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Abstract. This work is a continuation of our previous papers devoted to exploration of the regular
search procedures efficiency in binary search spaces. Here we formulate the problem in a rather
general form as a problem of optimization of an unimodal pseudoboolean function given implicitly
and obtain analitical estimates of the expected time of a minimum point search for procedures of
direct local search. These estimates are polinomial for the case of weakly nonmonotone functions
and exponential for the general case of arbitrary unimodal functions. We hope that the proposed
result will be usefull first of all for practical applications.
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1. Introduction

In our previous papers (Antamoshkin, Saraev and Semenkin, 1990; Antamoshkin and Se-
menkin, 1991) we have considered unimprovable by time-complexity regular algorithms
for unimodal and polimodal monotone pseudoboolean function optimization.

The objective of this work is to consider the local search potentialities as a method
for arbitrary unimodal pseudoboolean function optimization. Deterministic local search
methods in the case of binary search spaces were considered by Nemhauser et al. (1978)
and Ausiello and Protasi (1995) only with the standpoint of a quality of solutions that can
be found in polynomial time for the class of supermodular function.

A review of the latest achievements in the field of search efficiency in binary spaces
has been given by Rudolf (1996). In this work he has shown a polynomial (by the ex-
pected number of trails) convergence of evolutionary algorithms for a number of special
classes of unimodal functions, too. But as the problem of optimization of arbitrary uni-
modal pseudobbolean functions is rather unsolvable in deterministic polynomial time (by
evidence of Rudolf (1996)) it makes sense to seek for exponential estimates of the ex-
pected time of search for the problem in general statement.

We consider the unconstrained pseudoboolean optimization problem which can be
written as

f(X) −→ min, (1)
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where

f : Bn2 −→ R1, (2)

Bn2 = {X = (x1, ..., xn) : xj ∈ {0, 1}, j = 1, ..., n}, R1 is the real line.
Proceeding from practical reasons, we will presuppose that the function f is given

implicitly, i.e., it can not be presented with an evident analytical form. For instance, we
use some computational algorithm (or a simulating model) to obtain its values or this
function is an output of a real system.

In the rest of the paper, we inquire into ability of the local search method to solve
the formulated problem. Some needed notions and theoretical results are given next. In
Section 3, we consider concrete schemes of the local search method for different-valued
and arbitrary unimodal functions, formulate and prove theorems giving estimates of the
expected number trials for these schemes on different classes of the functions. In particu-
lar, it has been shown that the local search method realized in the terms of Papadimitriou
and Steiglitz (1982) the information complexity of the class of weakly nonmonotone uni-
modal functions. Finally we close this paper with some concluding remarks in Section 4.

2. Some Theoretical Notions and Results

Following to Papadimitriou and Steiglitz (1982) the first that is needed to organize a local
search is the "neighborhood search procedure".

DEFINITION 1. Points X1, X2 are called k-neighboring if they differ in the values of k
coordinates (k = 1, ..., n). 1-neighbouring points will be called simply neighbouring.

DEFINITION 2. The set Ok(X) (k = 1, ..., n) of points that are k-neighbouring to the
point X will be called the kth level of the point X (O0(X) = X).

REMARK 1. It is clear, that cardOk(X) = Ckn, k = 1, ..., n. Here (and below) Ckn is the
number of combinations from n on k.

Lemma 1 (Antamoshkin, Saraev and Semenkin, 1990). ∀Xk ∈ Ok(X) ⊂ B2
n :

card {O1(Xk) ∩Ok−1(X)} = k, k = 1, ..., n,

card {O1(Xk) ∩Ok+1(X)} = n− k, k = 0, .., n− 1.

Lemma 2 (Antamoshkin, Saraev and Semenkin, 1990). Let Xk ∈ Ok(X) ⊂ B2
n. Then

for all m = 0, ..., n :

Om(Xk) ⊂
M⋃
j=0

O|k−m|+2j(X), M = (n− |n−m− k| − |k −m|)/2,
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card (Om(Xk) ∩O|k−m|+2j(X)) = C
min(m,k)−j
k ·Cn−max(m,k)−j

n−k .

COROLLARY 1. For any k-neighbouring points X1, X2 :

card (Ol(X
2) ∩Ok−l(X1)) = Clk, l = 0, ..., k.

Lemma 3 (Antamoshkin, Saraev and Semenkin, 1990). ∀Xk ∈ Ok(X) ⊂ B2
n, k =

0, ..., n :

Ok(X) ⊂
N⋃
l=0

O2l(X
k), N = min{k, n− k},

and

card (O2l(X
k) ∩Ok(X)) = Clk · Cln−k, l = 0, ..., N.

DEFINITION 3. The pointX∗ for which f(X∗) < f(X) ∀X ∈ O1(X∗) will be called a
local minimum point of the function f .

DEFINITION 4. A pseudoboolean function that has only local minimum on B2
n will be

called unimodal.

DEFINITION 5. The set of points W (X0, X l) = {X0, X1, ..., Xi, ..., X l} ∈ B2
n will

be called a path between X0 and X l if points Xi and Xi−1 are neighbouring for all
i = 1, ..., l.

DEFINITION 6. Let A ⊂ B2
n. Then A is a connected set if for all X0, X l ∈ A there

exists a path W (X0, X l) ⊂ A.

DEFINITION 7. A connected set Sc ⊂ B2
n, cardSc > 2, such that f(X) = c (c =

const) for all X ∈ Sc, is called the constancy set of the function f on B2
n.

DEFINITION 8. An unimodal function f is monotone on B2
n if

f(Xk−1) 6 f(Xk) ∀Xk−1 ∈ Ok−1(X∗) ∧ ∀Xk ∈ Ok(X∗), (3)

k = 1, ..., n,

or equivalently

max
Xk−1∈Ok−1(X∗)

f(Xk−1) 6 min
Xk∈Ok(X∗)

f(Xk) ∀k = 1, ..., n. (4)

If (3) and (4) are fulfilled with the sign of strict inequality then the function f is strictly
monotone.
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Lemma 4 (Antamoshkin, Saraev and Semenkin, 1990). If f is an unimodal strictly
monotone function then

f(Xk+1) > f(Xk) ∀Xk+1 ∈ Ok+1(X∗) ∩O1(Xk) (5)

for all Xk ∈ Ok(X∗), k = 0, ..., n− 1.

DEFINITION 9. An unimodal function f , for which the condition (3) (or (4)) is violated
at least in one point of B2

n, will be called nonmonotone.

REMARK 2. It follows from the last definitions that constancy sets are possible for both
monotone and nonmonotone on B2

n functions.

DEFINITION 10. A path W (X0, X l) ⊂ B2
n between k-neighbouring points X0 and X l

will be called minimal if l = k.

DEFINITION 11. We will say that a function f is different-valued on B2
n if for all mini-

mal paths W (X0, X l), X0 ∈ B2
n, X

l = X∗ :

f(Xi) 6= f(Xj) for i 6= j, Xi, Xj ∈W (X0, X l), i, j = 0, ..., l.

REMARK 3. One can see that constancy sets are possible for different-valued functions
too.

DEFINITION 12. A path W f (X0, X l) ⊂ B2
n will be called the path of non-increasing

of a function f if for all Xi, Xi−1 ∈W f (X0, X l), i = 1, ..., l :

f(Xi) 6 f(Xi−1), (6)

and the path of decreasing of the function f in the case of the strict inequality in (6).

REMARK 4. It directly follows from Definitions 8 and 12 that a function f is monotone
on B2

n if for any X0 ∈ B2
n all paths of non-increasingW f (X0, X∗) are minimal.

DEFINITION 13. A pathW f
min(X0, X l) ⊂ B2

n will be called the path of most decreasing
of a function f if for all Xi, Xi−1 ∈W f

min(X0, X l), i = 1, ..., l :

f(Xi) = min
X1
j
∈O1(Xi−1)

f(X1
j ). (7)

DEFINITION 14. An unimodal nonmonotone on B2
n function f will be called weakly

nonmonotone if for all Xk ∈ Ok(X∗), k = 1, ..., n, the point X1
min, such that

f(X1
min) = min

X1
j
∈O1(Xk)

f(X1
j ), (8)

belongs to Ok−1(X∗).
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REMARK 5. As it follows from the last definition, the condition "for all X0 ∈ B2
n the

path W f
min(X0, X∗) is minimal" is necessary and sufficient for the weakly nonmono-

tonecity of an nonmonotone function f .

Lemma 5. Let f is an unimodal different-valued function. Then for each point X ∈
B2
n \ {X∗} among the points X1

j ∈ O1(X), j = 1, ..., n, there is at least one point X1
ji

such that f(X1
ji

) < f(X).

Proof. Assuming inversely we have a minimum in the point X that contradicts to the
presuppositionX ∈ B2

n \ {X∗}.

COROLLARY 2. If f is an unimodal different-valued function then for all X ∈ B2
n \

{X∗} there is at least one path W f(X,X∗) of the function f decreasing.

Proof. It follows from Definitions 3 and 11.

Lemma 6. If f is an unimodal different-valued function then for all X i ∈ W f
min(X0,

X∗) = {X0, X1, ..., Xi, ..., X∗} :

{X0, X1, ..., Xi−2, Xi+2, ...,X∗} ⊂ B2
n \O1(Xi).

Proof. Presuppose inversely: Xj ∈ O1(Xi) and j − i > 1. Then by Definition 13 we
have f(Xi) > f(Xi+1) > ... > f(X l) > ... > f(Xj), i.e., f(Xj) < f(Xi+1). Hence
in accordance with (7) Xj = Xi+1 that contradicts to the supposition: j − i > 1. For the
case i− j > 1 the proof is analogous.

Lemma 7. If f is an unimodal different-valued function then

min
Xk
j
∈Ok(X∗)

f(Xk
j ) < min

Xk+1
j
∈Ok+1(X∗)

f(Xk+1
j ) ∀k = 0, ...n− 1. (9)

Proof. Suppose that for a certain k > 0 (when k = 0 the unequality (9) directly follows
from the minimum definition) the condition (9) is violated, i.e.,

min
Xk
j
∈Ok(X∗)

f(Xk
j ) > min

Xk+1
j
∈Ok+1(X∗)

f(Xk+1
j ). (10)

Consider the point Xk+1
min , which is determined from the condition

f(Xk+1
min ) = min

Xk+1
j
∈Ok+1(X∗)

f(Xk+1
j ).

As it follows from (10) for all X1
j ∈ O1(Xk+1

min ) ∩ Ok(X∗) : f(X1
j ) > f(Xk+1

min ).

Next, since Xk+1
min ∈ Ok+1(X∗)(k > 0) then Xk+1

min 6= X∗ and hence there is the point
Xk+2 ∈ O1(Xk+1

min ) ∩Ok+2(X∗) such that

f(Xk+2) < f(Xk+1
min ). (11)
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Take the point Xk+2
min f(Xk+2

min ) = minXk+2
j ∈ Ok+2(X∗)f(Xk+2

j ). Evidently, that

f(Xk+2)min) 6 f(Xk+2). Then the same as for the point Xk+1
min there is the point

Xk+3 ∈ O1(Xk+2
min ) ∩Ok+3(X∗) such that

f(Xk+3) < f(Xk+2
min ) (12)

and so on. Finally, for k = n− 1 like (11) and (12) we have

f(Xn) < f(Xn−1
min ), (13)

where Xn ∈ On(X∗). As cardOn(X∗) = 1 then it follows from (13) that Xn is a
local minimum point and the last contradicts to the presupposition about the function f
unimodality.

COROLLARY 3. Let W f
min(X0, X∗) = {X0, X1, ..., X∗} is the path of an unimodal

different-valued function f most decreasing and let the original point of this path belongs
to O1(Xk

min) k = 1, ..., n− 1, where Xk
min is determined of the condition

f(Xk
min) = min

Xk
j
∈Ok(X∗)

f(Xk
j ), (14)

then

(W f
min(X0, X∗) \ {X0, X1}) ⊂

k−1⋃
i=0

Oi(X
∗). (15)

Proof. By Definition 14: f(X0) > f(X1) > ... > f(X∗) and in accordance with (9):
∀X ∈

⋃n
i=k Oi(X

∗) : f(X) > f(Xk
min) whence (15) appears.

DEFINITION 15. The points of the set EI(X,A) = OI(X) ∩ A,A ⊂ Bn2 , X ∈ Bn2 ,
which answer the condition

OI(X) ∩A 6= ∅ ∧ ∀k = 0, ..., I − 1 : OI(X) ∩A = ∅,

will be called the first points of the set A with respect to the point X .

DEFINITION 16. The points of the set LJ(X,A) = OJ (X) ∩ A,A ⊂ Bn2 , X ∈ Bn2 ,
which answer the condition

OJ (X) ∩A 6= ∅ ∧ ∀k = J + 1, ..., n : OJ (X) ∩A = ∅,

will be called the last points of the set A with respect to the point X .

DEFINITION 17. A point X ∈ Bn2 will be called k-neighbouring to a set A ⊂ Bn2 if

Ok(X) ∩A 6= ∅ ∧ ∀l = 0, ..., k − 1 : Ol(X) ∩A = ∅.
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DEFINITION 18. The set Ok(A), A ⊂ Bn2 of all points ofBn2 , which are k-neighbouring
to the set A, we will call the kth level of the set A, O0(A) = A.

DEFINITION 19. The function f constancy set Sc∗ ⊂ Bn2 such that c∗ < f(X)∀X ∈
O1(Sc∗) will be called the extended local minimum of the function f .

DEFINITION 20. A set A ⊂ Bn2 we will call the Φ set with respect to a point X ∈ Bn2 if

A = EI(X,A) ∪
( J−1⋃
k=I+1

Ok(X)
)
∪ LJ(X,A),

where EI(X,A) and LJ(X,A) are the sets of the first and the last points of the set A
with respect to the point X .

REMARK 6. The Φ sets properties have been explored in detail by Antamoshkin, Saraev
and Semenkin (1990).

Lemma 8 (Antamoshkin, Saraev and Semenkin, 1990). Unimodal monotone on Bn2
functions admit existence of any Φ constancy sets with respect to a minimum point.

COROLLARY 4. Unimodal nonmonotone onBn2 functions admit existence of any Φ con-
stancy sets with respect to a minimum point.

Proof. Evidently.

Lemma 9. If the unimodal nonmonotone (weakly nonmonotone) function f constancy
set:

Sc = EI(X
∗, Sc) ∪

( J−1⋃
k=I+1

Ok(X∗)
)
∪ LJ(X∗, Sc), 0 6 I 6 J 6 n− 2, (16)

includes at least one full level of X∗ then

∀X ∈ Oi(X∗), i > J : f(X) > c.

Proof. Let LJ(X∗, Sc) = OJ (X∗) and X ∈ OJ+1(X∗). Then by Corollary 3

f(X) > min
XJ+1∈OJ+1(X∗)

f(XJ+1) > min
XJ∈OJ (X∗)

f(XJ) = c,

but as we presuppose a connectedness of the considering constancy sets then

∀X ∈ Oi(X∗), i > J :

f(X) > min
Xi∈Oi(X∗)

f(Xi) > ... > min
XJ+1∈OJ+1(X∗)

f(XJ+1) > c.
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Let now OJ (X∗) \ LJ(X∗, Sc) 6= ∅. Then, taking into account Corollary 3, ∀X ∈
Oi(X

∗), i > J we have

f(X) > min
Xi∈Oi(X∗)

f(Xi) > ... > min
XJ∈OJ (X∗)

f(XJ).

Assume the function minimum on the set OJ(X∗) is reached in the point XJ
min ∈

OJ (X∗) \ LJ(X∗, Sc), i.e., f(XJ
min) < c. Consider O1(XJ

min):

∀XJ−1 ∈ OJ−1 ∩O1(XJ
min) : f(XJ−1) = c > f(XJ

min).

In accordance with the lemma conditions Sc has at least one full level and then by the Φ

sets definition if OJ (X∗) \ LJ(X∗, Sc) 6= ∅ then O1(XJ
min) ⊂ Sc and

∀XJ+1 ∈ OJ+1(X∗) ∩O1(XJ
min) :

f(XJ+1) > min
XJ+1∈OJ+1(X∗)

f(XJ+1) > f(XJ
min),

i.e., either a local minimum is in the pointXJ
min or the pointXJ

min belongs to an extended
local minimum that contradicts the lemma supposition on the function f unimodality.
From that minXJ∈OJ(X∗) f(XJ) = c and hence

∀X ∈ Oi(X∗), i > J :

f(X) > min
Xi∈Oi(X∗)

f(Xi) > ... min
XJ∈OJ(X∗)

f(XJ) = c,

or taking into consideration the requirement on the constancy sets connectness, finally,
we have f(X) > c.

COROLLARY 5. Let Scq ⊂ Bn2 , q = 1, ..., Q, are the unimodal nonmonotone (weakly
nonmonotone) function f Φ constancy sets with respect to the minimum point X∗ and
let each constancy set contains not less than one full level of X∗. Then for all q and g
(q, g,= 1, ..., Q; q 6= g) such that Iq < Ig : cq < cg.

Here Iq and Ig are the numbers of the levels of the first point sets
EIq (X

∗, Scq) and EIg (X∗, Scg).

Proof. Let Jq is the number of the LJq(X
∗, Scq) level. By the lemma ∀X ∈ Oi(X∗) ∩

Scg , i > Jq : f(X) > cq . Whence (as X ∈ Scg ) cg > cq appears.

COROLLARY 6. Let the unimodal nonmonotone (weakly nonmonotone) function f Φ

constancy set is determined by the lemma conditions. Then there is at least one point
X ∈ (OI−1(X∗) ∪OI(X∗)) \ Sc such that f(X) < c.

Proof. Otherwise we have that Sc is an extended minimum, that contradicts to the sup-
position on the function f unimodality.
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3. Algorithms and Efficiency

By Papadimitriou and Steiglitz (1982) a local search concrete algorithm is determined
with four points:

– the choice of the initial point for search;
– the determination of the neighborhood size for the search steps;
– the determination of strategy of moving to a new point ;
– the determination of the step size for moving to a new point.
These components of an algorithm are specified in depending on an available a priori

information about an objective function features. In our case we assume the lack of a
priori information on the objective function. Consequently, it will be reasonable to offer
the following simple scheme to organize a local search.

Algorithm 1.
1. Suppose r = 0. The point Xr ∈ Bn2 is chosen arbitrarily. Compute f(Xr).
2. Inverting sequentially the point Xr components we find all points X1

j ∈
O1(Xr), j = 1, ..., n.

3. For all X1
j ∈ O1(Xr) \O1(Xr−2) (O1(Xr) = ∅ if r < 0) f(X1

j ) are computated.
If f(Xr) < f(X1

j )∀j = 1, ..., n then X∗ = Xr, otherwise go to 4.
4. Suppose r = r + 1, determine the point Xr from the condition

f(Xr) = min
X1
j
∈O1(Xr−1)

f(X1
j )

and go to 2.

Theorem 1. To locate the minimum point X∗ of an unimodal weakly nonmonotone on
Bn2 function f from the initial point X0 ∈ Ok(X∗), k = 0, ..., n, Algorithm 1 requires
T1 computations of the function f values.

T1 =

{
2n+ (k − 1)(n− 2), k > 0,

n+ 1, k = 0.

Proof. For k = 0 the estimate T1 directly follows from Definition 3. Let k > 0. In accor-
dance with the algorithm the values of f in the points X0 and X1

j ∈ O1(X0), j =

1, ..., n, have to be computeted, i.e., (n + 1) computations of f are made. By Def-
inition 13 the point X1 ∈ O1(X0) ∩ Ok−1(X∗). The values of f in the point
X1(X1 ∈ O1(X0)) and in one neighbouring to it point are known, i.e., it is neces-
sary to do (n − 1) computations of f in the point X1 for determining a point X2. The
point X2 ∈ O1(X1) ∩ Ok−2(X∗) (in accordance with Definition 13) and besides by
Corollary 1 the values of f in two points of O1(X2)) are known too, i.e., in the point X2

for determining a point X3 it is necessary to do (n − 2) computations of f . An analo-
gous situation takes place in the pointsX3, X4, ..., Xk(Xk = X∗) and to establish in the
point Xk the fact that Xk = X∗ will be required (n− 2) computations of f in addition.
Summarizing we have: T1 = (n+ 1) + (n− 1) + (k− 1)(n− 2) = 2n+ (k− 1)(n− 2).
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COROLLARY 7.

max
06k6n

T1 = 2n+ (n− 1)(n− 2) = n2 − n+ 2. (17)

Proof. Evidently.

Theorem 2. To locate the minimum point X∗ of an unimodal different-valued weakly
nonmonotone on Bn2 function f Algorithm 1 on the average requires T2 computations of
the function values.

T2 = (n2 + 4)/2− 1/(2n).

Proof. In accordance with the algorithm the original point X0 is chosen arbitrarily hence
it is possible to assume for all X ∈ Bn2 : Pr{X0 = X} = 1/(cardBn2 ) = 1/(2n). Then
taking into consideration cardOk(X∗) = Ckn, k = 0, ..., n, we have

Pr{X0 ∈ Ok(X∗)} = Ckn/(2
n).

Finally, from the last relation and Theorem 1 we obtain the following expression for the
mathematical expectation of the number of calculations of f required for locating X∗ :

T2 =
n+ 1

2n
+

n∑
k=1

Ckn
2n

[2n+ (k − 1)(n− 2)]

=
n+ 1

2n
+

1

2n
[2n

n∑
k=1

Ckn + (n− 2)
n∑
k=1

kCkn −
n∑
k=1

Ckn]

=
1

2n
(n+ 1 + 2n(2n − 1) + n(n− 2)2n−1 − (n− 2)2n).

Hence T2 follows after simple transformations.

REMARK 7. The estimates T1 and T2 are correct as well when applying this algorithm
for optimization of unimodal strictly monotone functions. In fact, as it follows from (3)
and (5) for all Xk ∈ Ok(X∗), k = 1, ..., n, the point X1

min (determined by the condition
(7)) belongs to Ok−1(X∗).

Lemmas 5 – 6 and the corollaries to them permit to assert that the algorithm is ac-
ceptable for optimization of arbitrary unimodal on B2

n functions. However, in this case
we can not eliminate the situation when Algorithm 1 degenerates in a total examination.
By this reason to obtain some estimate "on the average" makes sense.

Theorem 3. For locating the minimum pointX∗ of an unimodal different-valued on Bn2
function f Algorithm 1 requires less than T3 computations of the function f values when
n > 5.

T3 = 2n − (n2 + 3n− 2)/2 + (2n3 + n2 − 4n+ 3)/(2n). (18)
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Proof. By analogy with the previous theorem we have

Pr{X0 = X∗} = 1/(2n), (19)

Pr{X0 ∈ O1(X∗)} = n/(2n), (20)

Pr{X0 ∈ O1(Xk
min)} = n/(2n), k = 1, ..., n, (21)

where X0
min = X∗ and for k > 0 Xk

min is determined from the condition (14).
Let us introduce a random value t(X0). This is the number of function computations,

which Algorithm 1 requires to locate the pointX∗ from the initial point X0 ∈ B2
n.

The pointsO1(X∗) ∪ {X∗} answer the conditions of Theorem 2. Thus,

t(X0) =

{
n+ 1 when X0 = X∗,

2n when X0 ∈ O1(X∗),
(22)

and in accordance with Corollaries 1, 3 and Lemma 1:

t(X0) 6 (n+ 1) + (n− k + 1− 1) +
k−1∑
i=0

cardOi(X
∗)− k,

when X0 = X0
min, k = 2, ..., n;

t(X0) 6 (n+ 1) + (n− 1) + (n− k + 1− 2) +
k−1∑
i=0

cardOi(X
∗)− k,

when X0 ∈ O1(Xk
min) \ {X∗}, k = 1, ..., n.

Next, taking into account that cardOi(X
∗) = Cin, i = 0, ..., n,

t(X0) 6 2n− 2k + 1 +
k−1∑
i=0

Cin, when X0 = X0
min, k = 2, ..., n;

t(X0) 6 3n− 2k − 1 +
k−1∑
i=0

Cin, when X0 ∈ O1(Xk
min) \ {X∗}, k = 1, ..., n.

The strict inequality in the last relations can be reached only for the situation when for all
k = 2, ..., n− 2:

O1(Xk−1
min ) ∩ {Xk

min} = ∅, (23)

O1(Xk+1
min ) ∩ {Xk

min} = ∅, (24)

O1(Xk−1
min ) ∩ {Xk+1

min } = ∅. (25)
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Let k = 2. Then

Card (O1(X1
min) ∩O2(X∗)) = n− 1, card (O1(X3

min) ∩O2(X∗)) = 3.

It leads to the condition

cardO2(X∗) > n− 1 + 3 + 1 = n+ 3

for fulfillment of (23) – (25) when k = 2. But cardO2(X∗) = C2
n and we have the

following inequality n!/(2(n − 2)!) > n + 3 solving which with respect to n we will
obtain: n > 5. The same is when k = n− 2.

From (19) – (25) in view of the fact that

∀X0 ∈ Bn2 \
( n⋃
k=0

(O1(Xk
min) ∩ {Xk

min})
)

: t(X0) 6 2n,

we have for the estimate of the mathematical expectation of the random value t(X0)

"from above" when n > 5 the following relation:

T3 =
n+ 1

2n
+
n2n

2n
+

(n− 1)(3n− 2)

2n
+

1

2n

n∑
k=2

[
2n− 2k + 1 +

k−1∑
i=0

Cin

]
+

n

2n

n∑
k=2

[
3n− 2k +

k−1∑
i=0

Cin − 1
]

+
2n − n2 − 2n+ 1

2n
2n.

As
∑n
k=2

∑k−1
i=0 C

i
n = n2n−1 − 1 after simplest transformations from the last relation

we obtain (18).

REMARK 8. It is easy to calculate that T3 = 6, 26 for n = 3 and T3 ≈ 11, 06 for n = 4.

Next, we consider the case of pseudoboolean functions having constancy sets. First
of all, note that Algorithm 1 is suitable if the condition

∀X ∈ B2
n \ {X∗}∃X1 ∈ O1(X) : f(X1) < f(X) (26)

is valid. This condition can be violated if the point X belongs to a certain constancy set.
Consequently, to be able to optimize a pseudoboolean function admitting constancy sets
we have to modify Algorithm 1 so as always to guarantee obtaining the situation (26)
with least expenditures.

Algorithm 2.
1. Suppose that r = 0. The point Xr ∈ Bn2 is chosen arbitrarily. Compute f(Xr).
2. Inverting sequentially the point Xr components we find all points
X1
j ∈ O1(Xr), j = 1, ..., n. Computate the unknown values f(Xr

j ).
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3. Form the set V (Xr) = {j ∈ {1, ..., n} : f(Xr) = f(Xr
j )}.

If cardV (Xr) = 0 then go to 4, if 0 < cardV (Xr) < n then go to 6, if
cardV (Xr) = n then suppose t = 2 and go to 8.

4. If f(Xr) < f(Xr
j ) ∀j = 1, ..., n then X∗ = Xr and stop.

5. Determine X1
min from the condition

f(X1
min) = min

X1
j
∈O1(Xr)

f(X1
j ). (27)

Suppose r = r + 1, Xr = X1
min and go to 2.

6. Determine X1
min from the condition (27). If f(X1

min) < f(Xr) then suppose
r = r + 1, Xr = X1

min and go to 2.
7. ∀Xr

j , j ∈ V (Xr) invert sequentially the component values to find all points

Xjr
i ∈ O1(Xr

j ), j = 1, ..., n. Computate the unknown values f(Xjr
i ). Determine

X1
min from the condition

f(X1
min) = min

j∈V (Xr)
min

Xjr
i
∈O1(Xr

j
)
f(Xjr

i ).

If f(X1
min) < f(Xr) then suppose r = r + 1, Xr = X1

min and go to 2,
otherwise suppose t = 2 and go to 8.

8. Invert t components of the point Xr to find all points
Xt
j ∈ Ot(Xr), j = 1, ..., Ctn. Sequentially calculate the unknown values f(Xt

j):
if f(Xt

j) < f(Xr) then suppose r = r + 1, Xr = Xt
j and go to 2, otherwise

continue the calculations.
9. If f(Xt

j) > f(Xr) ∀j = 1, ..., Ctn then suppose X∗ = Xr and stop, if
f(Xt

j) = f(Xr) ∀j = 1, ..., Ctn then go to 10.
10. Suppose t = t+ 1, if t > n then X∗ = Xr and stop, otherwise go to 8.

Let us give some explanation to this algorithm.
When realizing the point 3 the algorithm locates the search current point position with

respect to possible constancy sets. If cardV (Xr) = 0 then the condition (26) is executed
and the operation of Algorithm 1 and Algorithm 2 is identical. If cardV (Xr) = n then
the strategy of going out of a constancy set is realized (the points 8–10 of the algorithm).
The case when 0 < cardV (Xr) < n corresponds to the situation whenXr is a boundary
point of a certain constancy set Sc or Xr ∈ O1(Sc). For this case some additional test
on the condition (26) fulfilling in the point Xr is realized (the point 6 of the algorithm).
The points 4 and 9 permit to establish the fact that a current point of search is a minimum
point.

Estimate the efficiency of Algorithm 2. In the case of a different-valued function or a
function having only two-level Φ constancy sets, the efficiency estimates for Algorithm
2 will coincide with the corresponding estimates for Algorithm 1 (Theorems 1, 2 and
Corollary 7). Similarly, these estimates will be correct and for the case when an unimodal
weakly nonmonotone function is a different-valued one on the set

⋃I−1
i=0 Oi(X

∗), where
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I is the number of the first (with respect to X∗) points level of an arbitrary Φ constancy
set, and

X0 ∈
( I⋃
i=0

Oi(X
∗)
)
∪
(
B(Sc) ∩OI+1(X∗)

)
.

Here B(Sc) is the set of the set Sc boundary points.
For the rest cases the following theorems give the estimates of efficiency.

Theorem 4. Let

Sc =
J⋃
l=I

Ol(X
∗), I > 1, I + 1 < J 6 n, (28)

is a constancy set of a weakly nonmonotone function f and X0 ∈ Ok(X∗), I < k 6 J

is the search initial point. Then Algorithm 2 requires to computate the f values not more
than in T4 points of Bn2 to locate the minimum point.

T4 =
k−I+1∑
l=0

Cln −E[CIk/2] + (I − 1)(n− 1), (29)

where [α] means the least integer greater than α.

Proof. As I < k 6 J then

k−I⋃
l=0

Ol(X
0) ⊂

(
Sc ∪

( n⋃
l=J+1

Ol(X
∗)
))
.

From Lemma 9 we have

∀X ∈
n⋃

l=J+1

Ol(X
∗) : f(X) > c, i.e., ∀X ∈

k−I⋃
l=0

Ol(X
0) : f(X) 6 c.

Thus, in accordance with of points 8 – 10 the algorithm

T 1
4 =

k−I∑
l=0

cardOl(X
o) =

k−I∑
l=0

Cln, (30)

computations of f will be done. Next, the values of f in the points of Ok−I+1(X0)

are computated. In accordance with Corollary 1 card (Ok−I (X0) ∩ OI(X∗)) = CIk ,

and what is more, as it follows from Definition 14 ∀XI ∈ Ok−I(X0) ∩ OI(X∗) at
least one point XI−1 ∈ O1(XI) ∩ Ok−I+1(X0) ∩ OI−1(X∗) such that f(XI−1) <

f(XI) has to exist. By Lemma 3 the set Ok−I(X0) ∩OI(X∗) consists of 2-, 4-, 6- etc.
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neigbouring points. Then taking into account Corollary 1 we can assert that not less than
E[CIk/2] points, in which the function values are less than c, exist among the points of
Ok−I+1(X0). Thus, in accordance with the point 8 of the algorithm not more than

T 2
4 = Ck−I+1

n −E[CIk/2], (31)

computations of f will be done additionally to determine the point XI−1 ∈ OI−1(X∗)

such that f(XI−1) < c. Further the work of Algorithm 1 and Algorithm 2 is identical and
we can use the estimate T1 (taking into consideration that the function values in n−I+1

points of the set OI(XI−1)∩OI(X∗) and in the pointXI−1 are known). Consequently,
to locate X∗ the algorithm has to do

T 3
4 = (I − 1)(n− 1), (32)

computations of f in addition. Uniting (30) – (32) we have (29).

COROLLARY 8.

max
I<k6J

T4 =
J−I+1∑
l=0

Cln −E[CIJ/2] + (n− 1)(I − 1).

Proof. maxI<k6J (k − I + 1) = J − I + 1.

COROLLARY 9.

max
1<I<J6n

max
I<k6J

T4 =
n−1∑
l=0

Cln −E[C2
n/2] + n− 1.

Proof. max1<I<J6n(J − I + 1) = n− 1.

COROLLARY 10. If I = 1 then T4 =
∑k
l=0C

l
n.

Proof. When I = 1 all points X1
j ∈ O1(X∗), j = 1, ..., n, are 2-neighbouring points

and

( n⋃
j=1

O1(X1
j )
)
\
(( n⋃

j=1

O1(X1
j )
)
∩ Sc

)
= {X∗},

i.e., in accordance with the algorithm the function values in all points of the set
Ok−I+1(X0) are computated. Then the point X∗ is determined without additional com-
putations.

Finally we consider the case of an arbitrary function having Φ constancy sets.
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Denote by T5 the efficiency estimate "on the average" of the algorithm for this case.
As the algorithm efficiency estimates for several Φ constancy sets will be less (it follows
from Corollary 3 and the fact that if s = s1 + s2, s1 > 2, s2 > 2 then

∑s
l=0C

l
n >∑s1

l=0C
l
n +

∑s2
l=0C

l
n, s 6 n − 1) we consider a function having only constancy set

Sc =
⋃J
l=I Ol(X

∗), 1 6 I < J 6 n.
With respect to the location of Sc in Bn2 the following essential for us situations are

possible:
1. I = 1, J = n;

2. I > 1, J = n;

3. I = 1, J < n;

4. I > 1, J < n.

The Situation 1 conforms to the conditions of Theorem 3 and therefore in this case
T5 = T3. For the Situation 2 with the probability P1 = (1 + n + I − 2 + (I − 2)(n −
2))/(2n) :

T5 6 3n− 2I +
I−1∑
i=0

Cni − 1 < 2n, (33)

and with the probability P2 = 1−P1 : T5 6 T3, i.e., for the Situation 2 as well T5 < 2n.
For the Situation 3, with the probability P1 = (cardSc + 1)/(2n) : T5 6 T3 and with
the probability P2 = 1 − P1 : T5 6 card (∪nl=0Ol(X

∗)) = 2n, i.e., T5 6 2n. In the
Situation 4, with the probability P1 = (1 + n + (I − 2)(n − 1))/(2n) (33) is valid and
with the probability P2 = (cardSc)/(2

n) : T5 6 T3. Thus, "on the average" Algorithm
2 always requires less than 2n computations of the function values.

4. Concluding Remarks

In this work we explored the possibilities of local search techniques for the exact de-
termination of an arbitrary unimodal pseudoboolean function minimum. For the studied
problem we assumed that the objective function is not known explicitly although usu-
ally other authors deal with objective functions given in an evident analytical form (see,
e.g., Gramma et al., 1990). The point is that such a kind of problems is important for
authors’ area of application, i.e., automatization of design processes in spacecrafts pro-
duction. These design processes can be modeled in the form of pseudoboolean functions
optimization with objectives given as simulated programs or real process outputs.

Direct local search algorithms were described and analytically investigated. These al-
gorithms are applicable to any unimodal objective functions even if they have big regions
of constancy what is usually a great problem for search discrete optimization methods.
Convergence of the algorithms has been proved and analytical estimates of the rate of
convergence have been obtained. The proposed local search algorithms will fulfill a total
search in some cases. However, these cases are very special (e.g., if an objective function
is constant in almost every point) and unimportant for practice. In any case, it is impossi-
ble to suggest any better algorithm for such a function. The average speed of convergence
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of the proposed algorithms is less than total search for any other forms of objective func-
tions. In case of a monotone objective function, the proposed algorithms have a quadratic
rate of convergence. For nonmonotone functions these algorithms have an exponential
rate of convergence, that is they are of limited applicability in real problems with high
dimension. Nevertheless, they are useful as they admit optimization in many cases when
there are no other suitable algorithms.

The natural question can appear: if the explicit form of an objective function is un-
known what are guarantees that it is an unimodal function? First of all, unimodality of
an objective function fairly often can be based with some practical reasons. In the rest
of cases the algorithms will supply a local minimum subject to the search original point
location. Apperantly, estimates of the expected time of search for these cases will be less
essentially than the estimates obtained above.
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Lokalinės paieškos efektyvumas
optimizuojant unimodalias psiaudo-bulines funkcijas

Alexander ANTAMOSHKIN, Eugene SEMENKIN

Šis darbas yra t ↪esinys straipsni ↪u, skirt ↪u reguliarios paieškos procedūr ↪u efektyvumo tyrimui. Čia
suformuluojamas bendresnis uždavinys, kuomet optimizuojama unimodali psiaudo-bulinė funkcija
yra analitiškai išreikšta, ir gaunami analitiniai ↪iverčiai laukiam ↪u laiko s ↪anaud ↪u minimumo paieškos,
naudojantis tiesioginės lokalinės paieškos procedūromis. Parodyta, kuomet šie ↪iverčiai yra poli-
nominiai, o kuomet eksponentiniai. Tikimasi, kad gauti rezultatai bus ypač naudingi sprendžiant
praktinius uždavinius.


