . . , β̂n(k))Ti

= (x̂k(i), x̂k−1(i), . . . , x̂k−n+1(i))T for i = 1, 2, . . . , L, (26)

ψi(uk+1 − cTAβ̂i(k)) = ψi(ek+1(i))

=


−∆i if ek+1(i) < −∆i,

ek+1(i) if −∆i 6 ek+1(i) 6 ∆i,

∆i if ek+1(i) > ∆i,

for i = 1, 2, . . . , L. (27)

It can be mentioned that at a fixed time moment k a gain k(k) is obtained using
formula (19) and is the same for all the L filters. The filters in bank (24) are different
because of the threshold ∆i ∀ i = 1, 2, . . . , L in (27) besides ∆1 < ∆2 < . . . < ∆L.

Lemma 1. Assume that in the bank of L robust Kalman filters (24)–(27) there exists such
a l-th filter, which could guarantee that the filtering error

ẽ(l) = N−1wTw (28)

is 0 for large enoughN , i.e.,

x̂k(l) = xk for k = 1, 2, . . . , N. (29)
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Then the variance σ2
µ(l) of the process µk(l) for

µk(l) = x̂k(l)− a1x̂k−1(l)− . . .− anx̂k−n(l) for k = 1, 2, . . . , N (30)

is a minimal and equal to σ2
µ, if the initial conditions for µk(l) and µk are equal, too.

Here

w = (x1 − x̂1(l), . . . , xn − x̂N (l))T (31)

is a vector of filtering errors.

Proof. Assume that

ẽ(l) 6= 0, (32)

for any l, then

x̂k(l) = xk + ξk(l) for k = 1, N, (33)

where ξk(l) ∼ N (0, σ2
ξ(l)), besides, σ2

ξ(l) < σ2
zand σ2

z is of the form (9).
The filtering error (32) can be rewritten as

ẽ(l) = (1−N−1)σ2
ξ(l). (34)

Then the variance of the process µk(l) is

σ2
µ(l) = σ2

µ + σ2
θ(l) > σ2

µ, (35)

if in (30) x̂k(l) is replaced by xk + ξk(l) for k = 1, N .
Here σ2

θ(l) is the variance of the process θ(l), where

θk(l) = W−1(q−1; a)ξk(l) k = 1, 2, . . . , N

is its value at a time moment k; W−1(q−1; a) is a discrete-time transfer function, inverse
to transfer function (4) of the process xk.

REMARK 1. From (35) we get, that σ2
µ(l) is minimal and equal to σ2

µ, if σ2
θ(l) is equal to

zero. It follows that Lemma 1 gives us the lower bound for σ2
µ(l), i = 1, 2, . . . , L.

Lemma 2. Let us assume in the bank of L robust Kalman filters (24)–(27) there exists
such a j-th filter, which could guarantee that

x̂k(j) = uk for k = 1, 2, . . . , N. (36)
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Then the filtering error

ẽ(j) = N−1w̃T w̃, (37)

and the variance σ2
µ(j) of the process µk(j) for

µk(j) = x̂k(j)− a1x̂k−1(j)− . . .− anx̂k−n(j) (38)

acquires the maximum.
Here

w̃ = (x1 − x̂1(j), . . . , xN − x̂N (j))T (39)

is a vector of filtering errors.

Proof. It follows from (36) that

ẽ(j) > ẽ(l) (40)

and

σ2
µ(j) = σ2

µ + σ2
b > σ2

µ(l), (41)

for any l, where ẽ(l) and σ2
µ(l) are defined by (34) and (35), respectively; σ2

b is the
variance of the process bk with

bk = W−1(q−1; a)zk. (42)

Obviously, σ2
µ(j) = σ2

µ in (41), if x̂k(j) = xk for k = 1, N only.

REMARK 2. Lemma 2 gives us the upper bound for σ2
µ(i) i = 1, 2, . . . , L.

PROPOSITION. Suppose that in the bank ofL robust Kalman filters (24)–(27) there exists
such a f -th filter, which could guarantee that

x̂k(f) = xk + ξk(f) for k = 1, N, (43)

where ξk(f) ∼ N (0, σ2
ξ(f)) and σ2

ξ(f) < σ2
ξ(ν) for any ν = 1, 2, . . . , L − 1. Then after

processing N observations this filter has the minimal filtering error

ẽ(f) = (1−N−1)σ2
ξ(f), (44)

and the minimal variance

σ2
µ(f) = σ2

µ + σ2
θ(f). (45)
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Here σ2
θ(f) is the variance of the process θ(f) as

θk(f) = W−1(q−1; a)ξk(f). (46)

REMARK 3. Proposition follows from Lemma 1 and Lemma 2.

Proposition lets us to formulate the Theorem in order to choose criteria for the opti-
mization of state estimation.

Theorem 1. The functions

Qi(x, x̂(i)) = N−1vTi vi for i = 1, 2, . . . , L, (47)

Qi(µ(i)) = (N − 1)−1µT (i)µ(i) for i = 1, 2, . . . , L (48)

achieve their minimum at the same place.
Here

x = (x1, . . . , xN )T (49)

is a vector of values of the unobserved output,

x̂(i) = (x̂1(i), . . . , x̂N (i))T for i = 1, 2, . . . , L (50)

is a vector of estimates of the states;

v = (x1 − x̂1(i), . . . , xN − x̂N (i))T for i = 1, 2, . . . , L (51)

is a vector of filtering errors;

µ(i) = (µ1(i), . . . , µN (i))T for i = 1, 2, . . . , L (52)

is a vector of values of the reconstructed unknown input;

µk(i) = W−1(q−1; a)x̂k(i) = x̂k(i)− a1x̂k−1(i)− . . .− anx̂k−n(i) (53)

for i = 1, 2, . . . , L, k = 1, 2, . . . , N

is a value of the reconstructed input at a time moment k.

Proof. First let us analyse the function

Qi(µ,µ(i)) = (N − 1)−1v̂Ti v̂i for i = 1, 2, . . . , L. (54)

Here

v̂i = (µ1 − µ1(i), . . . , µN − µN (i))T for i = 1, 2, . . . , L, (55)
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where µk 6= µk(i) ∀ k = 1, 2, . . . , N .
Then

lim
N→∞

N−1v̂Ti v̂i = lim
N→∞

N−1
N∑
k=1

(µ2
k − 2µkµk(i) + µ2

k(i))

= σ2
µ + σ2

µ(i), i = 1, 2, . . . , L, (56)

while

lim
N→∞

N−1
N∑
k=1

µkµk(i) = cov(µkµk(i)) = 0, i = 1, 2, . . . , L, (57)

as µk ∼ N (0, σ2
µ) and µk(i) ∼ N (0, σ2

µ(i)) ∀i = 1, 2, . . . , L are mutually uncorrelated
for all k.

Here cov(µkµk(i)) is the covariance between µk and µk(i) ∀i = 1, 2, . . . , L and
k = 1, 2, . . . , N .

It follows from (56) that function (54) achieves its minimum at the place i and that

Qi(µ,µ(i)) < Qi(µ,µ(j)) for i 6= j, (58)

if

σ2
µ(i) < σ2

µ(j) for j = 1, 2, . . . , L− 1. (59)

Then the functions Qi(µ,µ(i)) and Qi(x, x̂(i)) for i = 1, 2, . . . , L acquire their mini-
mum at the same place, as

xk = W (q−1; a)µk (60)

and

x̂k(i) = W (q−1; a)µk(i) for i = 1, 2, . . . , L, k = 1, 2, . . . , N. (61)

It follows from (59) that both functions Qi(µ(i)) and Qi(x, x̂(i)) for i = 1, 2, . . . , L,
also have their minimum at the same place.

REMARK 4. The minimal values of above mentioned functions (47) and (48) are un-
equal.

Conclusion. The relation between the filtering error and the variance of reconstructed
input allowed us to replace function (47) of the unknown filtering error by function (48)
of the variance σ2

µ(i), i = 1, 2, . . . , L of reconstructed input µ(i), i = 1, 2, . . . , L.

Then the vector x̂(l) = (x̂1(l), x̂2(l), . . . , x̂N (l))T of optimal estimates of the states
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x1, x2, . . . , xN may be determined using the criterion Qi(µ(i)) for i = 1, 2, . . . , L and
the condition

x̂(l): Q(µ(l)) = min
µ(i)∈Ξ

Qi(µ(i)) for i = 1, 2, . . . , L. (62)

Here Ξ is a restricted area of values of the variable µ(i) ∀ i = 1, 2, . . . , L.

5. State Estimation by Means of the Bank of Parallel Kalman Filters with
Optimization

The current state estimates of a linear dynamic system (1), (2) or (11), (12) are calculated
using the technique consisting of a bank of the L parallel Kalman filters of the form (24).

Then in order to apply condition (62) in the determination of the vector x̂(f) =

(x̂1(f), x̂2(f), . . . , x̂N (f))T of optimal estimates of the states x1, x2, . . . , xN , it is nec-
essary to obtain µk(i) ∀i = 1, 2, . . . , L and k = n+ 1, n+ 2, . . . , N using the equation
of the form

mk = x̂k − wka ∀k = n+ 1, n+ 2 . . . , N. (63)

Here

mk = (µk(1), . . . , µk(L))T , (64)

x̂k = (x̂k(1), . . . , x̂k(L))T , (65)

wk =


x̂k−1(1) x̂k−2(1) . . . x̂k−n(1)

x̂k−1(2) x̂k−2(2) . . . x̂k−n(2)

. . . . . . . . . . . .

x̂k−1(L) x̂k−2(L) . . . (̂x)k−n(L)

 , (66)

aT = (a1, . . . , an) is a vector of known parameters of polynomial (5); µk(i) ∀i =

1, 2, . . . , L are L estimates of the input value µk at a time moment k; uk, . . . , uk−n
are the values of observed output Uk.

Hence, at the time momentN + 1 we have a matrix

Mk =


µN (1) µN−1(1) . . . µ1(1)

µN (2) µN−1(2) . . . µ1(2)

. . . . . . . . . . . .

µN (L) µN−1(L) . . . µ1(L)

 , (67)

the components of which are L estimates of input values µk ∀k = 1, 2, . . . , N .
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Then, the L estimates of the variance σ2
µ are obtained by the formula of the form



σ2
µ(1)

σ2
µ(2)

...
σ2
µ(L−1)

σ2
µ(L)

 =
1

N − 1



N∑
i=1

(µi(1)− µ̄(1))2

N∑
i=1

(µi(2)− µ̄(2))2

...
N∑
i=1

(µi(L− 1)− µ̄(L− 1))2

N∑
i=1

(µi(L)− µ̄(L))2


, (68)

using, correspondingly, the L reconstructed inputs µk(i) ∀i = 1, 2, . . . , L and k =

1, 2, . . . , N .
Here µ̄(1), . . . , µ̄(L) are the means of reconstructed inputs, respectively.
If the variance σ2

µ(f) is minimal, i.e.,

σ2
µ(f) < σ2

µ(i) ∀i = 1, 2, . . . , L− 1, (69)

then the vector x̂(f) = (x̂1(f), x̂2(f), . . . , x̂N (f))T of estimates of the states
x1, x2, . . . , xN is an optimal one according to condition (62). It is obvious that
condition (62) and equations (63), (68) let us choose the optimal state estimates
x̂1(f), x̂2(f), . . . , x̂N (f) after processing all observationsu1, . . . , uN only. It means that
x̂k(f) for any k 6= N could not be optimal and that at those time moments there exist
other optimal x̂k(· ). In order to choose at each time moment k the current optimal state
estimate, which would guarantee the current minimal value of reconstructed input and
current minimal square filtering error, respectively, at these time moments, it is necessary
to rewrite formula (68) in the following form



σ2
µ(1)

σ2
µ(2)

...
σ2
µ(L−1)

σ2
µ(L)


k

=
1

k − 1



k∑
i=1

(µi(1)− µ̄(1))2

k∑
i=1

(µi(2)− µ̄(2))2

...
k∑
i=1

(µi(L− 1)− µ̄(L− 1))2

k∑
i=1

(µi(L)− µ̄(L))2


, (70)



336 R. Pupeikis

and to verify condition (69) for each current time moment k. The recursive formula

σ2
µ(1)

σ2
µ(2)

...
σ2
µ(L−1)

σ2
µ(L)


k+1

=



σ2
µ(1)

σ2
µ(2)

...
σ2
µ(L−1)

σ2
µ(L)


k

+


ϕµ(1)

ϕµ(2)

...
ϕµ(L−1)

ϕµ(L)


k+1

=

(
1− 1

k

)


σ2
µ(1)

σ2
µ(2)

...
σ2
µ(L−1)

σ2
µ(L)


k

+
1

k


µ2
k+1(1)

µ2
k+1(2)

...
µ2
k+1(L− 1)

µ2
k+1(L)

 . (71)

can be used, too. Thus, at each time moment, the minimal variance from (70) can be
chosen as well as the state estimate from bank (24) respectivelly. It can be mentioned
that in such a case there could appear a false optimum if too small thresholds ∆i ∀i =
1, 2, . . . , L would be used in (27).

6. Recursive State Estimation of a Chemical Process

The noiseless sequence xk is the time-series D from (Box and Jenkins, 1970), which is
described by AR(1) model of the form

x
(D)
k = 1.17 + 0.87x

(D)
k−1 + µk k = 1, 100, (72)

or by the model of the form

x̃
(D)
k = 0.87x̃

(D)
k−1 + µk k = 1, 100, (73)

if the mean of sequence xk is eliminated.
Here x(D)

k , x̃k(D) are the values of the above mentioned sequence at a time moment k.
Then the output Uk to be observed in the presence of outliers (Fig.1) is

ũ
(D)
k = x̃

(D)
k−1 + zk k = 1, 100, (74)

where ũ(D)
k , zk are the values of output Uk and noise Zk, respectively, at a time moment

k; Zk is a sequence of independent identically distributed variables with an ‘ε – contam-
inated’ distribution of the form (8) with variance (9).

Both the sequences x̃(D)
k , ũ

(D)
k from (74) are used for state estimation of the process

(73). In this case, for an additive noise Zk

zk =

{
0 if ζk > εk,

νk10 if ζk < εk,
(75)
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where νk, ζk are independent Gaussian variables with zero means and variances 1; εk is
a time varying ‘contamination’ fraction of the form

εk =


0.1 for k = 1, 2, . . . , 25,

0.2 for k = 26, 27, . . . , 69,

0.05 for k = 70, 71, . . . , 100.

(76)

For the state estimation by processing X̃
(D)

k = (x̃
(D)
1 , . . . , x̃

(D)
100 )T and Ũ

(D)

k =

(ũ
(D)
1 , . . . , ũ

(D)
100 )T the bank of the parallel Kalman filter (24) is used, which can be rewrit-

ten for the AR(1) process (73) with the a priori known parameter a1 = 0.87 as

β̂i(k + 1) = a1β̂i(k) + kk+1ψi(ũ
(D)
k+1 − a1β̂i(k)) for i = 1, 15, (77)

where

kk+1 = φk+1(σ̂2
z + φk+1)−1, (78)

φk+1 = a2
1pk + σ̂2

µ, (79)

pk+1 = φk+1(1− kk+1), (80)

β̂i(k) = x̂k(i) for i = 1, 15, (81)

ψi(ek+1) =


0 if ek+1(i) < −∆i,

ek+1(i) if −∆i 6 ek+1(i) 6 ∆i for i = 1, 15,

0 if ek+1(i) > ∆i,

(82)

Moreover, ∆1 = 0.5, ∆2 = 0.6, ∆3 = 0.7, ∆4 = 0.8, ∆5 = 0.9, ∆6 = 1, ∆7 =

1.25, ∆8 = 1.5, ∆9 = 2, ∆10 = 2.5, ∆11 = 3, ∆12 = 3.5, ∆13 = 4, ∆14 =

5, ∆15 = 2000, and p0 = 0.1; σ̂2
µ = 1, σ̂2

z = 1; x̂0 = 0 ∀I = 1, 15, L = 15.
Then equations (63), (70) unequality (69) were used to obtain optimal state estimates

from bank (77) at each time moment k=1,2,. . . ,100.
In Fig. 2, the noiseless and really unobserved output (73) and its three estimates are

presented. The first estimate (dotted line) is obtained using only one Kalman filter with
∆ = 0, 5 in (82), while the second one (dashed line) using the bank of Kalman filters
(77) by optimiziting the state estimation itself. The third estimate (dotted-dashed line) is
calculated in the absence of the additive noise. For such a case, ũ(D)

k ∀k = 1, . . . , 100

in (77) is replaced by x̃(D)
k . In Fig. 3 the operation of the Kalman filters in time for the

second and third estimates, respectively, is presented. The dashed line here corresponds
to the third estimate, i.e., to the noiseless experiment. From the simulation and state esti-
mation results, presented in Fig. 2, it follows that the accuracy of state estimates, obtained
using the bank of the Kalman filters by optimizing the estimation itself, is higher as com-
pared to the accuracy of such estimates based on constant ∆ = 0.5, but it is lower, as
compared with an accuracy of the estimates, obtained in the absence of additive noise.
The results presented in Fig. 3 show that, in such a case, the adaptive technique chooses
only one Kalman filter with a threshold ∆ = 0.9 in (82) after 2 steps. On the other hand,
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Fig. 1. Time-series D in the presence of time-varying outliers.

Fig. 2. Noiseless time-series D and its estimates. Estimates: obtained by Kalman filter are denoted as dotted
curve; obtained by the bank of filters are dashed and dotted-dashed curves with and without additive noise,
respectively.
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Fig. 3. Operation of the Kalman filters by processing observations. The curves with and without dashes obtained
by one Kalman filter and by the bank of the filters respectively.

in the presence of outliers in observations such a technique chooses four Kalman filters
at different time moments.

It should be noted that the results averaged by 20 experiments in the presence of time
varying outliers and for the case of an unknown parameter a1 = 0.87 in (73) are given
in (Pupeikis and Huber, 1997). The banks of the Kalman filters have been used in fault
detection, as mentioned in (Zhang, 1989) since 1968 (Newbold and Ho, 1968). Various
recursive robust techniques for on-line estimation of dynamic systems parameters in the
presence of outliers in additive correlated noise are obtained in Pupeikis, (1994).

7. Conclusions

The classical robust Huber theory of estimation of a location parameter uses stochastic
models with time-homogeneous contamination of outliers. In such a case the multivariate
recursive robust approaches and techniques are worked out. However, if various robust
recursive algorithms turn out to be efficient in the presence of rare and isolated outliers,
then there always arise special problems in the presence of time-varying outliers, which
often occur in batches. That is why the robust recursive procedures applied in the on-line
estimation of states of dynamic processes appeared to be inefficient. In such a case, it
is important to solve the generalized problem of a model of outliers, which are varying
in time. Therefore this work extends and measurably develops Huber’s robust location
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parameter estimation ideas for linear dynamic processes, which are usually observed in
the presence of additive noises, containing time-varying outliers. It is obvious that the
new model of outliers requires a new and efficient approach, which could be applied
in processing observations in order to obtain the state estimates of the initial dynamic
process. In our work such an approach optimiziting the estimation itself has been worked
out. Theoretically it is based on a simple but important relation between the variance
of reconstructed input of process and one of the filtering errors as well as on the fact
that both variables achieve their minimum at the same place. Therefore it is possible
to replace the quality-function of unknown filtering error by one of the reconstructed
inputs. In practice, our approach is realized by means of the bank of the parallel Kalman
filters (24), consisting of simple recursive equations, which differ one from another by
threshold ∆i in the Huber ψ– function (27) only. At each recursive step the current state
estimate, which guarantees the minimal filtering error is chosen from a respective bank
of current state estimates by the optimization technique, using equations (70) or (71) and
condition (69). The results of numerical simulation (Fig. 1–3) using the actual chemical
time-series, described by (73), (74), prove the efficiency of the model of time-varying
outliers and usefulness of the proposed approach for the state estimation.
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DINAMINI ↪U SISTEM ↪U BŪVIO ↪IVERTINIMAS,
ESANT STEBĖJIMUOSE NESTACIONARIAM
DIDELI ↪U IMPULS ↪U SRAUTUI

Rimantas PUPEIKIS

Straipsnyje yra nagrinėjami rekurentiniai dinamini ↪u sistem ↪u (1), (2) būvio ↪ivertinimo Kalmano
tipo algoritm ↪u (18)–(21) bankai, generuojantys robastinius ↪iverčius, apdorodami stebėjimus, ku-
riuose yra dideli impulsai, o j ↪u srauto intensyvumas kinta laikui bėgant. Teoriškai (lemos 1, 2,
teiginys ir teorema) yra parodyta, kad būvio ↪iverči ↪u vektorius, užtikrinantis minimali ↪a atstatymo
ėjimo dispersij ↪a, tuo pačiu garantuoja minimali ↪a filtravimo paklaid ↪a, kuri iš tikr ↪uj ↪u yra nežinoma.
Pasiūlytas naujas metodas sistemos būviui ↪ivertinti, grindžiamas robastine filtracija ir optimiza-
vimo procedūra, kurios pagalba kiekvienu laiko momentu iš būvio ↪iverči ↪u banko yra išrenkamas

↪ivertis, optimalus minimalios filtravimo paklaidos prasme. Modeliavimo rezultatai (Pav. 1–3), gauti
apdorojus realaus cheminio proceso sek ↪a (73), (74), patvirtina teorini ↪u prielaid ↪u pagr ↪istum ↪a.


