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Abstract. Attributed automaton (AA) is a formalism for conceptual knowledge specification us
ing regular syntax with attributes representing contextual relations as well as semantic properties 
of concepts. AA can be treated as a generalization of a finite automaton with attributes and com
putational relations attached to states and transitions respectively. In this paper we develop a new 
specification method for AA based on functional combinators. It allows modular specification of 
AA, enjoys good algebraic properties and is extendeble for different kind of attributed automata. 
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1. Introduction 

Regular and context-free structure are classical and efficiently implementable models of 
data structures. Automated computing is often as successful as adequately regular and/or 
context-free (surface or deep) substructures are extracted from the rest of structure of 
data. Formal models integrating these structures with others and supporting data restruc
turing, analysis and implementation are methodologically important. The modifications 
of models known in the theory of formal languages and automata (e.g., finite and push
down automata and state transition systems), and corresponding declarative formalisms 
(e.g., attributed grammars, graph grammars) are widely used to achive effectively exe
cutable specifications. 

Attributed automata (AA) were introduced in (Meriste and Penjam, 1992a) as a for
malism for executable specifications using regular syntax with attributes representing 
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contextual relations as well as semantic properties of underlying concepts. Due to ap

plications in medical signal analysis (Gronfors and Meriste, 1992; luhola and Meriste, 
1992) attributed automata is accepted as a software engineering tool. 

From the theoretical aspects AA have been investigated by means of rewriting sys
tems (Meriste and Penjam, 1992b) and in terms of classical automata theory (Meriste, 
1994; Meriste and Penjam, 1995a; Meriste and Penjam, 1995b). The algebraic theory of 
(de)composition of some classes of AA is developed in (Kaljulaid et at., 1993). How
ever, several problems remained still open. Particulary, there was no general theory of 
composition of AA and good specification methodology. 

In this paper, we develop a functional specification method for attributed automata, 
which has good compositional properties. We will proceed as follows. In the next section 
we give a short overview of the formal model of attributed automata. In Section 3 we 
develop a new functional specification method for attributed automata. Then, in Sections 
4 and 5, we study the properties of automata specified functionally and show how the 
method can be naturally extended for the more generel attributed automata. In Section 6, 
we compare our method with functional parsers. Finally, in Section 7, we conclude with 
discussion about open problems and future work. 

2. Finite Attributed Automata 

DEFINITION 1. A finite attributed automaton M is a tuple 
M = (I,S,A,0',80,8F), where 

(a) I is a finite alphabet of terminal symbols, 

(b) S is a finite alphabet of states, 

(c) A = {As I S E S} is a family of domains of attributes indexed over states, 

(d) 0' = {(jss' ~ (As x 1*) x As' I 8,8' E S} is a family of transition relations indexed 
over pairs of states, 

(e) 80 E S is an initial state and 

(0 8 F E S is a final state. 

Starting in the initial state 80 with the initial attribute value ao E Aso and input string 
w E 1* the functioning of the automaton M is considered as successive change of the 
current state. The transition from the state 8 to 8' is possible only if (a, u)O' ss' (a'), where 
a E As, a' E As' are corresponding attributes and U E 1* is the prefix of the input string 
to be read next. Automaton terminates if there is no transition possible. If this happens 
when the current state 8 E S is final (i.e., 8 = 8F), then automaton terminates with 
success. The remaining input string w' together with final attribute value a E As F form 
a result of automaton M. If the automaton stops in the state which is not final, then the 
automaton fails. It is also possible that automaton will not terminate at all, as in the case 
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of infinite loop or if the computation of the transition relation doesn't terminate for given 
arguments. In both cases the result of automaton is undefined. 

DEFINITION 2. A configuration of the attributed automaton 
M = (1,8, A, cr, So, SF) is a triple 

(s,a,w) E (8 X As X 1*), 

where 

(a) S E 8 is the current state of the attributed automaton M, 

(b) a E As is the attribute value ofthe current state s, 

(c) w E 1* represents the unused portion of the input string. If w = c, where c stands for 
the empty string, it is assumed that the whole input string has been read. 

The initial configuration of the automaton M is a configuration of the form 

(sQ,ao,w), wE 1*. 

Thefinal configuration of the automaton M is a configuration of the form 

(SF,a,w), a E Asp, wE 1*, 

such that there is no transition possible. 
Now, the automaton M can be considered as a formal computing device which oper

ating cycle is running over configurations. 

DEFINITION 3. The mOve by M is a binary relation f--7 M (or simply f--7) on configura
tions as follows 

(S, a, ww') f--7 M (s', a', w') {::::::} (a, w)cr 8S' (a'), 

where s, s' E 8 are states, a E As, a' E As' are corresponding attributes, w E 1* is 
the consumed prefix of the input string and w' E 1* is the remaining input string. It's 
reflexive transitive closure is denoted by f--7M. 

Note, that during a move, the prefix with arbitrary length can be consumed from 
the input string. The particular case, when no symbols are consumed, is called the c
move. In fact, there no principal need to allow more than one symbol to be consumed 
during a move. Consuming longer prefix can be easily simulated by the sequence of 
moves consuming only one symbol. On the other hand, the c-move can be not so easily 
simulated. It makes possible the automaton to loop forever. If c-move are not allowed, 
every move consumes some (non empty) prefix of the input string, and the only reason 
for non-termination of the automaton can be the non-terminating transition relation or 
infinite input string. 
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Fig. 1. Recognizer of the binary numbers. 

PROPOSITION 1. Let all the transition relations a 88' be total and such that induced move 
relation doesn't allow c-moves (i.e., a 8S' ~ (As X 1+) x As')' Then for every finite input 
string W E 1* and for every initial attribute value ao E Aso ' the attributed automaton 
M = (1, S, A, a, So, SF) is guaranteed to terminate. 

In general, for a given configuration (s, a, w), there can be several configurations 
related with it by the move relation. 

DEFINITION 4. A finite attributed automaton M = (I, S, A, a, So, SF) is deterministic 
iff for every configuration (s, a, vw) there exists at most one configuration (Sf, a', w) 
such that (s, a, vw) f-+ M (Sf, af , w), i.e., the move relation f-+ M is a function. Otherwise 
the automaton M is non-determinictic. 

Deterministic attributed automata are interesting from the applications point of view, 
as their efficient implementation is much easier than non-deterministic ones. On the other 
hand, some problems can be specified more naturally using non-deterministic automata. 
The situation is similar to the finite automata, where regular expressions correspond di
rectly to the non-deterministic finite automata and these are transformed to deterministic 
ones. Unfortunately, because of free domains of attributes, the corresponding transfor
mation of attributed automata is impossible in general case (or otherwise we are able to 
solve the halting problem). 

It is often illustrative to present AA in the form of transition graphs as in the Fig. 1. 
States of the attributed automaton are represented by nodes labelled by the associated 
attribute or by components of the attribute if the attribute is a tuple. Every arc from a 
state s to a state Sf is labelled by a triple . 

(w, P, J) : 1* x (As --+ boo)) x (As --+ As') , 

where s and Sf are states corresponding to the source and the target node respectively, 
P is an enabling predicate and f is a transformation junction. The set of arcs from the 
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state 8 to the state 8' with labels (Wl' Pl. h), ... , (wn, Pn, f n) represents the transition 
relation ass, in the following sense: 

(a,w)ass,(a') {::::::::} ::Ii 1:::;; i:::;; n W = Wi 1\ Pi(a) = tt 1\ a' = f(a). 

Note that in the case of non-deterministic automata it is not always possible to repre
sent the transition relation ass, by a finite set of arcs. 

2.1. Attributed Automata as Recognizers 

Language recognition is a natural application of attributed automata. By specializing the 
general definition of finite attributed automata we can easily obtain classical language 
recognition devices. For instance: 

• The attributed automaton without attributes isa classical finite automaton . 
• The attributed automaton with stack as it's only attribute in every state is a 

push-down automaton. 

Below we consider two different approaches of using attributed automata as language 
recognizers. First, we consider a string to be recognized, if the analysis of that string 
ends with the final configuration where the whole input string is consumed. In the second 
approach we introduce predicates on final attribute values to represent contextual require
ments for the acceptable string. We will introduce both notions of the accepted language 
as follows. 

DEFINITION 5. Let M = (1, S, A, CT, 80, SF) be an attributed automaton. The language 
accepted by the automaton M is defined as follows 

L(M,ao) = {w E 1* I (So, ao,W)I---7M(8F,a, c), a E ASF }' 

The final attribute value a E ASF can be interpreted as the meaning of the string win 
the language L(M, ao). For example, the attributed automaton from the Fig. 1 recognizes 
binary numbers and the final attribute value a represents the decimal value of the binary 
number. For instance if the input string is W = "1101.01" then the final attribute value is 
a = 13.25. 

As an another example, consider the language £, = {an bn en I n ~ O} which is 
context-sensitive. A recognizer for the language £, is the automaton given in Fig. 2. In 
this example attributes playa different role - they collect contextual information which 
is used on some states to decide which transition to choose. 

Because of domains of attributes can be infinite and transition relation can be arbitrary 
computable relation, the expressive power of attributed automata are that of Turing ma
chines. On the other hand, we often don't use the full generality of attributed automata. 

As we see in our examples, in most cases attributes are used to collect some informa
tion, which is used only on some special places for deciding the transition to choose. In 
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Fig. 2. Recognizer of the language t:, = {anbncn I n ~ O}. 

fact, the automaton in Fig. 1 don't use attributes at all for the recognition and the au
tomaton in Fig. 2 uses them only on the last transition. This gives idea for the following 
decomposition of attributed language recognizer. 

DEFINITION 6. An attributed automaton M = (I, S, A, 0", So, SF) is simple if all its 
enabling predicates are constantly true. 

In our examples the first automaton is simple, but the second isn't. We can make it 
easily to the simple one by taking the sub-automaton without the final state and transition 
to it (and declaring the state 2 to be final) . 

. Clearly, by means of Definition 5, simple attributed automata can recognize exactly 
the class of regular languages. It's because they can collect arbitrary contextual informa
tion (and compute arbitrary meaning to the string), but they can't use this information for 
the recognition. To make the use of collected information, we use the additional predicate 
to tell whether the string belongs to the language or not. 

DEFINITION 7. Let M = (I, S, A, 0", So, SF) be a simple attributed automaton, ao E Aso 
the initial attribute value and P : ASF --+ bool a computable predicate on final attribute. 
We define the language accepted by the automaton M and the accepting predicate P as 

L(M, P) = {w E 1* I (so, ao, w)~M(SF' a, c), P(a), a E AsF }. 

From languages point of view, the initial attribute ao E Aso represents the initial 
context and the predicate P accepting context. 

Now, the recognizer for the language I:- = {anbncn I n ~ O} can be constructed 
by taking M to be the simple sub-automaton from Fig. 2 (as described above) and the 
accepting predicate P to be the enabling predicate from the last transition. This shows 
that at least some context-sensitive languages can be recognized by a simple attributed 
automaton, which just counts the occurences of certain substrings, together with an ac
cepting predicate which is also very simple (checking the equality of natural numbers). 
Because, in general, the accepting predicate P can be any computable predicate, the class 
of languages recognizable by a simple automaton M and a predicate P is the class of 
recursively enumerable languages. However, this doesn't mean that all recursively enu
merated languages can be recognized as easily as in the I:- = {anbncn I n ~ O} case. For 
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a) serial composition: 

x x, 
... ~ 

~ ~ y 

b) parallel composition: c) hierarchical composition: 

AA 

, + 
.:----.~IU 

y 
Z"'j(t) 

~ 
t z=j(t) 

Fig. 3. Compositions of attributed automata. 

instance, it is impossible to recognize Dyck languages (Le., the languages of balanced 
parenthesis) with more than one type of parenthesis by a simple attributed automaton 
and an accepting predicate similar to the previous example. In fact, to recognize a Dyck 
language, the automaton has to simulate the stack as in the classical push-down automata. 

As we see in our examples, we have two alternative possibilities to construct a recog
nizer on the basis of an attributed automaton. First, we can specify predicates at transi
tions, i.e., we select the next move in accordance with context conditions. Second, we can 
simply collect the contextual information we need to some state and specify by a pred
icate the acceptable context at that state. The second approach appears to be interesting 
from the methodological point of view, as it suggests more systematic and modular way 
for building language recognizers. 

2.2. Compositions of Attributed Automata 

The Definition 7 decomposed the problem oflanguage recognition into two parts: the syn
tactic recognition of regular structures by a simple attributed automaton and the analysis 
of contextual dependences by an accepting predicate. Because the accepting predicate 
can be viewed as an attributed automaton with one transition labelled by the predicate, 
we have the (sequential) composition of two automata. 

In general, the composition problem of attributed automata is: how and when a com
plex attributed automaton can be simulated by interconnected sets of simpler attributed 
automata; how these component automata are related to the automaton under consider
ation? 

There are three different types of composition of attributed automata into the system 
that have been studied previously (Fig. 3): 

• a sequential composition (a serial composition), where two automata are 
connected by "pasting" together the final state of the first automaton and the initial 
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Grammar: S -->ss I () I (S) I [)I [S) 

a) Accounting of parenthesis '(' and ')': c' = A (?c) 

n:n+l; c=c 

b) Accounting of parenthesis 'I' and 'J': c' = A [Cc) 

n=n+I:I.:=C 

Fig. 4. The implementation of the Dyck language. 

state of the second one; 
• a parallel composition, where two automata are connected by "pasting" together 

their initial states and final states; 
• a hierarchical composition, where during the transition the another attributed 

automaton is called (or even the same automaton in the case of direct recursion). 

In fact, the sequential and the parallel composition are both special cases of the hi
erarchical composition. In the sequential case, we can add a new final state to the first 
automaton together with the transition from the old final state and call the second au
tomaton at this transition. It is exactly the reverse what we did with the automaton from 
Fig. 2 to get the simple automaton. In the parallel case, we add a new transition from 
the initial to the final state in the first automaton and call the second automaton at this 
transition. 

The hierachical composition of simple attributed automata can be used to specify pars
ing of Dyck languages. In this case, the regular structure of the string is represented by 
transitions controlled by enabling predicates, balance of parentheses is accounted by at-
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tributes. For every type of parentheses, one attributed automaton is used that calls another 
automaton when another type of a parentesis appears. In Fig. 4 the system of attributed 
automata for the recognition is shown for two types of parentheses used. 

2.3. Generalizations of Attributed Automata 

Transformational Attributed Automata 
Because arbitrary attribute domains are allowed, the presence of input tape is not neces
sary. It can be modelled by the special component of attributes in the automaton without 
input tape as shown in (Meriste and Penjam, 1995; Meriste and Penjam, 1995b; Meriste 
and Vene, 1995). 

DEFINITION 8. A transformational attributed automaton is a transition network M = 
(S, T), where: 

• S is a finite set of states with two distinguished states: an initial state So E S and a 
final state SF E S. Every state S E S is associated with an attribute as E As; 

• T ~ S x S is a set of transitions. Every transition t = (s, s') E T is associated 
with 

- an enabling predicate Pt : As --+ bool, and 
- a transformation function it : As --+ As" 

Enabling predicates and transformation functions both have to be computable, but other
wise are arbitrary. 

The functioning of the transformational automaton is analoguous to the case of finite 
attributed automata: it starts from the initial state So with the initial attribute value x = 
ao E ABo' A transition from one state two another is possible only if the corresponding 
enabling predicate is true. The transition is accompanied by evaluation of the attribute of 
the next state using the associated transformation function. The automaton stops if there 
is no transitions enabled. If this happens in the final state SF, then the automaton finished 
successfully and the current value of the attribute y = aF E As! is treated as the output 
of automaton. This situation is denoted by M(x) = y. If automaton stops in some other 
state or doesn't stop at all, then the automaton fails and this is denoted by M(x) = J.. 
This explains why such automata are called transformational - their only effect is the 
transformation of inputs into outputs. 

In general, a transformational automaton specifies a relation between it's input and 
output attribute domains. If the automaton is deterministic (i.e., in every state there is 
at most one transition enabled), then the specified relation is a function. In (Meriste and 
Vene, 1995), it has been shown that even in the case of so called deterministic "primitive 
automata" - where all attribute domains are tuples of natural numbers, enabling predi
cates are checking the component of tuple to be zero and transformation functions are 
successor, predecessor or constant functions - every partially recursive function can be 
specified by it. It means that transformational attributed automata can be used as general 
model of (algorithmic) computation. 
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ChI: (bit, x) 

Ch2: ack 

Fig. 5. A client-server system. 

Interactive Attributed Automata 
When one considers the modelling of interactive systems (Wegner, 1995), transforma
tional attributed automata become inadequate. It's because of they have initial/final at
tributes as only means of communication with the outer world. In (Penjam, 1994) an 
extension of attributed automata with additional input/output primitives was considered 
and used to specify the Alternating Bit Protocol (ABP). 

Consider the classical client-server network with two entities connected by two chan
nels (see Fig. 5). The server (PRODUCER) sends messages through the channel ChI to 
the client (CONSUMER). Every message consists of two components - the data frame x 
and the header bit which under normal transition without errors should alternate 0 and 1 
for successive frames. Through the channel Ch2 acknowledgements, which are also bits, 
can be passed. 

In Fig. 6, the ABP is modelled using two separate attributed automata for PRODUCER 
and CONSUMER respectively. Operations ?ChI(x, y) and ?Ch2(z) are representing 
reading messages from channels ChI and Ch2 respectively, and storing the values x, 
y and z into appropriate attributes. Operations !Chl(x, y) and !Ch2(z) are representing 
sending the attribute values as messages to appropriate channels. Procedures J NO and 
OUT(x) "produce" and "consume" the data exchanged using the modelled mechanism. 

3. A Functional Specification of AA 

3.1. The Representation of Attributed Automata 

An attributed automaton M takes an initial attribute value a E Aso together with an input 
string W E J* and returns the computed value together with the remaining input string 
(i.e., the pair (a, w') E Asp x J*). In general, the automaton can be non-deterministic. It 
means that automaton is a relation between Aso x 1* and Asp x J*. Instead of this we 
treat automaton M as a set-valued function Aso x J* -+ {A • .r x 1*}. The empty set as 
the result denotes failure; the singleton set means that only one recognition for the given 
string is possible. 

By abstracting away from the concrete attribute domains of initial and final states we 
define the type of attributed automata as follows: 



PRODUCER 

bit:=O 

CONSUMER 

Models of Attributed Automata 

ack = bit 

!Ch2(ack) 

?Chl(bit,x) ack:= ack 

ack <> bit 

ack:= (ack + I) mod 2 

!Ch2(ack) OUT(x) 

Fig. 6. An attributed model of the ABP. 

AA == 'Vab. a x 1* -+ {b x 1*}. 

3.2. Primitive Attributed Automata 

• The first primitive automaton consumes the first symbol from input string if it 

matches the given symbol and fails otherwise: 

, . ' : 'Va. I ----+ AA{a, a), 

,., == '( ) {{{a,w')} ifw = iw', 
2 /\ a, w. {} . 

otherwIse. 

95 
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• The second primitive automaton checks whether the input string is empty or not: 

€ : Va. AA(a, a), 

..:... '( ) {{(a,wH ifw = €, 
€ - A a,w. {} . otherwIse. 

• The next primitive automaton corresponds to the predicate at the transition. It 
succeeds if the predicate holds and fails otherwise: 

.? : Va. (a --+ bool) --+ AA(a, a), 

P? == A(a w). {{(a, wH if P(a).' 
, {} otherwIse. 

• The fourth primitive automaton corresponds to the function at the transition. 
Using the function, it computes the new attribute value: 

.! : Vab. (a --+ b) --+ AA{a, b)), 
f! == A{a, w). {(f{a), wH· 

As the shorthand notation we denote the always failing automaton by <> and the identity 
automaton by 0: 

<> :: (Aa.ff) ? D::id! (= (Aa.tt)?). 

3.3. Basic Composition Operators 

Next we need to define basic primitives for combining attributed automata - the sequen
tial and parallel composition operators. 

• In sequential composition, we apply the second automaton to the result of the first 
one. We have to take care of flattening the resulting set to make the composed 
automaton to have the correct type: 

*: Vabc. AA{a,b) x AA{b,c) --+ AA{a,c), 
Ml * M2 == A{a, w). U {M2(a' , w') I (aI, w') E Ml(a, wH. 

• In parallel composition, we apply both automata to the same input and take the 
union of the resulting sets as follows: 

EB : Va b. AA{a, b) x AA(a, b) ---t AA{a, b), 
Ml EB M2 == A{a, w). MI(a, w) U M2(a, w). 

Another useful construction is the iteration of an attributed automaton zero or more 
times. It can be defined using the serial composition together with parellel composition 
as follows: 

.* : Va. AA{a, a) --+ AA{a, a), 
M* == (M *M*) EB D. 
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Also we use shorthand notation for the sequential composition of several' . ' automata: 

"w" == 'iI' * 'i2' * ... * 'in' , 

EXAMPLE 1. The automaton from Fig. 1 can be defined as follows: 

Mi ~ ( '1' * ('xa. 2a + 1) ! 
E9'0'*('xa.2a)! )*, 

Mf ~ ( '1' * (,x (a,b,e). (a,2b+1,e+1))! 
E9 '0' * ('x(a, b, c). (a, 2b, e + 1))! )*, 

The automaton Mb2d recognizes the binary number and converts it to the decimal 
form. First it initializes the attribute a and then uses the automaton Mi to recognize the 
integral part of the number. Then, if the whole input string is consumed it returns the 
decimal value of the number. Otherwise, if the remaining string starts with the decimal 
point, it uses the automaton Mf to recognize the fractional part. 

The automaton recognizing the language.c = {anbnen I n ~ O} can be defined as 
follows: 

M ~ ('xx. 0) ! * ('a' * ('xk. k + 1) !)* 
* ('xk. (k, O))! * ('b' * ('x(k, i). (k, i + 1))!)* 
* ('x(k, i). (k, i, 0)) ! * ('e' * ('x(k, i, m). (k, i, m + 1)) !)* 
* c * ('x(k,i,m).(k=i)l\(k=m))? 
* ()"(k, i, m). k)! 

First three lines corresponds to the automata counting symbols a, band e respectively. 
Then the automaton checks whether the input string is empty and all counters are equal. 
Finally, it returns the counter as its final attribute value. 

4. Properties of Attributed Automata 

Operators defined in the last section satisfy several nice algebraic properties. Here we list 
some of them which are most interesting . 

• Sequential composition is associative with 0 as the zero and ° as the identity 
element: 

MI *(M2 *M3 ) = (MI *M2 )*M3 , 

O*M = 0 = M*O, 

O*M = M = M*O. 

(I) 

(2) 

(3) 
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• Sequential composition of two primitive automata of a similar kind can be joined 

together: 

"u"* "w" = "uw", 

c*e: = e:, 

PI ? * P2? = (PI 1\ P2) ? 

1!*g! = (Jog)! 

(4) 
(5) 

(6) 

(7) 

• Parallel composition is associative. commutative and has <> as its identity element: 

MI E9 (M2 E9 M3) = (Ml E9 M2) E9 M3• 

Ml E9 M2 = M2 E9 Ml, 

<>E9M =M= ME9<>. 

• Sequential composition distributes over parallel composition: 

Ml * (M2 E9 M3) = (Ml * M2) E9 (Ml * M3), 

(Ml E9 M2) * M3 = (MI * M3) E9 (M2 * M3)' 

• Sequential composition of . ? or . ! with' . ' or e: is commutative: 

P? * 'i' = 'i' * P? 

P?*e: = e:*P? 

I! * 'i' = 'i' * I! 
1!*e:=e:*I! 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

The proof of the equational laws above is a simple calculation using the definitions 
of the corresponding operators together with the properties of set union. For instance the 
first law can be proven as follows: 

Ml * (M2 *M3) 
= {The definition of *} 

>.(a,w). U {U {M3(a", wll ) I (a",w") E M2(a',w')} I (a',w') E M1(a,w)} 
= {The associativity of U} 

>.(a,w)·U{M3(al ,w") I (a",w") E U{M2(a',w') I (a',w') E M1(a,w)}} 
= {The definition of * } 

(Ml * M2) * M3· 

As a simple consequence of these laws is that our specification language is a proper 
generalization of the classical regular expressions: 
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COROLLARY 1. Expessions created using only 0, ' . ',*, EB, . * are regular exprssions. 

It means that every (sub-)automaton created using only these five operations can be 
transformed to the equivalent minimal deterministic (sub-)automaton using well known 
algorithms from the classical automata theory. 

Generally the automaton returns a set of results. If the automaton is deterministic, the 
result is always a singleton (if the automaton succeeds) or empty set (if it fails). Note that 
converse is not nessesarily true. The automaton M is called unambiguous iff for every 
possible input it either fails or returns singleton set. Otherwise the automaton is called 
ambiguous. Two automata exclude each other iff for every possible input the success of 
one yields the failure of the other. 

Following easily provable facts can be used to determine whether an automaton is 
ambiguous or not: 

• All primitive automata' . " c, .?, . ! are unambiguous. 
• If automata MI and M2 are unambiguous, then their sequential composition 

MI * M2 is also unambiguous. 
• If automata MI and M2 are unambiguous and exclude each other, then their 

parallel composition MI EB M2 is unambiguous. 
• If automata MI and M2 are unambiguous and exclude each other, then the 

composition MI * * M2 is unambiguous. 
• Primitive automata 'i' and c exclude each other. 
• Primitive automata 'iI' and 'i2' exclude each other iff i l f. i2. 
• Primitive automata PI ? and P2 ? exclude each other iff PI ::J ",P2. 
• If automata MI and M2 exclude each other, then MI and M2 * M3 also exclude 

each other. 

Note also that sequential composition of two automata excluding each other is equiv
alent with always failing automaton O. 

5. Generalizations of Attributed Automata 

5.1. Transformational Attributed Automata 

A transformational attributed automaton can be defined as a set-valued function from the 

initial attribute value to the final one: 

AA == 'r:/ab. a - {b}. 

Because the type of attributed automata has changed we have to modify primitive au
tomata and composition operators accordingly: 
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. ? : Va. (a ~ bool) ~ M(a, a), 

P?~A. {{a}ifP(a), 
. a. {} otherwise . 

. !: Vab. (a ~ b) ~ AA(a, b)), 
f! ~ A.a. {J(a)}, 

*: Vabc. AA(a,b) x M(b,c) ~ AA(a, c), 
MI * M2 ~.A.a. U {M2(a') I a' E MI(a)} , 

$ : Va b. M(a, b) x M(a, b) ~ M(a, b), 
MI $ M2 ~ A.a. MI(a) U M2(a). 

Definitions for 0, D and .* stay the same. Also, it is easy to see that all relevant laws (not 
involving' . ' and €) still hold. 

5.2. Interactive Attributed Automata 

Interactive attributed automata can be modelled using the tape(s) in the role of input

output channels. For instance to model the Alternating Bit Protocol· from Figure 6 we 
define the type of attributed automaton as following: 

AA ~ Vab. a x ChI x Ch2 -t {b x ChI x Ch2}. 

Primitive automata·?, . ! and composition operators *, $ should be redefined to follow 
the type of attributed automata. In addition, four new primitives should be defined for 

sending and receiving messages on both channels: 

sendChl : Va. AA(a, a) 
sendChl ~ A.(a, ChI, Ch2). {(a, a: ChI, ch2)} 

getCh l : Vab. AA(a,a x b) 
getChl ~ A.(a,b: chl ,ch2 ). {((a,b),chb ch2)} 

sendCh2 : Va. AA(a, a) 
sendCh2 ~ A.(a, ChI, Ch2). {(a, ChI, a: ch2)} 

getCh2 : Vab.M(a,bxa) 
getCh2 ~ A.(a,chl,b: Ch2). {((b,a),ch17 ch2)} 
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Now, automata corresponding to the PRODUCER and Consumer can be defined as fol
lows: 

PRODUCER == ()"b. O)! * PROl 
PROl == ()"b. (b,IN()))! * sendChl * PR02 
PR02 == getCh2 * PR03 
PR03 == Pl? * ()..(a, (b,x)). (b+l)mod2)! * PROl 

EI1 P2? * ()..(a, (b,x)). (b,x))!* sendChl * PR02 

CONSUMER == ()..a. I)! * CONl 
CONl == getCh1 * CON2 
CON2 == ( P1 ? * ()..(a, (b, x)). a) ! 

E9 P2? * ()..(a, (b, x)). (a, (b, OUT(x))))! 
* ()..(a, (b,x)). (a + 1) mod 2) !) 

* sendCh2 * CONl 

6. Functional Parsers 

In functional programming, recursive descent parsers are defined as functions from an 
input string into a list of parse tree / remaining string pairs: 

type Parser a = String --+ [(a, String)] 

together with some primitive parsers: 

zero :: Parser a 
zero inp = [] 

result :: a -+ Parser a 
result a inp = [(a, inp)] 

item :: Parser Char 
item [] = [] 
item (c : inp) = [(c, inp)] 

and composition operators: 

bind :: Parser a -+ (a -+ Parser b) -+ Parser b 
p 'bind' f = \inp -+ [f v inp' I (v, inp') +- p inp] 

plus :: Parser a -+ Parser a -+ Parser a 
pI 'plus' p2 = \inp -+ pI inp ++ p2 inp 
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Here are some simple examples illustrating the use of basic parser combinators: 

sat 
satp 

char 
char c 

:: (Char ~ Bool) ~ Parser Char 
= item 'bind' \x ~ 

if P x then result x else zero 

.. Char ~ Parser Char 
= sat (\y ~ x = y) 

string :: String ~ Parser String 
string [] = [[]] 
string (x: xs) = char x 'bind' \_ ~ 

string xs 'bind' \_ ~ 
return (x: xs) 

The parser sat p consumes one character from input string. If the character satisfies 
the given predicate p, then the parser succeeds with the consumed character as the return 
value, otherwise the parser fails. It is used to define the parser char c which corresponds 
to the primitive attributed automaton 'c'. Similarily the parser string s corresponds to 

the automaton "s". 
One can see a great similarity between attributed automata and functional parsers. 

Indeed, the main difference between them is that while the former are parametrized by 
the initial attribute value, the latter are not. This makes the sequential composition of 
functional parsers a little bit more complicated and asymmetrical, as the transmission of 
computed values has to be explicit. The typical parser written in this style will look like: 

Ml 'bind' \al ~ 
M2 'bind' \a2 ~ 

Mn 'bind' \an ~ 
return (f al a2 ... an) 

Note the role of A-abstractions for explicitly binding temporary values. As a result, 
the distinction between control structure and attribute manipulation is not so clear as in 

the case of attributed automata. 

Functional parsers are a little bit more powerful, as we can easily model sequential 
composition of attributed automata using 'bind' as follows: 

But, the modelling of 'bind' with terms of * is not possible. 
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As was noted in Section 4, sequential composition of attributed automata is associa
tive and has 0 as its identity; i.e., they form a monoid. In the case of functional parsers 
similar laws holds2 for bind and return: 

PI 'bind' (\a -+ P2 'bind' f) = (PI 'bind' \a -+ P2) 'bind' f 
return a 'bind' f = fa 
P 'bind' return = P 

In functional programming, the type constructor T, together with the operations 
retUTn :: a -+ T a and bind :: T a -+ (a -+ T b) -+ T b which satisfy the laws given 
above, is called a monad. The notion is borrowed from cathegory theory where monads 
are used (among others) for modularizing the semantics of programming languages. In 
modern functional programming, monads are accepted as the basic tool to structure pro
grams which deal with impure features like side effects, input-output, non-determinism, 
etc. We refer to (Wadler, 1992) for a good overview of how monads are used in functional 
programming. Exploiting the monadic structure of parsers gives an elegant way for their 
factorization and generalization. We refer to (Hutton and Meijer, 1996) for details. 

7. Conclusion 

We have developed a method of functional specification of attributed automata. It has 
good compositional and algebraic properties which allow systematic derivation of effi
cient implementations from readable specifications of attributed automata using correct
ness preserving transformations. Also, it is easily extendible to cope transformational, 
interactive and other different kind of attributed automata. 

Our approach is very similar to the approach of defining recursive descent parsers in 
functional programming. Based on the simpler concept of monoids, instead of monads, 
it is less general. On the other hand, we achieve a cleaner separation between the regular 
control structure and attribute manipUlations. It remains an open problem whether the 
loss of generality is outweighed by greater modularity or not. 
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AtributiniQ automatQ modeliai 

Merik MERISTE, Jaan PENJAM, Varmo VENE 

Atributinis automatas (AA) - tai formalizmas, skirtas specifikuoti koncepcines zinias, naudo
jant reguliari!l sintaks~, papildytll atributais. apraSanciais konteksto slllygotus rysius bei semantines 
konceptll savybes. Atributin~ automatll galima traktuoti kaip apibendrinimll baigtinio automato su 
atributais ir isskaiciuojamais rysiais. jungiamais ir prie biisenll. ir prie automato perejimll. Straips
nyje pasiiiIytas naujas atributinill automatl\ specifikavimo metodas. Metodas sudarytas. panaudojus 
funkcines kombinatorikos idejas. Naudojant s\ metodll. galima moduliarizuoti atributinill automatll 
specifikacijas. Metodas pasizymi geromis algebrinemis savybemis ir tinka specifikuoti tvairill riisill 
atributinius automatus. 


