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Abstract. In this paper we give an introduction to collective 
risk theory in its simplest form. Our aims are to indicate how some 
basic facts may be obtained by martingale methods and to point 
out some open problems 
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1. Introduction. Collective risk theory, as a part of 
insurance - or actuarial - mathematics, deals with stochastic 
models of an insurance business. In such a model the occur
rence of the claims is described by a point process and the 
amounts of money to be paid by the company at each claim 
by a sequence of random variables. The company receives a 
certain amount of premium to cover its liability. The company 
is furthermore assumed to have a certain initial capital at its 
disposal. An important problem in collective risk theory is 
to investigate the "ruin probability", i.e., the probability that 
the risk business ever - or before some finite time - becomes 
negative. 

Risk theory, which mathematically has many similari
ties to queueing theory, has been, more or less, systematically 
studied for a long time. In fact, calculation of the distribution 
of waiting times is equivalent with calculation of ruin prob-
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abilities. The traditional way of studying risk theory - like 
queueing theory - is by the use of analytical methods. One 
purpose of this paper is to give an account of a different ap
proach, due to Gerber (1973), which uses martingales. We 
will only apply those methods to the simplest risk theoretic 
model. 

This paper is not a scientific paper in that sense that new 
results are derived. In fact, we will often only give weak and 
incomplete versions of old results, because of the sole reason 
that the "better" versions require analytical methods. Gener
ally, the martingale approach is very powerful for proving in
equalities and exact results in special cases, while asymptotic 
relations seem to be better proved by analytical methods. The 
important merit of the martingale approach is, however, that 
it is often very well suited for handling more general models. 

The first impression may, very naturally, be that risk 
theory is a very special branch of applied probability and with 
no interest to anyone outside a small group of mathematically 
initiated actuaries. A second purpose of this paper is to try 
to convince the reader that risk theory is a fruitful research 
area with interesting open problems. In Section 7 two open 
problems are described. 

In order to facilitate the reading, most references are 
given in Section 8. Any reader who has the slightest idea 
to go deeper into risk theory, will certainly find Section 8 to 
be the most useful section. 

1.1. The risk process. We start with formulating the 
simplest risk model. Let (n, F, P) be a complete probability 
space carrying the following independent objects: 

(i) a Poisson process N = {N(t); t ~ O} with N(O) = 0 
and E[N(t)] = at; 

(ii) a sequence {Zdr ofi.i.d. random variables, having 
the common distribution function F, mean value f-l 
and variance (72. 
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DEFINITION 1. The risk process, X, is defined by 

N(t) 

X (t) = ct - L Z k, (1) 
k=l 

where c is a positive real constant. 

This is the classical model of the risk business of an insur
ance company, where N(t) is to be interpreted as the number 
of claims on the company during the interval (0, t]. At each 
point of N the company has to payout a stochastic amount of 
money, and the company receives (deterministically) c units 
of money perunit time. The constant c is called the gross risk 
premium rate. 

In risk theory the most interesting situation is when c > 0 
and F(O) = O. This case is generally called positive risk sums, 
and includes most non-life branches and also the ordinary 
types of life insurance, where a certain amount of money is 
paid at the death of a policyholder. 

There are, however, situations where the circumstances 
are reversed, i.e., where c < 0 and F(O) = 1. The typical 
example is life annuity, or pension, insurance, where a life 
annuity rate -c is paid from the company to the policyholder 
'and where the claim, i.e., the death of the policyholder, will 
place an amount of money corresponding to the "expected 
pension to be paid" at the company's free disposal. Thus the 
claim means an income, or a negative cost, for the company . 

. This situation is generally called negative risk sums. 
The profit of the risk business over the interval (0, t] IS 

X(t) and thus the expected profit is 

E[X(t)] = ct - E[N(t)]E[Zk] = (c - ap)t. 

The relative safety loading p is defined by 

e - ap e 
p= =-_.l. 

ap Cip 
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The risk process X is said to have positive safety loading if 
p > O. Then X(t) has a drift to +00. 

Instead of describing the risk business by a risk process 
one may sometimes use a Wiener process with positive drift. 
Then we put 

X(t) = ,8t + 8W(t), ,8 > 0, (2) 

where W is a standard Wiener process, i.e., W(O) = 0, W(t) 
has independent and normally distributed increments such 
that 

E[W(t) - W(s)] = 0 and Var[W(t) - W(s)] = t - s 

for t > s and its realizations are continuous. 
One motivation for the Wiener process is the diffusion 

approximation which works - although numerically rather bad 
- if u and p-l are of the same large order. Here we consider 
the Wiener process as an alternative to the risk process merely 
for mathematical reasons. 

In order to simultaneously consider risk processes and 
Wiener prosesses with positive drift we introduce the following 
class of processes. 

DEFINITION 2. An additive process X is a process such 
that: 

(i) X (t) has right continuous rrocess trajectories; 

(ii) 

(iii) 

(iv) 

(v) 

Then 

X(O) = 0 P-a.s.; 

X has stationa~y and independent increments; 

E[X(t)] = t,8 where ,8 > 0; 

E[e-rX(t)] < 00 for some r > o. 

for some function g(.). 
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For technical reasons we slightly extend condition (v) above. 

ASSUMPTION 3. We assume that there exists roo > ° 
such that g(r) < 00 for r E [O,roo ) and g(r) -+ +00 when 
r i roo (we allow for the possi bili ty roo = + 00 ). 

It is easily seen that g(O) = 0, g'(()+) < ° and that 9 is 
convex and continuous on [0, roo). 

If X is a risk process with positive safety loading we have 
f3 = c - aJ.t. Put 

h(r) = i: erz dF(z) - 1. 

Then we have 

E[e-rX(t)] = e-rct f= (air e-at(h(r) + l)k 

k=O 
= e-rcHat(h(r)+l)-at = et(ah(r)-rc) 

and thus g(r) = ah(r) - rc. 

REMARK 5. Obviously h fulfils Assumption 3. The im
portant part of Assumption 3 is that h(r) < 00 for some r > 0, 
i.e., (v) in Definition 2. This means that the right tail of dF 
decreases at least exponentially fast, and thus for example 
the lognormal and the Pareto distributions are not allowed. 
Further the rather pathological case when h(roo-) < 00 and 
h( r) = 00 for r > roo is excluded. 

If X is a Wiener process with positive drift we have 

and thus g(r) = - f3r + 82 r2 /2. 
We can now define 'the ruin probabilities 'l1(1.l) and 'l1(u, t), 

of a company facing an additive process and having initial 
capital u. 
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DEFINITION 5. \lI(u) = P{u + Xes) < 0 for some s > O} 
is called the infinite time ruin probability. \lI( u, t) = P{ u + 
Xes) < 0 for some s E (O,t]} is called the finite time ruin 
probability. 

Let Tu be the time of ruin, i.e., Tu = inf{t 2: 0 I u + 
X(t) < O}. vVe have 

\lI(u, t) = P{Tu ~ t} and \lI(u) = P{Tu < oo}. 

1.2. Basic facts about martingales 

DEFINITION 6. A filtration F = (Ft ; t 2: 0) is a non
decreasing family of sub-a-algebras of F. 

DEFINITION 7. Let for any process X = {XCt); t 2: O}, 
the filtration F X = (F f; t 2: 0) be defined by Ff = a { X ( s ); 
s ~ t}. 

Thus Ff is the a-algebra generated by X up to time t, 
and represents the history of X up to time t. X is adapted to 
F, i.e., X is Ft-measurable for all t 2: 0, if and only if Ff ~ F t 

for all t 2: O. 

DEFINITION 8. An F-martingale 1'vl = {AI(t); t 2: O} is 
a real valued process such that: 

(i) !vI(t) is Frmeasurable for t 2: 0; 

(ii) 

(iii) 

E[IAI(t)ll < 00 for t 2: 0; 

E:Fs[l~1(t)l = E[M(t) I Fsl = ( ~ ) 1\1(s) 
for t ~ s. 

An F-martingale M is called right continuo'us if: 

(i) The trajectories AI(t) are right continuous; 

P-a.s. 

(ii) The filtration F IS right continuous, l.e., 

Ft = ns>t Fs for t ~ o. 
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All processes which we consider have right continuous 
trajectories and the filtrations are so simple that the condition 
of right continuity is of no problem. 

DEFINITION 9. A random variable T taking values in 
[0,00]' is an F-stopping time if {T ::; t} E F t for each t ~ o. 

This means that one, knowing the history up to time t, 
can decide if T ::; t or not. Note that the outcome T = 00 is 
allowed. If T is a stopping time, so is t 1\ T = min( t, T) for 
each t. 

The following simplified version of the "Optional Stop
ping Theorem" is essential for our applications. 

Theorem 10. Let T be a bounded stopping time, i.e., 
T ::; to < 00, and M a right continuous F-martingale. Then 

EfO [M(T)] = M(O) P-a.s. 

·2. Infinite time ruin probability. Now we consider 
the "martingale approach", due to Gerber (1973), applied to 
the infinite time ruin probability. 

The time of ruin Tu is a F X -stopping time and recall that 
w(u) = P{Tu < oo}. Put 

e-r(u+X(t» 
Mu(t) = -~. -( )-etg r 

Mu is an F X -martingale, since 

x x [e-r(u+X(t»] 
Efs [A1u(t)] = Efs etg(r) 

= E s . --..,....---,---,-..,.---
fX [e-r(u+X(S» e-r(X(t)-X(S»] 

esg(r) e(t-s)g(r) 

x [e-r(X(t)-X(S»] 
= lvfu(s)· Efs e(t-s)g(r) = A1u(s). 

(3) 
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Choose to < 00 and consider to 1\ Tu which is a bounded 
FX -stopping time. Since:J"f is trivial, i.e., Ft consists of 
only 0 and n, and since Mu is positive" it follows from 
Theorem 10 that 

e-ru = Mu(O) = E[Mu(to 1\ Tu)] 

= E[Mu(to 1\ Tu) I Tu ~ to]P{Tu ~ to} 

+ E[Mu(to 1\ Tu) I Tu > to]P{Tu > to} (4) 
~ E[A!u(to 1\ Tu) I Tu ~ to]P{Tu ~ to} 
= E[Mu(Tu) I Tu ~ to]P{Tu ~ to} 

and thus, since u + X(Tu) ~ 0 on {Tu < oo}, 

-ru 

P{Tu ~ to} ~ E[Mu(~) I Tu ~ to] 
-ru 

< e ~ e-ru sup etg(r). 
- E[e-Tug(r) I Tu ~ to] 0::;t90 

Let to -+ 00 in (5). Then we get 

w( u) ~ e- ru sup etg(r). 
t~O 

(5) 

(6) 

In order to get this inequality as good as possible, we shall 
choose r as large as possible under the restriction 
SUPt>o etg(r) < 00. Let R denote that value. Obviously this 
means that 

R = sup{r I g(r) ~ O}. (7) 

In the risk process case this gives R as the positive solution of 
h(r) = erla, i.e., R is the Lundberg exponent. In the Wiener 
process case we get R = 2;3/82 Thus we have 

(8) 
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which is the "Lundberg inequal_ity". 
A refinement of (8) is the "Cramer-Lundberg approxima

tion" 
lim eRuW(u) = C, 0 < C < 00, 

u--+oo 
(9) 

where, in the case of positive risk sums, C = hl(R)~C/Oi' From 
this it follows that R is the "right" exponent in (8). 
Let us go back to (4). Then we have, with r = R, 

e- Ru = E[e-R(u+X(Tu )) I Tu :s; to]P{Tu :s; to} 

+ E[e-R(u+X(to)) I Tu > to]P{Tu > to}. 

Let I { A} denote the indicator function for the set A. Then 
we have 

o :s; E[e-R(u+X(to)) I Tu > to]P{Tu > to} 
= E[e-R(u+X(to)) I {Tu > to}] 

:s; E[e-R(u+X(to))I{u +X(to) 2: a}]. 

Since o:s; e-R(u+X(to))I{u+X(to) 2: o} :s; 1 it follows, due to 
the drift of X(t) to +00, by dominated convergence that 

Hm E[e-R(u+X(to)) I Tu > to]P{Tu > to} = 0 
to --+00 

and thus we get from (10) that 

e-Ru 
w(u) = E[e-R(u+X(T,J) I Tu < 00)" (11) 

When X(t) is continuous at the time of ruin we have 
u+ X(Tu) = 0 on {Tu < oo} and thus w(u) = e-Ru . This 
holds for the risk process with negative risk sums and for the 
Wiener process. 
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When X(t) is a risk process with positive risk sums there 
is, in general, difficult to apply (11), since the "overshot" 

B(u) ~f -(u + X(Tu)) on {Tu < oo} is difficult to handle. 
It is, however, well-known, that (since W(O) = G.p/c) 

E[e-RX(To) I To < 00] = ~ = 1 + p 
ap 

and that, due to the Cramer-Lundberg approximation (9), 

lim E[e-R(u+X(Tu » I Tu < 00] = h/(R) - cia = g'(R). 
u-+oo pp pall 

EXAMPLE 11. EXPONENTIALLY DISTRIBUTED CLAIMS. 

One case where the overshot is easy to handle also for risk 
process with positive risk sums is when Zk is exponentially 
distributed with mean p. Then 

her) = ~ 100 erZe-Z/P.dz _ 1 = Ilr 
Pol - pr 

and thus R is the positive solution of ~1 r = cr, i.e., -p.r Q 

p 
R= . 

p(l+p) 

The exponential distribution is characterized by its "lack of 
memory" , i.e., that 

P{Zk > z+x I Zk > x} = P{Zk > z}. 

This implies that B( u) is exponentially distributed with mean 
p and indepepdent of Tu and thus 

e-Ru 
'II ( u) - ---:---=-:---=~.,..,-----=-

- E[e-R(u+X(T,,» I Tu < 00] 

- E[eRB(u) I Tu < 00] - h(R) + 1· 
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Since 

cR cp 
h( R) + 1 = - + 1 = ( ) + 1 = P + 1 

G GJ.l 1 + p 

we get the well-known result 

1 -~ 
w( u) = --e Jt(Hp). 

l+p 

3. The time-dependent Lundberg inequality. 
Recall from (5) that 

'l1( u, t) :::; e-ru sup esg(r). 

O$s$t 

13 

(12) 

Obviously we can always choose r = R, b~t it might be pos
sible - at least sometimes - to choose a better, i.e., a larger, 
value of r·. 

Put t = yu. Then (5) yields 

'l1( u, yu) :::; max( e-ru , e-u(r-yg(r))) = e- u min(r,r-yg(r)) 

and it seems natural to define the "time-dependent" Lundberg 
exponent Ry by 

Ry = supmin(r,r - yg(r)) 
r>O 

and we have the "time-dependent" Lundberg inequality (Ger
ber 1973, p. 208) 

(13) 

Put 
f(r) = r - yg(r) 
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and note that f(R) = R, f(r) < r for r' > R and that f(r) is 
concave. Thus we have, since Ry 2: R, 

= . < Ry R according as l' (R) - O. 
> > 

Since 1'(R) = 1 - yg'(R) it follows that 

_ > 1 
Ry > R according as y ~ g' (R) . 

The value Yo deJ gl(R) is called the critical value. For y < Yo 
we have 

Ry = f(ry) where ry is the solution of 1'(1') = o. 
For t 2: You (13) is just the "ordinary" Lundberg inequal

ity. It is then natural to look for an inequality for 
w(u) - w(u, t). We will derive such an inequality by a slight 
extension of (4). 

Let t be given, choose i E (t, (0) and consider i /\ T u' . 

Then 

e-ru = Mu(O) = E[Mu(i /\ Tu)] 

= E[Mu(t /\ Tu) I Tu :S t]P{Tu :S t} 

+ E[Mu(i /\ Tu) It < Tu :S t]P{ t < Tu :S i} 
+ E[Mu(i /\ Tu) I Tu > i JP{Tu > i} 
2: E[Mu(t /\ Tu) I t < Tu :S i]p{ t < Tu :S i} 

= E[Mu(Tu) It < Tu :S i]p{t < Tu :S i} 

and thus 

-ru 
{ - e P t<T <t < _ 
. u - } - E[Mu(Tu) I t < Tu :S t 1 

(14) 
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As (6) followed from (5) we get 

w( u) - w( u, t) ~ e-ru sup esg(r). (15) 
s>t 

Put, as above, t = yu and f(r) = r - yg(r). Then 

{ 
e- f(r)u 

w(u)-w(u,yu) ~ e-ru supexug(r) = 
x~y 00 

if g(r) ~ 0 

if g(r) > O. 

Since w( u, yu) 2 0 we always have w( u) - w( u, yu) ~ e-Ru . 

Further g( r) ~ 0 if and only if r ~ R. This implies that 

(16) 

where 
RY = max(R, sup f(r)) = sup f(r). 

O~r~R O~r~R 

The last equality follows since f(R) = R. Thus RY > R if and 
only if f'(R) < 0 which, see above, holds if and only if Y > Yo. 
Thus 

RY > R according as y;: gitR) . 

For Y > Yo we have 

RY = f(ry) where ry is the solution of f'(r) = O. 

EXAMPLE 12. EXPONENTIALLY DISTRIBUTED CLAIMS. 

We have 

l(R) = ah'(R) - c = a (1 _:R)2 - c 

= ap(l + p)2 - ap(l + p) = app(l + p) 
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and thus 
1 

Yo = . 
O!l1p(1 + p) 

Since 

we get 

O!I1Y 
1 + O!l1y(1 + p) 

Using that B( u) is exponentially distributed we can replace 
the second inequality in (14) with the equality 

we get the strengthened versions of (13) and (16) 

e- RyU 

w(u,yu) ~ 1 + p 

-RY u 

and w(u) - w(u, yu) ~ e1 + p (17) 

In Table 1 the upper bounds in (17) are compared with ex
act values. The exact values are taken from vVikstad (1971, 
p. 149). It is seen that (17) gives rather crude bounds. 

EXAMPLE 13. WIENER PROCESS WITH DRIFT. Since 
g(r) = - f3r + 82r2 /2 and R = 213/82 we get 

1 1 1 + f3y 
Yo = 82 R _ j3 = -g , r y = y82 

(l+f3y)2 
and f(ry) = 2y82 

4. The time of ruin. If we rewrite (13) and (16) in 
terms of Tu we have 
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Table 1. Exponentially distributed claims. The upper 
bounds are given (17). 

t 1. relevant upper 
u p Yo u probability bound 

10 10 5% 1 19.05 W(10,10) 0.1476 
10 1010% 1 9.09 W(10,10) 0.1209 
10 1015% 1 5.80 'l1(10,10) 0.0989 
10 1020% 1 4.17 'l1(10,10) 0.0807 

10 100 5% 10 19.05 W(1O,100) 0.5640 
10 100 10% 10 9.09 'l1(10) - 'l1(10, 100) 0.3656 
10 100 15% 10 5.80 W(10) - W(10, 100) 0.2159 
10 10020% 10 4.17 'l1(10) - 'l1(10, 100) 0.1168 

10 1000 5% 100 19.05 'l1(10) - 'l1(10, 1000) 0.3974 
10 1000 10% 100 9.09 'l1(10) - 'l1(10, 1000) 0.0516 
10 1000 15% 100 5.80 'l1(10) - 'l1(10, 1000) 0.0023 
10 1000 20% 100 4.17 'l1(10) - 'l1(10, 1000) 0.0000 

100 100 5% 1 19.05 'l1(100, 100) 0.0000 

100 1000 5% 10 19.05 'l1(100, 1000) 0.0051 
100 1000 10% 10 9.09 'l1(100) - W(100, 1000) 0.0001 

where Ry > R for y < Yo and RY > R for y > Yo. 
For any € > 0 we have 

-R( )u + -R(IIO+<)u e 110-< e 
< ------:------:---
- P{Tu < co} 

exact 
value 

0.0367 
0.0319 
0.0277 
0.0241 

0.3464 
0.1058 
0.0440 
0.0175 

0.0243 
0.0014 
0.0001 
0.0000 

0.0000 

0.0019 
0.0000 

(18) 

From the Cramer-Lundberg approximation, l.e., 
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limu -+oo e Ru P{Tu < oo} = C, it follows that 

2~~ P { I ~u - Yo I > € I Tu < 00 } = 0 

or, where ~ means "convergence in probability", that 

T p .. 
2. -+ Yo on {Tu < oo} as u -+ 00. (19) 
u 

(Strictly speaking (19) means £(~ I Tu < (0) -+ Dyo as 
u -+ 00.) Consider again the martingale Mu(t) = 
e-r(u+X(t»-tg(r). The funtion g(r) is non-negative and in-
creasing for l' E [R, roo). For l' E [R, roo) 

e- ru = E[e-r(u+X(Tu»-Tug(r) I Tu < oo]P{Tu < oo} (20) 

follows with the same arguments as (11). From Neveu (1972, 
p. 81) it follows that (20), in fact, holds for l' E [1'*, roo), where 
1'* is the solution of g'(r) = o. 

Consider now the restriction of 9 to [1'*,1'00) and its in
verse "(: [g(r*), (0) -+ [1'*, roo). Note that 

(0) R '() 1 "(0) __ g"(R) def_ "( = , "( 0 = g'(R) = Yo, "( - g'(R)3 - Vo· 

Thus (20) leads to 

e--Y(V)u 
E[e--y(v)(u+X(Tu»-vTu I Tu < 00] = w(u) (21) 

When B(u) is indep~ndent of Tu we put c(r, u) 
= E[e-r(u+X(Tu » I Tu < 00]. Then (21) reduces to 

e--Y(v)u 

E[e- vTu I Tu < 00] = c("((v),u)w(u) (22) 
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For risk processes with negative risk sums and for the Wiener 
process we have c(r, u) = 1 and for exponentially distributed 
claims we have c(r, u) = l.!/Lr. For simplicity we consider first 
the case c(r, u) = 1. Then 

E[e-vTu I Tu < 00] = e-(-y(v)-R)u = e-vYOu+v2vou/2+0(v3) 

and thus 

E[Tu I Tu < 00] = YoU and Var[Tu I Tu < 00] = VoU. (23) 

EXAMPLE 14. WIENER PROCESS WITH DRIFT. In this 
case we have g( r) = - (3r + b2r2/2 and thus 

R = 2(3 d () = (3 + y' (32 + 2b2 V 
b2 an , v b2 . 

Then E[e-vTu I Tu < 00] = eu(f3':"'Vf32+282v)/82 which leads to 

P{Tu ~ t I Tu < oo} = lt on<P ( f3tfiu) ds 

= (1 - q; ( ~t0u)) eRu + q; ($8t;t ) 
(24) 

x 2 

where, as usual, <p(x) = Jz;e- T and <I>(x) = J~oo <p(y) dy. 

EXAMPLE 15. EXPONENTIALLY DISTRIBUTED CLAIMS. 

We have g( r) = t_/L;r - rc and thus 

P R= , 
1l(1 + p) 

1 
Yo = -a-IlP-(-l-+-p-) and 

From (12) we then get 

lu(v) def E[e- vTu I Tu < 00] = (1 -1l,(v))(l + p)e-(-Y(v)-R)u 

= (1 - 1l(1 + p )(,( v) - R))e-(i(V)-R)u 

= lo( v )e-U (l-1'o(V»/(/L(HP». 
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This implies that 

(25) 

where Nu is Poisson-distributed with mean u/(f.l(1 + p )), 

£(rk ) = £(To I To < 00) and Nu , T1 , T2 ... are inde
pendent. Now we have E[T1] = -%(0) = f.l(1 + p)yo and 
E[TlJ = %'(0) = f.l(1 + p )vo and thus 

E[Tu I Tu < 00] = YoU + ;p 
and (26) 

Var[Tu I Tu <00] = VOU + ~tp~ . 
Formula (26) can, of course, also be obtained by derivation 
of )'u( v). 

5. The claim cousing ruin. Consider now positive risk 
sums, so that ruin can occur only at the times of claims. Put 
Nu = N(Tu), i.e., Nu is the "number" of the claim causing 
ruin. Let Sl, S2, S3,'" denote the claim times, and put 
X k = X(Sk)' Since the Poisson process is a renewal process it 
follows that {Xd~l forms a random walk. Note that w(u) = 
P{Nu < oo}. Now we have 

eg(r) def E[e-rX1] = E[e-r(cS1-Z1)] = a . (h(r) + 1). 
a + cr 

Consider now 
e-r(u+Xn ) 

Mu(n) = _( ) eng r 

which is the discrete time martingale corresponding to Mu(t). 
Exactly as (6) was proved, it follows that 

w(u) ~ e-ru sup eng(r) 
n;:::O 
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and thus R = sup{r I g(r) ~ OJ. Now g(r) = 0 {:} Q~cr • 

(h(r) + 1) = 1 {:} ah(r) = cr so we have, of course, not proved 
anything new. 

The arguments in Section 3 go through, and, exactly as 
(19) was derived, we get 

Nu p 1 ( ) -:;: ~ g'(R) = (a +cR)yo on {Nu < oo} as u ~ 00. 27 

6. Generalizations of the risk model. The classical 
risk model, discussed in this paper, can be generalized in many 
ways. 

A. The premiums may depend on the result of the risk 
business. It is natural to let the safety loading at a 
time t be "small" if the risk business, at that time, 
attains a large value and vice versa. 

B. Inflation and interest may be included in the model. 

C. The occurrence of the claims may be described by a 
more general point process than the Poisson process. 

Dassios and Embrechts (1989) and Delbaen and Haezen
donck (1987) are very readable studies focusing mainly on gen
eralizations A and B, while generalization C is considered by 
Grandell (1990). In all these studies most results are derived 
with the help of martingales. 

There are, at last, two very different reasons for using 
other models for the claim occurrence than the Poisson pro
cess. Firstly the Poisson process is stationary, which - among 
other things - implies that the number of policy-holders in
volved in the portfolio can not increase (or decrease). Few 
insurance managers would accept a model where the possibil
ity of an increase of the business is not taken into account. 
We shall refer to this case as size fluctuation. Secondly there 
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may be fluctuation in the underlying risk. Typical examples 
are automobile insurance and fire insurance. We shall refer to 
this as risk fluctuation. Consider shortly the first case. 

6.1 Models allowing for size fluctuation. The sim
plest way to take size fluctuation into account, is to let N be a 
non-homogeneous Poisson process. Let A(t) be a continuous 
non-decreasing function with A(O) = 0 and A(t) < 00 for each 
t ~ 00. 

DEFINITION 16. A point process N is called a (non
homogeneous) Poisson process with intensity measure A if 

(i) N(t) has independent increments; 

(ii) N(t) - N(s) is Poisson distributed with mean 
A(t) - A(s). 

REMARK 17. The function A.(t) can be looked upon as 
the distribution function corresponding to the measure A. The 
continuity of A(· ) guarantees that N is simple, i.e., that N(- ) 
increases exactly one unit at its epochs of increase. 

Define the inverse A-I of A by 

A-1(t) = sup(sIA(s) ~ t). (28) 

A-I is always right-continuous. Since A(· ) is continuous, A-I 
is (strictly) increasing and 

A 0 A-1(t) def A(A-1(t)) = t for t < A(oo). 

DEFINITION 18. A Poisson process N with a 1 IS 

called a standard Poisson process. 

The following obvious results are, due to their impor
tance, given as lemmata. 
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Lemma 19. Let N be a Poisson process with intensity 
measure A such that A( 00) = 00. Then the point process 

N def N 0 A -1 is a standard Poisson process 

Proof. Since A-I is increasing it follows that N has inde
pendent increments. Further N(t) - N(s) = N(A-1(t)) -
N(A-l(S)) is Poisson distributed with mean A 0 A-1(t) -
AoA-1(s)=t-s. 

Lemma 20. Let N be a standard Poisson process. Then 
the point process N def No A is a Poisson process with inten
sity measure A. 

The proof is omitted. 
Without much loss of generality we may assume, 

although it is not at all necessary, that A has the representa
tion 

A(t) = it o:(s) ds (29) 

where 0:(. ) is called the intensity function. It is natural to 
assume that 0:( s) is proportional to the number of policy
holders at time s. When the premium is determined indi
vidually for each policy-holder it is also natural to assume 
the gross risk premium to be proportional to the number of 
policy-holders. If the relative safety loading p is constant we 
get c( t) = (1 + p) f-t0:( t) and the corresponding risk process is 
given by, 

N(t) 

X(t) = (1 + p)f-tA(t) - L Zk. 
k=1 

(30) 

where N is a Poisson process with intensity measure A such 
that A( 00) = 00. 

Consider now the process X defined by 

N(t) 
- def 1 ~ X(t) = X 0 A- (t) = (1 + p)f-tt - ~ Zk. (31) 

k=1 
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Thus X is a classical risk process with a = 1. Recall that 

w(u) = P{inf X(t) < -u}. 
t>O 

If A(·). is increasing, or if a(t) > 0, A-I is continuous and 
it is obvious that inft>o X(t) = inft>o X(t). Here it would 
only be a minor restriction to assume that A(· ) is increasing, 
but for the further discussion we do not want to make that 
restriction. Suppose that A-I has a jump at t. In the time 
interval (A -1 (t-), A-I (t)) no claims occur, since N(A -1 (t))
N(A-1 (t-)) is Poisson distributed with mean AoA-1(t) -Ao 
A-I (t- ) = t - (t-) = 0, and no premiums are recieved. Thus 
inft~o X(t) = inft~o X(t) and the problem of calculating the 
'ruin probability is brought back to the classical situation. 

The time scale defined A-I is generally called the opera
tion time scale, see e.g. Cramer (1955, p. 19). 

We have referred to this generalization as "size fluctua
tions", only because then the gross risk premium rate c(t) = 
(1 + p)J.w(t) is very natural. Obviously it is mathematically 
irrelevant why a(· ) fluctuates, as long as those fluctuations 
are compensated by the premium in the above way. We shall 
now see that a kind of operational time scale can be defined 
for a very wide class of point processes. Those processes may 
very well more naturally correspond to "risk fluctuation" than 
to "size fluctuation" . 

1. Two open problems 

7.1. Generalizations of the Poisson process. The, 
at least mathematically, most natural generalization of the 
classical risk model is probably to assume that the occurence 
of the claims is described by a renewal process. The first 
treatment of this generalization is due to Sparre Andersen 
(1957). After the publication of his paper this model has been 
considered in several works. In a series of papers Thorin, see 
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the review Thorin (1982), has carried through a systematic 
study based on Wiener-Hopf methods. It is rather natural 
that analytical methods work well for the 'renewal process, 

Bjork and Grandell (1988) considered the Lundberg in
equality when the occurence of the claims are described by a 
Cox process. Intuitively we shall think of a Cox process N 
as generated in the following way: First a realization A of a 
random measure A is generated and then, conditioned upon 
that realization, the point process N is a Poisson process with 
intensity measure A. This indicates that Cox processes are 
very natural as models for "risk fluctuation". It is natural to 
consider the filtration (:t~ V :Ff; t 2: 0) and the martingale 

e-r(u+X(t» 
M ( t) - --:-;"""':'"7"7""-:---

- eA(t)h(r)-trc 

A Lundberg inequality will be of the form: 
For every € > 0 such that 0 < € < R .we have 

\lI(u) ~ C(R - €)e-(R-e)u, 

where C(R - €) < 00. 
The problem is not to get this general inequality, but 

to find interesting special cases where R can be explicitely 
determined. The condition € > 0 is unpleasant, but it is quite 
possible - and really natural- that C(R) = +00. If 

A(t) = It >.(s) ds, 

where >.( s) is a Markov process, it is natural to consider the 
filtration (:F/' V :FtX ; t 2: 0). By using a natural martin
gale, the condition € > 0 can, in certain cases, be removed. 
The most interesting case is probably when >.( s) is a finite 
state Markov process. In that case Asmussen (1989) proved a 
Cramer-Lundberg approximation with analytical methods. 
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We shall not discuss Cox models any more, although 
much more certainly can be done. We shall just point out that 
A(t) is the compensator of N relative F! V Ff. A natural 
question is now, if there exists interesting non-Cox processes 
whose compensators relative some filtration can be used in 
order to obtain results about the ruin probability. 

7.2. Inverse thinning of point processes. Let N be 
a point process, and denote by Np the point process obtained 
by retaining (in the same location) every point of the process 
with probability p and deleting it with probability q = 1 - p, 
independently of everything else. Np is called the p-thinning 
of Nand N is called the p-inverse of N p • It is natural to 
regard the claims as as caused by "risk situations" or. incidents. 
To each incident we associate. a claim probability p and we 
assume that incidents become claims independently of each 
other. Under these assumptions the point process describing 
the incidents is the p-inverse of the "claim process" N. It 
follows from Mecke (1968) that the claim process is a Cox 
process if and only if a p-inverse exists for all p. 

Let us now consider the "opposite" class. 

DEFINITION 21. A point process N is called a top process 
if it cannot be obtained by p-thinning for any p E (0,1). 

Let, as an example, N be a renewal process with 
r-distributed inter-occurence times with form parameter 'Y. 
Yannaros (1988a) has shown that N is 

a Cox process if 0 < 'Y :::; 1 and a top process if 'Y > 1. 

This result is - in our opinion - very interesting since it con
cerns an important renewal process and since it illustrates 
that transition between the "extreme" classes of Cox and top 
processes is not "continuous". Further it was very surprising 
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- at least to the author - that such a simple renewal process 
can be a Cox process. 

It would be interesting to have a description of the class of 
top processes, or, at least, to understand what kind of prop
erties such a description ought to be based on. A sufficient 
condition for a renewal process to be a top process is given by 
Yannaros (1988b). 

8. Remarks on the literature 

1. Several main results in risk theory, as the Lundberg 
inequality and the Cramer-Lundberg approximation, are due 
to Lundberg (1926) and Cramer (1930), while the general 
ideas underlying the collective risk theory go back as far as 
to Lundberg (1903). These works appeared before the theory 
of stochastic processes was developed and are therefore not 
mathematically quite stringent. They are pioneering works, 
not only in risk theory, but also in the development of the 
general theory of stochastic processes .. The development of 
risk theory using rigorous methods is to a large extent due 
to Arfwedson, Cramer, Saxen, Segerdahl and Tacklind. For 
a survey of their contribution we refer to Cramer (1955, pp. 
48-51), where a stringent presentation of risk theory, basea. 
on Wiener-Hopf methods, is given. 

Diffusion approximations was first applied to risk theory 
by Iglehart (1969). As mentioned, its numerical accuracy is 
not very good. Asmussen (1984) applied the diffusion approx
imation to the so-called conjugate process and achieved much 
better accuracy. De Vylder (1978) has proposed an approx
imation, based on the simple, but ingenious, idea to replace 
the risk process X with a risk proce~s i~ with exponentially 
distributed claims such that the first three moments coincide. 
Nu.merical comparison indicate that its numerical accuracy is 
very good. 

A discussion about the relation between risk theory and 
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queueing theory is found in Grandell (1990, pp. 123-128)1) 

2. The results (8), (9), (12) and W(O) = CKj.tlc go all back 
to Lundberg (1926) and Cramer (1930). A nice proof of (9) 
is given by Feller (1966, pp. 363-364). W(O) = CKllle is an 
insensitivity or robustness result, since W(O) only depends on 
p and thus on F only through its mean. It does, in fact, hold 
for any stationary and ergodic point process, see Bjork and 
Grandell (1985). 

3. Martin-Lof (1986) has proved (13) and (16) with dif
ferent methods. Arfwedson (1955) has given "Cramer-Lund
berg approximation" corresponcences to (13) and (16). It fol
lows from Arfwedson (1955, pp. 58 and 78) that 

{ ~e-R •• if Y < Yo yU 

w(u,yu)rv ~e-Ru if y = Yo 
Ce- Ru if y > Yo 

as u -+ 00. (32) 

The "-j;;" may explain why (17) gives rather crude bounds. 

Hoglund (1990) has generalized (32) to include the case when 
the occurence of the claims is described by a renewal process. 

4. Segerdahl (1955, p. 34) showed that 

P{Tu ~ t I Tu < oo} rv if!(t~o) (33) 

as u, t -+ 00 and t7u0 is bounded. The exact results (23) 
and (26) are also due to Segerdahl (1955). From (25) it follows 
that (33) holds in the case of exponentially distributed claims. 
It is also easy to realize that (33) holds when e( r, u) = 1. It 

1) References to pages in Grandell (1990) may be not quite accu
rate, since the book is in the stage of production. 
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seems difficult to prove (33) by martingale methods. von Bahr 
(1974) has extended (33) to the case when the occurence of 
the claims is described by a renewal process. 

Formula (24) follows from Feller (1966, p. 439) and Sko
rohod (1965, p. 171). The idea to derive (21) with martin
gale methods, and especially Example 15, is due to Asmussen 
(1984, pp. 37-42). 

6. Early studies of generalizations A and B are Davidson 
(1946) and Segerdahl (1942) respectively. 

7.2. Let N be a renewal process with inter-occurence 
time distribution K. (We denote by K 2* the convolution of K 
with itself and understand that K has finite, positive mean.) 
Yannaros (1988b) has 'shown that N is a ~op process if 

. 1 - K2*(t) 
hm = 00. 

t->oo t· (1 - K(t)) 
(34) 

If K has density k, the sufficient condition (34) holds if 

. k2*(t) 
hm = 00. 

t->oo t· k( t) 

If K is a f-distribution with form parameter 'Y we have 
k 2*(t) _ (,r-1 r(-y) 
tk( t) - r(2i') . 

REMARK 22. Condition (34) can be generalized by tak
ing suprema instead of limits. For example, if 

1 - K2*(t) 
s~p t . (1 _ K(t)) = 00, 

then N is a top process. Thus, if K has compact support, N 
is a top process. 
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