
INFORMATICA, 1998, Vol. 9, No. I, 107-118
© 1998 Institute (!f"Mathematics and Informatics, Vilnius

O!-LOLA - Extending the Deductive Database
System LOLA by Object-Oriented Logic
Programming

Gunther SPECHT
Technische Universitat Munchen, Department of Computer Science
Orleansstr. 34, D-81667 Munchen, Germany
e-mail: specht@informatik.tu-muenchell.de

Received: January 1998

Abstract. This paper presents the declarative extension of the deductive database system LOLA
to the object-oriented deductive database system O!-LOLA. The model used for O!-LOLA is "ob
jects as theories", extended by state evolution. O!-LOLA combines logic programming and 00
programming in two different ways: First, methods are implemented as logic programs. These
methods can be inherited, encapsulated and overloaded. Second, logic programs can be defined
over classes, meta-classes, instances, attributes and values. Dynamic updates of attributes of ob
jects and dynamic instantiations of classes are supported.

O!-LOLA is implemented as a preprocessor. O!-LOLA programs are transformed into LOLA
rules and facts, which are evaluated set-oriented and bottom-up, using fixpoint semantics. Some
object-oriented features concerning dynamic aspects are handled via built-in predicates in LOLA.

We describe the applied theory, the system and the preprocessor, including an example of how
methods are translated and we discuss dynamic updates of objects in O!-LOLA.

The benefits of our system in contrast to others are: a single integrated language, clear semantics
and a set-oriented evaluation. O!-LOLA uses fixpoint semantics (not any procedural semantics like
other systems) and still evaluates set-oriented (and not in a mixed manner like other systems).
Thus, we can fully use all optimization techniques developed for deductive databases and gain a
very efficient system.

Key words: object-oriented logic programming, objects as theories, dynamic updates.

1. Introduction

Within the last years the two main areas of research in extending database program
ming languages have been deductive database languages and object-oriented database
languages. Logic (or deductive) databases augment the relational model by Herbrand
terms instead of flat attributes and arbitrary recursive views (or rules), whereas object
oriented databases enhance the relational model by complex objects, classes, abstract
data types, inheritance, methods, and encapsulation. Approaches to combine these two
paradigms are heavily discussed today.

Besides various language proposals (e.g., Abiteboul, 1989; Kifer and Wu, 1989; Ca
cace et ai., 1990; Bertino and Montesi, 1992; Atzeni, 1993; Barja et at., 1994) several

108 G. Specht

systems have been developed as prototypes or are on the way to combine these two ex

tensions, each including a different aspect or combination idea. Some extend deductive
databases with C++ as object definition language like CORAL++ (Srivastava et al., 1993).
Others add rule systems to object-oriented databases, such as Peplomd (Dechamboux and
Roncancio, 1994) or Noodle (Mumick and Ross, 1993). Still others were developed from
scratch like Rock&Roll (Barja et al., 1994) or Logidata++ (Atzeni, 1993).

A drawback of most of the systems is, that the user has to deal with two completely
different programming languages within one system, a declarative rule-based language
for the retrieval and a procedural language (mostly C++) for the definition of objects.
Our system O!-LOLA is an integrated extension of the deductive programming language
LOLA. O!-LOLA includes classes, instances, attributes, methods, (multiple) inheritance,
encapsulation etc. and rules, all in one language. The integration of object-orientation and
rule based systems comes into effect at least at two different points:

• Methods can be specified declaratively as logic programs. If they should cause
side effects, such as updates of attributes or creation and deletion of new
instantiations, built-in predicates can be called. These logic programs,
implementing methods, are encapsulated and can be inherited and overridden.

• In addition it is possible to define logical rules over meta-classes, classes,
instances, attributes and properties of objects.

The underlaying model of O!-LOLA is "objects as logical theories" extended by state
evolution as McCabe (McCabe, 1992) defined it for the Prolog based system L&O and
BertinolMontesi (Bertino and Montesi, 1992) specified it as a programming language for
databases.

Using a preprocessor, O!-LOLA is completely transformed into the deductive query
language LOLA, which is enriched by some additional built-in predicates to the dy
namic aspects of O!-LOLA. Thus, our approach is a bit related to some Prolog based
OO-systems like L&O (McCabe, 1992) or OL(P) (Fromherz, 1993), which are also im
plemented as preprocessor, but are non-persistent and do not work set-oriented.

This preprocessor technique has several advantages: The extension can be done with
out any changes in the LOLA kernel. The deductive functionality of LOLA is fully avail
able in O!-LOLA. The semantics can be defined as an extended fixpoint semantics. Thus,
it is still declarative. The huge amount of optimization techniques developed for deductive
database systems can be reused to gain a highly efficient deductive and object-oriented
database system.

O!-LOLA offers a fully object-oriented functionality including classes, instances,
methods, inheritance, encapsulation, and overriding. But some of these items cannot be
implemented as easily as in the Prolog systems mentioned above, since the target pro
gram has to fulfill the well-known restrictions of deductive databases. These are: 1) range
restriction I ,2) safe negation, 3) local stratification and 4) some restrictions with regard

J Of course, Magic-Set Transfonnation can propagate bindings from the query to rules and facts, and only
the transfonned program has to be range restricted. But the restriction still holds in unresolvable cases. It can
be completely omitted only if the target system is based on a unificational relational algebra.

Of-LOLA - Extending the Deductive Database System LOLA 109

to updates of facts within subgoals. The last item includes some still remaining problems
and is an ongoing research activity among the deductive database community (for more
details refer Section 5).

Since deductive databases use a fixpoint semantics, the semantics of O!-LOLA can
be defined by an extended fixpoint semantics as well. Consequently multiple inheritance
(even of methods) is done by a set-oriented evaluation of all inherited methods or val
ues. This behaviour can be controlled by explicitly defining the inheritance-path or by
overriding.

This paper is organized as follows: Section 2 defines objects as logical theories. Sec
tion 3 shows an example of an O!-LOLA program. Section 4 explains the preprocessor,
the 00-kernel and the target system of the translation. The transformation of a method is
shown in detail. Section 5 discusses the problem of dynamic updates. In Section 6 further
related works are mentioned, although most of them appear already interleaved in the
text. Finally the conclusion sums up the main results.

2. Objects as Theories

2.1. Definitions

In most cases there are two different techniques of incorporating objects and 00-
techniques into logic programming. One can be characterized as "objects as terms", in
which objects, often represented by their OlD, appear at term positions in rules. Another,
rather different approach is the "object as theory" approach (McCabe, 1992; Bertino and
Montesi, 1992), in which an object is characterized by a set of clauses defining the prop
erties, i.e., attributes and methods, of an object. Together they are the theory of this object.
The structure of such a theory can be represented as

objecLname: { axiomi'

axiomn ·

An axiom can either be a rule, notated head : - body, or a fact or an attribute
assertion like attribute : = value, where the value may be a term structure or an
evaluable (arithmetic) expression.

Rules and facts (since facts are just rules without a body) represent the methods of the
object. Theoretically there is no inherent need to distinguish between attributes and facts,
because it does not make any difference whether to write attr : = x or attr (xl.

The semantics introduced in O!-LOLA is the following: attributes defined as facts may
have more than one value, whereas attributes defined by attribute assertion have at most
one value.2

A theory T = {AI,'" , An} is a set of axioms, characterizing one or more objects.
An object 0 satisfies a theory T if it satisfies all axioms, i.e., if Al (0)1\ . . . I\An (0) = true.

2 As an example think of a person having more than one address at a time, but exactly one birthday.

110 G. Specht

From this point of view, an object is the sum of all axioms known by it. Objects may
be classes or instances. Each object defines its own theory and deductive object program
ming is the simultaneous work with different theories in the system (McCabe, 1992).

The call of a method (or an attribute) of an object is called message. Thus a mes
sage is a query, sent to a theory. Since different theories may include different imple
mentations of the same method, the object name (= theory name) to which the mes
sage should be sent is put in front of the message. Example: john: wi f e (X) ,
john:weddingday(D) .

Of course, different messages on different theories (and meta-theories) can be com
bined for deducing new results. Even the class name to which a method should be sent
needs not to be known statically at programming time. Example: seabird (X) :
classes: isa (X, bird), X: can (swim) . Here classes is a meta-class con
taining the method isa, which computes the is a-hierarchy. The class X to which the
method can with parameter swim is sent, is not known before runtime.

2.2. Dynamic Aspects

Objects, modeled by theories, are static. Dealing with dynamic aspects, they can just
show snapshots. But updates are important for 00 systems. We can distinguish updates in

• changes of the internal state of an object: Since the state of an object is
represented in its attributes, this implies updates of the attributes .

• changes of the behaviour of an object: This implies updates of the methods, i.e.,
the rules, corresponding to an object.

While the first can be done dynamically in O!-LOLA (it is just an update of a spe
cialized base relation), the latter implies a recompilation of this theory. Traditionally, all
database languages strictly separate data manipulation language (DML) and data retrieval
language (DRL). Deductive database languages are DRLs. Although some have been ex
tended by update statements, such as LDL and RDL, there are still a lot of restrictions on
updates.

o !-LOLA can handle dynamic changes of the internal state of an object and dynamic
creations and deletions of instances. Thus, our model is "objects as theories with dynamic
state evolution". Updates of methods in classes or creation of new classes need a (possibly
incremental) recompilation. But from a theoretical point of view this means restarting
with a new set of theories (for mor.e details refer to Section 5).

3. An Example of an O!-LOLA Program

Program 1 shows a first simple O!-LOLA program for managing applications in a com
pany. Classes for persons, applicants, and employees are defined.

O!-LOLA supports encapsulation of attributes and methods, which can be declared
private or public. Attributes and methods can be overioaded in subclasses at two levels: by

Ol-LOLA - Extending the Deductive Database System LOLA

class person
public
public

attribute address.
method knows, health.

private method illnesses.

health (ok) : - $not ($self: illnesses <-)) .

class applicant {
public method qualified, applicable.

qualified (programmer) :- $self:knows('C++'),
$self:knows('O!-LOLA') .

qualified(salesmen) :- $self:knows(marketing).

applicable (Pos) :- $self:health(ok), $self:qualified(Pos).

applicant isa person.

class employee {
private attribute salary.
public method head_of_department, superior.

superior (X)
superior(Z)

$self:hea~of_department(X) .
$self:superior(Y), Y:head_of_department(Z).

employee isa person.

john instance_of applicant.
john:address := residence(state('Germany'),city('Munich'),

street('Mainstreet', 12)).
john:knows('C++').
john:knows('O!-LOLA').

invitable(Pos, x, Addr) classes:isa(X,applicant),
X:applicable(Pos),
X: get_attribute (address, Addr).

Fig. 1. Program I: O!-LOLA example for applications.

111

signature declaration and by code implementation. In our example, illness is private
(encapsulated) and only the state of health is visible for the company which wants to hire
somebody.

Methods are defined as rules that can be inherited. But rules over classes are also
available, like invi table. The query: - invi table (programmer I X, A). is
answered by the set of invitable programmers.

112 G. Specht

Additional to the user-defined methods each class has predefined ones, such as

<class>:get_attribute«attribute>, <value»,
set_attribute, has_attribute, has_method, etc.

A predefined meta-class called classes provides often needed public methods, such
as classes: isa «classl>, <class2» (which can be used for traversing the

class hierarchy), create_new_instance «class> <instance_name» and
destroy_instance «instance_name» (which are dynamic), instance_of
«class>, <instance»,e~.

The definition of the method "superior of an employee" is worth looking at. Since su
perior hierarchy is a recursive problem, this method has to be defined recursively, which
can be easily done using the deductive rule system. This method extends common fea
tures. Although class Y, the receiver of the next head_of_department call, cannot
be bound statically, it is efficiently computable. Internally this query is evaluated using
semi naive iteration optionally combined with deductive database optimizations such as
pushing selections, Magic-Set Transformation, etc.

An example for dynamic changes in the system may be "hire John":

classes:move_instance(john, applicant, employee),
john: set_attribute (salary, 6000).

If additionally John knows Prolog his salary will rise to 7000:

john:knows('Prolog'),
john: set_attribute (salary, 7000).

4. Translating O!-LOLA into LOLA

A preprocessor translates O!-LOLA programs into LOLA programs. The target system
consists of two parts, the kernel and the application dependent LOLA code:

Kernel: The kernel includes all functions that are independent from the O! -LOLA source
program. It consists of two parts: On one hand, there is an application independent
OO-kernel implemented in LOLA. It controls object hierarchies, inheritances, en
capsulations, overriding etc. On the other hand, a small number of built-in pred
icates for the dynamic parts of O!-LOLA exists. Essentially these predicates im
plement access methods for internally used efficient data structures for classes,
class schemes, attributes, instances etc. These functions are implemented in Lisp,
LOLA's host language.

Application dependent LOLA code: These rules are produced by the O!-LOLA com
piler from the O!-LOLA source code. Even each method (already defined as a
logic program) is expanded by additional rules checking accessability within in
heritance, encapsulation and overriding of the method. Most of these generated
rules call kernel-predicates.

O/-LOLA - Extending the Deductive Database System LOLA 113

The rule system of the kernel is precompiled and preoptimized, so that it becomes
highly efficient.

On the whole, the kernel consists of about 40 precompiled LOLA rules and 25 built-in
predicates. Kernel predicates are prefixed with #. As an example the very simple rules
for the isa-hierarchy look like

#isa(X, Y) #instance_of(X, Y) .

#isa(X, X) #class (X) .
#isa(X, Y) #subclass(X, Y) •

#isa(X, Y) #isa(X, z) , #subclass(Z, Y) .

More complex are kernel rules for methods and the actual access to them. Each
method declaration is transformed into a fact of the form
#has_method«method_name>, <class_name>, #public I #private).

The following (simplified) rules determine whether (or not) a called method is access
able and which one is taken if it has been overwritten. The semantics of the parameters
of #is-public and of #access_method is defined as follows: the first term is the
method name, the second term is the class for which this method is called, and the third
term is a result parameter, returning the actual valid owner class of the specified method
for this caller.

#is-public(Method, Class, Class)
#has_rnethod(Method, Class, #public).

#is-public(Method, Class, Owner)
$not(#has_rnethod(Method, Class, _'),
#subclass(Superclass, Class), % 1 Step in isa
#is-public(Method, Superclass, Owner).

#access_rnethod(Method, Owner, Owner)
#is-private(Method, Owner).

#access_rnethod(Method, Caller, Owner) :-
#is-public(Method, Caller, Owner).

Now let us look at the translation of a user-defined method: The method superior
in class employee

superior(x)
superior(Z)

$self:head_of_departrnent(X) .
$self:superior (Y), Y:head_of_departrnent(Z).

is transformed into the following three rules

superior (Caller, X) :-
#access_rnethod(superior, Caller, Owner),
superior_trafo(Owner, Caller, X).

The first subgoal #access_rnethod tests whether a method "superior" is defined for the caller,
and which class the owner of this method is. This subgoal controls encapsulation and overriding.
Thus the second subgoal is always called instantiated with Owner and caller. x is the obtained
parameter from the original method. And superioctrafo is coded as:

114 G. Specht

superior_trafo(employee, Caller, X) :
head_of_department(employee, Caller, X).

superior_trafo(employee, Caller, Z) :
superior_trafo(employee, Caller, Y),
head_of_department(employee, Y, Z).

A query like: - john: superior (X) . is finally translated into:

:- superior (john, X).

Now, we got a brief idea of how the declarative part of the kernel looks like and
how the preprocessor works. Of course, some aspects are a bit more complicated and we
simplified them for didactic reasons. One of the more complicated cases is the integration
and interaction of the dynamic parts of O!-LOLA.

5. Dynamic Updates in Objects

The procedural part of OO-systems is necessary for processing changes of the internal
states of objects at runtime. Deductive databases, as all databases, distinguish strongly
between update- and retrieval queries. This implies that, dealing with Horn logic, updates
of facts or rules are not allowed in sub queries at runtime.

Bottom-up evaluation and several optimization techniques benefit from the advantage
that there is neither a fixed rule order nor a fixed subgoal order. But subgoal-reordering
(i.e. join-reordering) could cause a later evaluation of delete or insert predicates with
unpredictable results. Another example is the Magic-Set Transformation which causes
bound predicates in the SIP to be evaluated more than once. Again this might not re
sult in the intended meaning. Thus, this problem is essentially coupled with the applied
optimization and evaluation technique.

A lot of papers have discussed this topic within the past several years. Many different
solutions have been proposed. Coral++ (Srivastava et ai., 1993) does not allow rules to
create new objects and instances. Rock&Roll (Barja et at., 1994) prohibits non local
updates of objects within rules. LDL++ (Zaniolo et aI., 1993) only allows inserts and
deletes of facts, introducing a procedural semantics of those rules. Even the non persistent
OO-Prolog systems include restrictions on updates: OL(P) (Fromherz, 1993) forbids all
dynamic updates in the definition of classes and L&O (McCabe, 1992) distinguishes
between static and updatable program parts. Kramer et ai. (1992) discuss updates of
objects in rule based language in more detail.

We soften the restriction of forbidden updates in the DRL, so that so-called safe up
dates are allowed in subgoals and queries. Only definitions and updates of attributes and
instances are allowed evolutionary. Updating methods or defining new classes need a
recompilation of this theory and thus a restart in the deduction process.

It is important that the fixpoint that is reached is always the same. Single updates, i.e.,
updates corresponding to DDL or single DML statements of SQL, are safe if they occur

Of-LOLA - Extending the Deductive Database System LOLA 115

in a positive stratum and if all necessary variable bindings can be bound at runtime. Both
are checked at compile-time by rule inspection.

If an updated value is referred within the same subquery, the subgoal order has to be
fixed. Thus the occurrence of update predicates omits all subgoal reordering optimiza
tions in O!-LOLA. Magic-Set Transformation, using a strict left to right SIP, can still be

applied in several cases, since it fixes the subgoal order too. But multiple evaluation of

SIP predicates implies that update predicates in SIP predicates have to be idempotent.
Since LOLA works set-oriented and since sets include duplicate elimination, there are

idempotent update operations, such as creating new attributes, deleting attributes, non

incremental value assertion on attributes, etc. But this detail does not need to be known
by the end-users, it is controlled by the preprocessor and the kernel.

Summarizing, state evolution of objects and dynamic class instantiation are available

in O!-LOLA. They are called by special built-in predicates with side effects. The system

can optimize queries including updates only in a restricted way. Updates of methods need
a recompilation.

6. Related Works

In addition to the already presented related systems and frameworks, we compare O!

LOLA to these systems now in a more summarizing form.
For "a not very much annotated bibliography on integrating Object-Oriented and

Logic Programming" see (Alexiev, 1993).

Some object-oriented systems, like Peplomd (Dechamboux and Roncancio, 1994)

and Noodle (Mumick and Ross, 1993), were developed by extending an existing object
oriented system by deductive mechanisms, while others, like ROCK&ROLL (Barja et al.,
1994), were developed from scratch. O!-LOLA and CORAL++ (Srivastava et at., 1993)

are extensions of an existing deductive database system with object-oriented features.
But CORAL++ links CORAL to C++, using C++ as object definition language, and

provides object access only by special built-ins, using an "object as term" like approach.
O!-LOLA is an integrated extension of the deductive programming language LOLA, sup

porting an "object as theory" model.
In this aspect O!-LOLA is related to L&O (McCabe, 1992), which also uses the "ob

ject as theory" model. But O!-LOLA uses the deductive mechanisms of LOLA and evalu

ates, similar to CORAL++ and Noodle, bottom-up. This is a major difference to all PRO
LOG based object-oriented systems, like PROLOG++ (Moss, 1994), L&O and OL(P)
(Fromherz, 1993), which evaluate top-down and "one tuple at a time".

Like Peplomd and Coral++, O!-LOLA can hold persistent data.
Similar to the Prolog-based systems L&O and OL(P), O!-LOLA is implemented as a

preprocessor, too. We adapted this proposal to deductive database based systems in order
to gain their advantages for object-oriented logic programming.

116 G. Specht

7. Conclusion

We have presented O!-LOLA, which is an object-oriented deductive database system
implemented as a preprocessor on top of LOLA. O!-LOLA uses an "objects as theo
ries with state evolution" model. This includes the dynamic creation and deletion of in
stances. We have presented the architecture of O!-LOLA and have shown in detail how
the preprocessor transforms the 00 source language into the logic target language. While
inheritance, encapsulation and overriding can be specified purely declaratively, dynamic
updates of objects are done by side effects of built-in predicates. Our combination of
object-orientation and deduction allows logical rules as methods and logic programs over
classes, meta-classes and their properties on the top level. We have given a summary of
the most important issues of the theory and the dynamical aspects of the language.

Since LOLA evaluates bottom-up and 'set at a time', O!-LOLA is evaluated in that
way too. O!-LOLA benefits from the rich set of optimization techniques developed for
deductive databases and included in LOLA. Since LOLA provides an integrated access
to relational databases, O!-LOLA can use it, whereas the external relational database can
be seen as one big external object with all granted relation names as methods.

O!-LOLA was developed at the Technische Universitat of Munich. Further research
will include performance tuning and optimizations, extending the dynamic behavior, user
interfaces and building applications.

References

Alexiev, V. (1993). A (not very much) annotated bibliography on integrating object-oriented and logic pro
gramming. ftp://menaik.cs.ualberta.calpub/oolog.

Abiteboul, S. (1989). Towards a deductive object-oriented database language. In Proc. (!f the 1st 1m. Cot!t: on
Deductive and Object-Oriented Database Systems (DOOD), Kyoto, Japan. pp. 419--438.

Atzeni, P. (Ed) (1993). LOGIDATA+: deductive databases with complex objects. In Lecture Notes in Compllter
Science, Vol. 701. Springer.

Bruja, M., NW. Paton, A.A. Fernandes, M.H. Williams, A. Dinn (1994). An effective deductive object-oriented
database through language integration. In Proc. (If the 20th Int. Conference on Very Large Data Bases
(VLDB), Santiago, Chile. pp. 463ff.

Bertino, E., G. Guerrin and D. Montesi (1994). Deductive object databases. In Pmc. (If the 8th Eumpeall COil'
ference on Object-Oriented Programming (ECOOP), Bologna, Italy LNCS 821. Springer. pp. 213-235.

Bertino, E. and D. Montesi (1992). Towards a logical - object oriented programming language for databailes.
In Proc. (!f the Int. Conj'. on Advances ill Database Technology (EDBT) 1992, LNCS 580. Springer. pp.
168-183.

Cacace, F., S. Ceri, S. Crespi-Reghizzi, L. Tanca and R. Zicari (1990) Integrating object-oriented data model
ing with rule-based programming paradigm. In Proc. ACM-SIGMOD Conference on Management (!fData,
Atlanta City, New Jersey. pp. 225-236.

Dechamboux, P., and C. Roncancio (1994). Peplomd: an object oriented database programming language
extended with deductive capabilities. In Pmc. (if the 5th Int. Conference Oil Database and Expert Systems
Applications (DEXA), Athens, Greece 1994, LNCS 856. Springer. pp. 2-14.

Freitag, 8., H. Schutz and G. Specht (1991). LOLA - A logic language for deductive databases and its Im
plementation. Proc. (!/'the 2nd Int. Symposium on Database Systems for Advanced Applications (DASfflA),
Tokyo. pp. 216-225.

Fromherz, M. (1993). OL(P) User and Reference Manual. Available via anonymous ftp from par
cftp@parc.xerox.com in the directory Ipub/ol.

Of-LOLA - Extending the Deductive Database System LOLA 117

Kifer, M., and J. Wu (1989). A logic for object-oriented logic programming (Maiers O-logic revisited). In Proc.
I!f'the 8th ACM-SIGACT-SIGMOD-SIGART Symposium on Principles 1!f'Database Systems, Philadelphia,
Pennsylvania. pp. 379-393.

Kramer, M., G. Lausen, G. Saake (1992). Updates in a rule-based language for objects. In Pmc. I!f'the 18th
Conference on Very Large Data Bases (VWB), Vancouver, Canada. pp. 251-262.

McCabe, F.G. (1992). Logic and Objects. Prentice Hall.
Moss, C. (1994). Pr%g++; The Power 1!f'Object-Oriented and Logic Programming, Addison-Wesley.
Mumick, I.S., and K.A. Ross (1993). Noodle: a language for declarative querying in an object-oriented database.

In Prol.'. 3/'d DOOD Conference Phoenix, Arizona. pp. 360--378.
Srivastava, D., R. Ramakrishnan, P. Seshadri and S. Sudarshan (1993). Coral++: adding object-orientation to a

logic database language. In Proc. of the 19th Conference on Very Large Data Bases (VWB), Dublin, Ireland.
pp. 158-170.

Zaniolo, C., N. Ami and K. Ong (1993). Negation and aggregation in recursive rules: the LDL++ approach. In
Proc. of the 3rd Conlon Deductive and Object-Oriented Database Systems (DOOD), Phoenix, Arizona. pp.
204-221.

G. Specht is a member of the research staff of computer science at the Technische Uni
versitiit Munchen, Germany. His research interests include deductive databases, object
oriented programming systems, multimedia databases and natural language parsing. Dr.
Gunther Specht received his Ph.D. in 1992. Since 1993 he leads the multimedia database
project MuitiMAP, now founded by the German Research Network (DFN Association).
He teaches graduate courses on multimedia database systems, deductive and object
oriented database systems. He is author of several international articles and two German
books.

O!-LOLA: deduktyvines duomenq baziq sistemos LOLA
prapletimas objektisko loginio programavimo priemonemis

Gunther SPECHT

Straipsnyje aprasyta kaip deduktyvine duomen4 bazi4 sistema LOLA buvo praplesta iki ob
jektiSkos deduktyvines duomen4 bazi4 sistemos O!-LOLA. Sistemoje O!-LOLA naudojamas mo
delis "objektai kaip teorijos", praplestas biisen4 vertinimu. Loginis ir objektinis programavimai
sistemoje kombinuojami dviem biidais. Pirma, objekt4 metodai realizuojami kaip logines prog
ramos. Antra, rasant logines programas galima naudoti klases, metaklases, objektus, atributus ir
j4 reiksmes. Leidziama dinamiskai keisti atribut4 reiksmes ir kurti naujus objektus. Sistema re
alizuota kaip LOLA preprocesorius. Sistemos privalumas, Iyginant jq su kitomis objektiSkomis
loginio programavimo sistemomis, yra kalbos integruotumas, aiski semantika ir aibemis grindzia
mi biisen4 vertinimai. Naudojama nejudanciojo tasko semantika. Todd galima naudotis visais de
duktyvini4 duomen4 bazi4 optimizavimo metodais.

