
INFORMATICA, 1998, Vol. 9, No. 3, 297–314 297
 1998 Institute of Mathematics and Informatics, Vilnius

Conservative Simulation
for Discrete Event Systems

Alexandru CICORTAŞ
Faculty of Mathematics, University of West
B-dul V. Pârvan 4, 1900 Timişoara, Romania
e-mail: cico@disco.info.uvt.ro

Received: February 1998

Abstract. More real systems have many components and their simulation requires significant ex-
ecution times. The practical needs have conducted to distributed simulation rather than sequential
method. Asynchronous parallel discrete event simulation (PDES) is studied and its methodology
is presented. The paper presents the conservative methodology of PDES and illustrates it with a
suggestive particular application: Virtual Assembly Cells.

Key words: parallel algorithm, distributed simulation, synchronisation, manufacturing, virtual
assembly.

1. Introduction

The basic technical concepts of distributed simulation for discrete event systems are re-
viewed and tied to a specific application: assembly system which uses Virtual Assembly
Cells (VAC). By defining the methodology within the context of proposed application,
this paper serves both as a tutorial to conservative Parallel Discrete Event Simulation
(PDES) and as an introduction to VAC simulation modeling. VAC is a suggestive appli-
cation to illustrate some PDES concepts. The particularities of VAC’s application simplify
its conservative simulation.

For studying a system it must be modeled. Its model can be one of the several
types: conceptual, declarative, functional, constraint, spatial, or multimodel (Fishwick
and Ziegler, 1992; Fishwick, 1993). The last type (multimodel) permits to take into ac-
count the integration of basic model types and to create a model of component models,
where each component model represents a level of abstraction for the system. Often, in
simulation is used a spatial model. Spatial models can be executed in several ways in-
cluding time slicing, event scheduling and parallel and distributed.

The paper is organised as follows. In Section 2, for the conservative protocol are
defined basic characteristics and are illustrated. In Section 3 are given main aspects of
assembly process in the manufacturation. The data bases proposed for structure product
representation with their main attributes are presented. The model proposed is presented
in object-oriented concepts.



298 A. Cicortaş

Fig. 1. System simulation by logical processes.

1.1. Logical Process Simulation

Some simulation strategies divide the global simulation task into a set of communicating
logical processes (LPs), trying to exploit the parallelism inherent among the respective
model components with the concurrent execution of these processes. We can thus view
a system simulation, as the co-operation of interacting LPs, each of them simulating a
subspace of space-time which it can be named as region with an event structure. Generally
a region is represented by the set of all events in a sub-epoch of the simulation time, or
the set of all events in a certain subspace of the simulation space (Bagrodia et al., 1991).
The basic architecture of a system simulation by its logical processes (the definition of
LP can be found in (Bagrodia et al., 1991)) can be viewed in Fig. 1, see (Ferscha and
Tripathi, 1996).

The set of logical processes executes event occurrences synchronously or asynchro-
nously in parallel.

The Communication System (CS) provides that the LPs send messages one to other
and by these messages allow to synchronize their local activities.

Every LPi has assigned a regionRi (Cicortaş, 1997; Bagrodia et al., 1991), as a com-
ponent part of the simulation model upon which the simulation engine (SEi) operating in
event driven mode, executes local and generate remote event occurrences, thus processing
a local clock (Local Virtual Time (LVT)).

For every LPi exists a fixed subset of the state variables Si ⊂ S, disjoint to other state
variables assigned to other LPs. In each LPi are processed two event types internal events
and external events; the internal events belong to Si while the external events belong to
Sj , i 6= j. The Communication Interface (CIi) attached to the SEi allow sending and
receiving external messages.

With respect to the advancement of event executions, we dispose for two classes of
protocols, that have a conservative or optimistic in event processing. Both are based on
message sending; these messages carrying causality information that has been created by



Conservative Simulation for Discrete Event Systems 299

one LP and affects one or more LPs. For preventing global event causality violations,
must define appropriate rules.

In the conservative protocol, by specific constructions, the process evolution is
blocked if there is the chance to process an unsafe event (i.e., one event for which causal
dependencies are still pending). In such way, we can prevent causality errors occurring.

In the optimistic protocol, if an premature event is detected (i.e., an event with the
timestamp lower than the TVL of PL), the SE redo the simulation for those events that
local events are inconsistent with causality conditions produced by other LPs.

1.2. Synchronous and Asynchronous Simulation

Were implemented two LP simulations: synchronously and asynchronously.
In a particularly synchronous LP simulation, all the LPs’ local clocks evolve on a

sequence of discrete values (0,∆, 2∆, 3∆, . . .). In a such way the simulation evolves in
according to a global clock. Every LP must process all the events in the time interval
[i∆, (i+ 1)∆) before any processing of events with occurrence time (i+ 1)∆ and after.

Asynchronous LP simulation relies on the existence of events that occur at different
simulated times that no affect on to other. By concurrent execution of those events we can
reduce the simulation time by comparison with the sequential simulation time. A very
difficult problem in asynchronous LP simulation are the local causality errors. If every
LP process the events in nondecreasing timestamp order (i.e., local causality constraints,
(Fujimoto, 1990)), then we have no causality error.

For asynchronous LP simulation the local causality violation is treated in two dif-
ferent ways: conservative methods that strictly avoid local causality violations while the
optimistic methods use the chance to process the events even if the local causality will be
violated.

2. Conservative LP Simulation

The architecture of a conservative logical process LPk is given in Fig. 2. From the orig-
inal works of Chandy Misra and Bryant, the LP conservative simulations are referred as
Chandy-Misra-Bryant (CMB) protocols. Causality of events across LPs is preserved by
sending timestamped (external) event messages of type < ee@t >, where ee denotes the
event and t is a copy of LVT of the sending LP at (@t) the instant when the message was
created and sent. (t = ts(ee)) is called the timestamp of the event.

In a conservative simulation, allow to process only safe, i.e., the events up to a LVT
for which the logical process has been guaranteed do not receive external events (mes-
sages) with their timestamp lower than the LVT of logical process. Moreover, all events
internal and external, must be processed in chronological order. Thus also the logical pro-
cess produces messages in chronological order. The communication system preserves the
order of messages sent by the sender LP to receiver LP in a FIFO order, as in Fig. 2. On
this basis we obtain correctness. The conservative simulation has a static topology, where
the FIFO communication channels play an appropriate role.



300 A. Cicortaş

Fig. 2. Architecture of a conservative logical process LPk. CI – Communication Interface, SE – Simulation
Engine.

From Fig. 2, the communication interface of the logical process PLk, has one input
buffer IB[i] and a channel clock CC[i] for every channel chi,k pointing to the PLk.
IB[i] stores in a FIFO order arriving messages from PLi and CC[i] holds a copy of the
timestamp of the message at the head of IB[i]; initially CC[i] = 0. Define the LVTH
as LVTH= mini CC[i] the time horizon until which LVT is allowed to progress by sim-
ulating internal and external events, since no external events can arrive with timestamp
smaller than LVTH.

REMARK 1. In our vision, the Simulation Engine (SE) is the main part that manages the
logical process. The Communication Interface (CI), only furnish the communication way
between this logical process and other logical processes.

DEFINITION 1. The CC[i] holds a copy of the timestamp of the message at the head of
IB[i]. Define the LTVH as the time horizon given by the communicating logical pro-



Conservative Simulation for Discrete Event Systems 301

Fig. 3. Deadlock and memory overflow.

cesses from which the current logical process PLk receives messages, as

LVTH = min
i∈{1,2,...p}

CC[i].

PROPOSITION 1. The Simulation Engine (SE) processes all internal events from EVL
that have their timestamp lower than TVLH. Also are processed all messages fromOB[i]

whose timestamp is lower than TVLH. The TVL is advanced to the value of the higher
timestamp of the (last) event (it can be an event from EVL or a message which has the
timestamp lower than the TVLH) processed.

More exactly it is important to outline that the TVL has the value of the last event
processed (from the EVL or message sent from the IBS). The mean of last is the higher
timestamp of these events that were processed.

The Simulation Engine (Seek) dispose now for the value of TVL and now can process
some messages received from other LPs, in the Ibs. The condition that must be satisfied
for processing of a such message is given in the following proposition.

PROPOSITION 2. For message processing we have two states:

• If the TVLH value is given by a CC[i] whose queue is not empty, then the
message in the head of the queue will be processed. The message processing
consists eventually from inserting in the EVL of new events, at their appropriate
places based on their timestamps. After that is released a new evaluation of the
TVLH and the processing is resumed.
• If the TVLH value is given by a CC[i] whose queue is empty, then the processing

is blocked, while a new message will arrive at this queue and then is released a
new evaluation of the TVLH.

In literature are given many procedures for basic algorithm of conservative simulation
of LP, one of them is given in (Ferscha and Tripathi, 1996). Using this blocking policy,



302 A. Cicortaş

appear two problems that must be solved, these are deadlock and memory overflow, as in
Fig. 3.

Each LP is waiting for a message to arrive, however, awaiting it from a LP that is
blocked itself (deadlock). The input buffers can grow unpredictably, causing memory
overflow. For overcome the vulnerability of CMB protocol, have been proposed several
methods, that can be clustered in two categories: deadlock avoidance and deadlock de-
tection/recovery.

2.1. Deadlock Avoidance

By sending nullmessages of the form< 0@t >, where 0 denotes a nullevent (event with-
out effect), in the original protocol, the deadlock can be prevented. A nullmessage is not
related to the simulated model it only serves for synchronozation purposes. Essentially
it is sent on every input channel as a promise not send any other message with smaller
timestamp (as t from the nullmessage) in the future. It is launched whenever an LP pro-
cessed an event that did not generate an event message for some target LP. The receiver
LP can use this (implicit) information to extend its LVTH and by that become unblocked.
In our example (Fig. 3), after the LP in the middle would have broadcast < 0@16 > to
the neighbouring LPs, both of them would have chance to progress their LVTH up until
time 16, and in turn issue new event messages expanding the LVTHs of other LPs, etc.
The nullmessage protocol can be guaranteed to be deadlock free as long as there are no
closed cycles of channels, for which a message traversing this cycle cannot increment its
timestamp. This implies, that simulation models whose event structure cannot be decom-
posed into regions such that for every directed channel cycle there is at least one LP to
put a nonzero time increment on traversing messages cannot be simulated using CMB
with nullmessages.

The protocol extension with the nullmessage facility is straight-forward to implement,
it can put a burden of nullmessage overhead on the performance of the LP simulation.
Optimisations of the protocol to reduce the frequency and amount of nullmessages, e.g.,
sending them only on demand (upon request), or only when the LP becomes blocked have
been proposed.

One problem that still remains with conservative LP simulation is the estimation when
it is safe to process an event. The degree to which LPs can look ahead and predict future
events plays a critical role in the safety verification and as consequence for the perfor-
mance of conservative LP simulations.

DEFINITION 2. An LP has a lookahead ε if the outputs of LP in any interval [t, t+ ε] is
a function only of its state at instant t and is independent of its inputs in that interval. In
other words, the LP can predict that the timestamps of all events that arrive later (after t)
and are no smaller than t+ ε for all t > 0.

In the example of Fig. 3, if the LP with the LVT 16 could know that processing the
next event will certainly increment LVT to 19, the nullmessage < 0@19 > (so called



Conservative Simulation for Discrete Event Systems 303

lookahead of 3) could have broadcasted as further improvement on the LVTH of the
receivers. The value ε of the lookahead, must come from the underlying simulation model
and enhances the prediction of future events, which is necessary to determine when it is
safe to process an event.

3. Virtual Assembly Cells

3.1. Introduction

All the followings are based on the (Cicortaş, 1997).
In the following we are not use the technical details for our problem. All needed

elements will be introduced as soon as will be used. The our objective is to define the
assembly process in a factory that assemble products and their compound elements from
component elements.

The products have a structure that can be assimilated as a tree whose root is the prod-
uct (or any compound element if it is taken as product). Frequently a lot of compound
elements are common to many products. In the manufacturing process can be distinguish
two disjoint phases:

• manufacture component elements;
• assemble compound elements (include products) from component elements.

There are many component elements that have no a proper life in manufacturation pro-
cess, they are manufactured as soon as they are used and incorporated in their compounds
elements, without being kept in warehouse. This kind of component element will be ne-
glected. On the other side we have component elements that have their life and are kept
in warehouse after their manufacturation and are taken from, as soon as are necessary in
the assembly process of their compound elements.

3.2. Compound Structure Representation

The product structure can be made by a tree and their component elements can be posted
on the levels, on the level one being the product, on the level 2 being their direct compo-
nents. Also, any compound element has its own structure that can be represented on the
levels.

DEFINITION 3. A direct component element of a compound element is that component
element that is directly relied on the compound element, without exist any compound
elements between the direct component element and the compound element.

AXIOM 1. In product structure representation or a compound element representation
the element (product or compound) cannot appear as a component element on a specified
level in its own structure.



304 A. Cicortaş

Fig. 4. Trees representation alternatives, with levels specification.

If this axiom is not satisfied, then in the product structure representation appear cir-
cuits. For that, it is recommended as the applications that use the product structure repre-
sentation dispose for functions that allow to avoid the circuits. An distributed algorithm
for avoiding the circuits was presented in (Cicortaş, 1997).

In Fig. 4, are given two alternatives for trees representation.

Data Bases

A compound element is represented as an oriented graph where are given all links
ascendants (for assembly process) and also descendants (for necessary components de-
termination). For achieving our purposes we propose the following particularly data bases
that allow product structure representation:

• items – an entity is an element that can be a product, compound element or
component element without any component element (the last is the listen);
• links – an entity defines the relation between the compound element ant one of its

component element.

Every entity from a such data base, characterises uniquely the element respectively the
relation.

The minimal attributes for the item are:

• the item name i;
• the lot size li;
• a flag for stop the decomposition sdi;
• lot assembly time interval dai.

The minimal attributes for the link are:



Conservative Simulation for Discrete Event Systems 305

• the compound element (father) F = i;
• the component element (son) S = j;
• the quantity of component element that enters in the (lot size) compound

element qij ;
• the gap between the begin of assembly interval and the instant when the

component element j is necessary dlij ;
• the usage time interval in the assembly for the component element j, denoted

as uij .

Starting from these proposed data bases can be achieve:

• compound element maintenance;
• determine the necessary for component elements in time.

On this basis, can be made the assembly modeling.

3.3. Petri Nets

DEFINITION 4. A Petri net is defined (Peterson, 1981) by the 5-tuple

RP = (P, T, I−, I+,M0),

where

– P is a nonempty set of locations;
– T is a nonemptyset of transitions;
– P ∪ T = ∅;
– I−, I+ : P × T → N , are the incidence functions between the input locations and

transitions and transitions and output locations, respectively:
– M0 : P → N is the initial marking.

Incidence matrix is given by C = I+ − I−.

DEFINITION 5. A transition ai ∈ T is enabled in the markingM , if M > I−(ai).

DEFINITION 6. A transition ai ∈ T fires in the markingM if it is enabled and the firing
result is a new marking, given by the relation

M ′ = M − I−(ai) + I+(ai).

Let a transitions sequence ai1 , ai2 , . . . , aik and a markingM0. If a1 is enabled then by
firing of transition a1, is obtained the marking M1, if a2 is enabled, in the marking M1,
by its firing is obtained the markingM2, and so on, by firing of transition ak, is obtained
the marking Mk. So by firing of transitions sequence s: ai1 , ai2 , . . . , aik , we obtain the
following markings sequence:

M0
a1→M1

a2→M2 . . .Mk−1
ak→Mk.



306 A. Cicortaş

Fig. 5. Communication between the VACs.

By synthesising the result of transition sequence firing ai1 , ai2 , . . . , aik is given by the
following expression

Mk = M0 + C · s.

The s is a vector where for every transition is counted its cardinality in the sequence s.

3.4. Model Definition

DEFINITION 7. The assembly system is modeled by the co-operation between the virtual
assembly cells (VAC). A virtual assembly cell is a logical process from the previous
section.

The system is represented in the Fig. 5, where the V ACi is the current VAC, one of
the n system cells. The links between the VACs are static and are defined at simulation
begin.

REMARK 2. Instead of input and output buffers in our model will be used the appropriate
lists, that will be described as soon as their necessity appear.

Particularities
1. Every V ACi receives requirements sor,i from other VACs. A requirement is a

message on the form < csor ,i,msor,i >, where can be identified the message
sender or, the message receiver i, the amount of component element i required,
csor,i and the instant when it is requiredmsor,i. These requirements will be
stored in a requirements list LSi in the decreasing order of requirement instant
msor,i.

2. When a VAC is activated (in our case the current VAC), and it has some non
executed entries in the LSi, for every requirement non executed, it execute a
necessary estimation that consists from the following:

– determines the amount for every component element that is necessary as
cni,ij = csor ,i × qij , where j = i1, . . . , ik,



Conservative Simulation for Discrete Event Systems 307

– determines the instant when these component elements are necessary as
mir = mor,i × csor,i × dai.

3. When necessary estimation was finished, then the VAC sends for every
component element it, to the appropriate VAC. The message has the following
form < cni,ij ,mi,ij > (and for not give all details we omitted the exact
localisation of requirement).

4. As soon as every cell ij ∈ {i1, . . . , ik} which has received the requirements,
accomplish these and sends to (the current) requester cell i as messages which
have the following contents< cni,ij ,mdi,ij >, where j ∈ {i1, . . . , ik}. For
simplify the description, suppose that was accomplished and received the same
quantity which was required. In a refined version will allow to accomplish a lower
amount from required quantity, as soon as is accomplished the rest from required
amount, it follows to be sent. The partially amount received will be used in
assembly process and will be assembled a lower amount from the compound
element than was required.

5. When, for a requirement were received all needed component elements, then the
current cell V ACi, will pass in the active phase which consists in assembly
required amount from its (own) compound element, csor,i. The instant when it
will obtained which represents the new LVT, is given by

LV Ti = max(LV T,mdi,i1 , . . . ,mdi,ik) + dai × csor,i/li. (1)

It must to set at the begin of simulation

LV Ti = 0, ∀i ∈ {1, . . . , n}.

6. After the previous phase termination , the current cell V ACi will send the (own)
achievement to the requester oi by a message < csor,i, LV Ti >.

3.5. Assembly Cell Activities

The previous allow us to define the assembly cell functions, that can be clustered in:

• processing functions:

– necessary component element estimation;
– assembly process, active phase, which implies time evolution in the VAC;

• communication functions:

– receive of requirements;
– send the own requirements for component elements;
– receive achievements (of needed component elements);
– send own achievements.

It must observe that the processing functions are executed by the cell when their condi-
tions are satisfied. These conditions are specific and consist from:



308 A. Cicortaş

• for necessary component element estimation – the existence of a requirement from
another VAC, for the compound element which is assembled by the current V ACi;
• for assembly process – the existence of all needed component element in

appropriate amounts (this condition is equivalent with the enabled condition for
the appropriate transition of a Petri net), for assembling its (own) compound
element.

DEFINITION 8. The processing functions: necessary component element estimation and
assembly are named internal activities. They are (assembly) or not (necessary component
element estimation), simulation (processing) time consuming.

REMARK 3. The assembly phase is an atomic activity. In a refined implementation it can
be considered as non atomic activity.

In other models the activities have another particularities and then the model differs
from our model. In our model the results of internal activities consist form:

• the component element that are necessary for satisfying an (external) requirement;
• the assembled (own) compound element,

which will be the object of the messages send to the other VACs.

Time Evolution in VAC

For time evolution some considerations will be made:
1. In the necessary component element estimation, an instant is defined when a

component element it should be used , but this instant has an estimate character;
2. The assembly is the function that is simulation (processing) time consuming and

it will modify the cell LVT. The LVT value is given by the relation (1);
3. Every message sent by the V ACs and received by the V ACr contains a time

value that is:

– estimate when the message is a requirement;
– the LVT value when the message is an achievement.

If the internal activity (assembly process) is atomic, then the LVT is given by relation (1).
If the internal activity (assembly process) is not atomic some subactivities from it can

be viewed, then we can obtain a refinement, applying a critical path method in which
occur:

• the instant mdi,ij when the component element is delivered as the message by
the V ACj ;
• delay dli,j from the start of assembly process in the V ACi;
• the time interval of usage uij in assembly process of the component element j

in V ACi.

The critical path is built and are specified the elements that are constituents of this path.
Another component elements that are not constituents of the critical path, can arrive (their



Conservative Simulation for Discrete Event Systems 309

Fig. 6. Virtual assembly cell and processors model.

achievements), between the limits of type the earlier and the latest. If a such component
element (which not is constituent of critical path) arrives out of these limits, then it will
enter in the critical path and then it must be rebuild.

3.6. Model Design

From the previous, we can conclude that we have:

• internal activities;
• communications between the cells.

From these reasons we can design an adequate implementation. For modeling on a dis-
tributed architecture, suppose that we dispose for a number of m processors and we have
n virtual assembly cells. Evidently, that m 6 n or even m << n. So, for a processor we
will ascribe a subset of virtual assembly cells, on which the processor will manage. The
proposed model in represented in the Fig. 6.

A processor from the distributed architecture which manages the subset of ascribed
VACs, will assure the achievement of processing functions and communication functions
of these VACs. All the necessary elements will be defined in an adequate manner and
using the object-oriented concepts.

DEFINITION 9. The system model is composed from the Virtual Assembly Cell and the
Processor which manages the ascribed VACs. Logical Process of the model is the VAC.

DEFINITION 10. The Virtual Assembly Cell has the following:

• attributes:



310 A. Cicortaş

– the cell identification (its name) V ACi;
– the joined Petri net transition;
– the lot size li;
– the stop decomposition flag odi;
– the assembly time interval dai;

• services (methods):

– create cre (V ACi);
– destroy des (V ACi);
– estimate the necessary for a requirement est (reql);
– assembly for a requirement as (reql);

The V ACi has the following lists:

• the requirements list LSi, where every entry in the list reql is a requirement made
by another cell V ACl for its own compound element;
• for every entry in the previous list reql is created a new list with the component

elements that are necessary for that requirement, LCNil.

The entry from the requirement list reql has the following attributes;

• the sender cell V ACl;
• the message contents which has the form

< csl,i,msl,i, crt(l, i) >,

where

– csl,i is the amount of the component element i required;
– msl,i is the instant when the component element i is required;
– crt(l, i) is the number of the requirement made by V ACl for the V ACi.

An entry from the LNCil has the following attributes:

• the component element required V ACj ;
• the message contents of the requirement which has the form

< cnij ,msij >,

where

– cni,j is the amount from the component element j that is necessary;
– msi,j is instant when the component element is required;

• the message contents of the receiving amount that was accomplished by the
V ACj , which has the from

< cai,j ,mai,j >,



Conservative Simulation for Discrete Event Systems 311

where

– cai,j is the accomplished amount and cai,j = cni,j ;
– mai,j is the LV Tj the instant when the component element is available for the
V ACi.

DEFINITION 11. The Petri net transition tri that is associated with the V ACi has the
specific attributes and services.

The attributes are defined for every component element Sj and these are:

• the compound element is implicit V ACi;
• the component element is Sj ;
• the amount of component element j which enters into lot size of i is qij ;
• the usage of component element j in assembly process is uij ;
• the delay of usage for component element i is dlij ; it is counted relative to start of

assembly process for i.

The basic service (method) of transition tri is the firing. A transition is enabled if exists
a requirement reql for that was not estimated the necessary. If a such requirement exists,
then by calling ca (reql), the transition fires and by firing are estimated:

• the amount of component element that is necessary for achieving the requirement

cni,j = csl,i × qij ;

• the instant when it is required

mi,j = msl,i + csl,i × dai/li.

The firing results will be loaded into the component elements list LNCi,l and from, will
be sent as messages.

REMARK 4. In our concepts, the messages that allow the communication between the
VACs, will be sent by the processors which manages these cells involved in the commu-
nication.

DEFINITION 12. The processor that manages the associated cells subset, execute mainly
the following activities: after a specified policy activate a cell; this cell when is activated
take the control, execute its activities (only which are executable at the activated instant)
and after, give to the processor the control.

For manage the associated cells subset, the subset is constituted as a closed list, which
the processor examines it. When the processor examines a cell it can be in the one of the
following alternatives:



312 A. Cicortaş

• For a requirement for which was estimated the necessary of component elements,
the cell dispose for all these achievements (made by the respective component
element cells). In a such case the processor gives to the cell the command which
pass in the active phase, assembles the (own) compound element, evolves its own
LVT and in the end gives to the processor the command. At the phase end, the
appropriate lists will be updated.
• The cell has a requirement or more for which not was yet made the estimation for

necessary component elements. In a such case the processor gives the command to
the cell, which starts the necessary estimation for the respective requirement(s). At
the end of it, the appropriated lists will be modified appropriately. After that, the
command pass to the processor.
• While exist cells which is not in one of the previous alternatives and in the

associated lists a cell has some messages to send, then the processor execute its
appropriate task as follows:

– in the LNC lists exists the result of necessary estimation for a requirement and
these were not sent, then the processor send the messages to the appropriate
VACs;

– if a cell just finished its active phase, the assembly phase, and its result was not
sent, then the processor send to the appropriate cell that made the requirement,
the message with the accomplished requirement (and the LVT).

• The cell is not in one of the previous alternatives. Then the processor (give not it
the command) and pass to the next cell in the list. The simulation ends when there
are no any cell in a processing phase and all requirements for all cells were
satisfied.

The VACs receive external messages from other VACs. The message contents was
defined in the previous considerations. The message receiving is solved as follows:

• A cell receives a message which is a requirement (for assembling its own
compound element). Then the processor (if there is not creates the requirement list
and) inserts in the requirements list the arrived message, without giving the
control to the cell.
• A cell receives a message which is an achievement of a component element made

by the appropriate cell as a consequence of a requirement (made by the current
cell). Then the processor operates the message insertion in the LNC list.

Starting from these, we can develop the attributes and services for the processor in the
object-oriented concepts. So, the processor will have the following:

• attributes:

– the processor id (name) pri;
– the subset of associated VACs, as a closed list seti;
– the current VAC, V ACc;
– the queue of non processed messages received for the associated VACs. An item

of the queue, has the following attributes:



Conservative Simulation for Discrete Event Systems 313

∗ the source VAC;
∗ the destination VAC;
∗ the message;

• services (methods):
• create processor crepr (pri);
• destroy processor destrpr (pri);
• create VACs subset creva ();
• select next cell from list senex ()which becomes the current cell crtVAC;
• analyse the current cell. The current cell, crtVAC can be in the one of the

following alternatives:

– crtVAC not requires any processing phase (necessary estimation, or assembly)
and also not requires message sending. In this case the processor selects the
next cell from the (closed) list;

– crtVAC reclaims a necessary estimation, when it receives the command;
– crtVAC reclaims an assembly, when it receives the command;
– crtVAC has executed an assembly and must send the results to the appropriate

cell. Then, the processor sends the assembly result by a service
trmas(crtV AC,mesr).

– crtVAC has executed a necessary estimation and it must send the appropriate
messages, which are taken by the processor and sent to the cells trmes
(crtV AC,mesj).

• the queue messages processing consists from:

– inserting of a (just arrived) message in the queue insm (source, destination,
message contents);

– processing the current message (from top of queue), by inserting them in the
appropriate list requirements or achievement of a requirement made, and
deleting it form the queue prme (list, message contents); where list represents
LSi or LCNi, j respectively.

4. Conclusions

This paper describes the asynchronous parallel discrete event simulation (PDES) and its
mechanisms by examples of virtual assembly cell system simulation. Were described
only conservative mechanisms and some specific methods tailored to the VAC system.
No performance studies have been conducted. Investigating the performance of these
methods will be one of the future research directions.

The methods described in the paper are applied in many possible applications but
they must be tailored to the specificity of these applications. The VAC system can be
seen belonging of a larger class simulation where the space is discretized into a set of
VACs and then the element component (of product structure) are moved from one cell to
another.



314 A. Cicortaş

Like all real applications it was developed for it, an user-friendly environment, but it
can be developed together to the specific methods tailored to other applications.

References

Bagrodia, R., K.M. Chandy and Liao Wen-Toh (1991). A unifying framework for distributed simulation. ACM
Transactions on Modeling and Computer Simulation, 1(4), 348–387.

Cicortaş, A. (1995). Designing data bases for product structure representation using object-oriented concepts.
Annals of the West University of Timişoara, Series Economic Sciences, 1(7), 97–102.

Cicortaş, A. (1997). Distributed modeling of discrete events. PhD. Thesis. West University of Timişoara, Ma-
thematics Faculty.

Coad, P., and E. Yourdon (1990). Object-Oriented Analysis. Prentice-Hall, N. Y.
Coad, P., and E. Yourdon (1991). Object-Oriented Design. Prentice-Hall, N. Y.
Coleman, D., et al. (1994). Object-Oriented Development, The Fusion Method. Prentice-Hall, N. Y.
Ferscha, A., and S.K. Tripathi (1996). Parallel and Distributed Simulation of Discrete Event Systems. Computer

Science Department University of Maryland.
Fishwick, P.A., and B.P. Ziegler (1992). A multimodel methodology for qualitative model engineering. ACM

Transactios on Modeling and Computer Simulation, 2(1), 52–81.
Fishwick, P.A. (1993). A simulation enviroment for multimodeling. Discrete Event Dynamic Systems, Theory

and Applications, 3, 151–171.
Fujimoto, R.M. (1990). Parallel discrete event simulation. Communications of the ACM, 33(10), 31–53.
Henderson-Sellers, B., and J.M. Edwards (1990). The object-oriented systems life cycle. Comm. of the ACM,

33(9), 142–159.
Peterson, J.L. (1981). Petri Net Theory and the Modeling of the Systems. Prentice-Hall, N.Y.
Wirfs-Brock, R., B. Wilkerson and L. Wiener (1990). Designing Object-Oriented Software. Prentice-Hall, N. Y.
Yi-Bing, Lin, and P.A. Fishwick (1996). Asynchronous parallel discrete event simulation. IEEE Transactions

on Systems, Man and Cybernetics, XX(Y), Part A.

A. Cicortaş obtained a MS in mathematics in 1966 from the Mathematics Faculty of
“Babeş Bolyai” University of Cluj and a PhD in mathematics in 1997 from the Mathe-
matics Faculty of West University of Timişoara. He is interested in: modeling and sim-
ulation (especially discrete event modeling), design and analysis in object-oriented con-
cepts, modeling with Petri nets and their derivates (evaluation nets, stochastic Petri nets
and coloured Petri nets used in modeling of manufacturing processes).

Konservatyvus diskretini ↪u ↪ivyki ↪u sistemos modeliavimas

Alexandru CICORTAŞ

Straipsnyje nagrinėjamos asinchronini ↪u lygiagreči ↪u diskretini ↪u ↪ivyki ↪u modeliavimo problemos.
Pasiūlyta tokia modeliavimo metodologija. Jos mechanizmas iliustruojamas pramonės gamini ↪u
surinkimo iš smulkesni ↪u element ↪u proceso aprašymo ir modeliavimo pavyzdžiu.


