
INFORMATICA, 1998, Vol. 9, No. 1,85-105
© 1998 Institute of Mathematics and Informatics, Vilnius

Models of Attributed Automata *

Merik MERISTE
Centre of Technology, University ofTartu, Liivi 2, EE2484 Tartu, Estonia
e-mail: merik@ut.ee

JaanPENJAM
Institute of Cybernetics, Akadeemia tee 21, EEOO26 Tallinn, Estonia
e-mail: jaan@cs.ioc.ee

VarmoVENE
Institute of Computer Science, University of Tartu, Liivi 2, EE2484 Tartu, Estonia
e-mail: varrno@cs.ut.ee

Received: January 1998

Abstract. Attributed automaton (AA) is a formalism for conceptual knowledge specification us
ing regular syntax with attributes representing contextual relations as well as semantic properties
of concepts. AA can be treated as a generalization of a finite automaton with attributes and com
putational relations attached to states and transitions respectively. In this paper we develop a new
specification method for AA based on functional combinators. It allows modular specification of
AA, enjoys good algebraic properties and is extendeble for different kind of attributed automata.

Key words: attributed automata, language recognizers, functional specification 2 of AA, functional
parsers.

1. Introduction

Regular and context-free structure are classical and efficiently implementable models of
data structures. Automated computing is often as successful as adequately regular and/or
context-free (surface or deep) substructures are extracted from the rest of structure of
data. Formal models integrating these structures with others and supporting data restruc
turing, analysis and implementation are methodologically important. The modifications
of models known in the theory of formal languages and automata (e.g., finite and push
down automata and state transition systems), and corresponding declarative formalisms
(e.g., attributed grammars, graph grammars) are widely used to achive effectively exe
cutable specifications.

Attributed automata (AA) were introduced in (Meriste and Penjam, 1992a) as a for
malism for executable specifications using regular syntax with attributes representing

'Partially supported by Estonian Science Foundation grant ETF 1718.

86 M. Meriste et al.

contextual relations as well as semantic properties of underlying concepts. Due to ap

plications in medical signal analysis (Gronfors and Meriste, 1992; luhola and Meriste,
1992) attributed automata is accepted as a software engineering tool.

From the theoretical aspects AA have been investigated by means of rewriting sys
tems (Meriste and Penjam, 1992b) and in terms of classical automata theory (Meriste,
1994; Meriste and Penjam, 1995a; Meriste and Penjam, 1995b). The algebraic theory of
(de)composition of some classes of AA is developed in (Kaljulaid et at., 1993). How
ever, several problems remained still open. Particulary, there was no general theory of
composition of AA and good specification methodology.

In this paper, we develop a functional specification method for attributed automata,
which has good compositional properties. We will proceed as follows. In the next section
we give a short overview of the formal model of attributed automata. In Section 3 we
develop a new functional specification method for attributed automata. Then, in Sections
4 and 5, we study the properties of automata specified functionally and show how the
method can be naturally extended for the more generel attributed automata. In Section 6,
we compare our method with functional parsers. Finally, in Section 7, we conclude with
discussion about open problems and future work.

2. Finite Attributed Automata

DEFINITION 1. A finite attributed automaton M is a tuple
M = (I,S,A,0',80,8F), where

(a) I is a finite alphabet of terminal symbols,

(b) S is a finite alphabet of states,

(c) A = {As I S E S} is a family of domains of attributes indexed over states,

(d) 0' = {(jss' ~ (As x 1*) x As' I 8,8' E S} is a family of transition relations indexed
over pairs of states,

(e) 80 E S is an initial state and

(0 8 F E S is a final state.

Starting in the initial state 80 with the initial attribute value ao E Aso and input string
w E 1* the functioning of the automaton M is considered as successive change of the
current state. The transition from the state 8 to 8' is possible only if (a, u)O' ss' (a'), where
a E As, a' E As' are corresponding attributes and U E 1* is the prefix of the input string
to be read next. Automaton terminates if there is no transition possible. If this happens
when the current state 8 E S is final (i.e., 8 = 8F), then automaton terminates with
success. The remaining input string w' together with final attribute value a E As F form
a result of automaton M. If the automaton stops in the state which is not final, then the
automaton fails. It is also possible that automaton will not terminate at all, as in the case

Models of Attributed Automata 87

of infinite loop or if the computation of the transition relation doesn't terminate for given
arguments. In both cases the result of automaton is undefined.

DEFINITION 2. A configuration of the attributed automaton
M = (1,8, A, cr, So, SF) is a triple

(s,a,w) E (8 X As X 1*),

where

(a) S E 8 is the current state of the attributed automaton M,

(b) a E As is the attribute value ofthe current state s,

(c) w E 1* represents the unused portion of the input string. If w = c, where c stands for
the empty string, it is assumed that the whole input string has been read.

The initial configuration of the automaton M is a configuration of the form

(sQ,ao,w), wE 1*.

Thefinal configuration of the automaton M is a configuration of the form

(SF,a,w), a E Asp, wE 1*,

such that there is no transition possible.
Now, the automaton M can be considered as a formal computing device which oper

ating cycle is running over configurations.

DEFINITION 3. The mOve by M is a binary relation f--7 M (or simply f--7) on configura
tions as follows

(S, a, ww') f--7 M (s', a', w') {::::::} (a, w)cr 8S' (a'),

where s, s' E 8 are states, a E As, a' E As' are corresponding attributes, w E 1* is
the consumed prefix of the input string and w' E 1* is the remaining input string. It's
reflexive transitive closure is denoted by f--7M.

Note, that during a move, the prefix with arbitrary length can be consumed from
the input string. The particular case, when no symbols are consumed, is called the c
move. In fact, there no principal need to allow more than one symbol to be consumed
during a move. Consuming longer prefix can be easily simulated by the sequence of
moves consuming only one symbol. On the other hand, the c-move can be not so easily
simulated. It makes possible the automaton to loop forever. If c-move are not allowed,
every move consumes some (non empty) prefix of the input string, and the only reason
for non-termination of the automaton can be the non-terminating transition relation or
infinite input string.

88 M. Meriste et at.

Fig. 1. Recognizer of the binary numbers.

PROPOSITION 1. Let all the transition relations a 88' be total and such that induced move
relation doesn't allow c-moves (i.e., a 8S' ~ (As X 1+) x As')' Then for every finite input
string W E 1* and for every initial attribute value ao E Aso ' the attributed automaton
M = (1, S, A, a, So, SF) is guaranteed to terminate.

In general, for a given configuration (s, a, w), there can be several configurations
related with it by the move relation.

DEFINITION 4. A finite attributed automaton M = (I, S, A, a, So, SF) is deterministic
iff for every configuration (s, a, vw) there exists at most one configuration (Sf, a', w)
such that (s, a, vw) f-+ M (Sf, af , w), i.e., the move relation f-+ M is a function. Otherwise
the automaton M is non-determinictic.

Deterministic attributed automata are interesting from the applications point of view,
as their efficient implementation is much easier than non-deterministic ones. On the other
hand, some problems can be specified more naturally using non-deterministic automata.
The situation is similar to the finite automata, where regular expressions correspond di
rectly to the non-deterministic finite automata and these are transformed to deterministic
ones. Unfortunately, because of free domains of attributes, the corresponding transfor
mation of attributed automata is impossible in general case (or otherwise we are able to
solve the halting problem).

It is often illustrative to present AA in the form of transition graphs as in the Fig. 1.
States of the attributed automaton are represented by nodes labelled by the associated
attribute or by components of the attribute if the attribute is a tuple. Every arc from a
state s to a state Sf is labelled by a triple .

(w, P, J) : 1* x (As --+ boo)) x (As --+ As') ,

where s and Sf are states corresponding to the source and the target node respectively,
P is an enabling predicate and f is a transformation junction. The set of arcs from the

Models of Attributed Automata 89

state 8 to the state 8' with labels (Wl' Pl. h), ... , (wn, Pn, f n) represents the transition
relation ass, in the following sense:

(a,w)ass,(a') {::::::::} ::Ii 1:::;; i:::;; n W = Wi 1\ Pi(a) = tt 1\ a' = f(a).

Note that in the case of non-deterministic automata it is not always possible to repre
sent the transition relation ass, by a finite set of arcs.

2.1. Attributed Automata as Recognizers

Language recognition is a natural application of attributed automata. By specializing the
general definition of finite attributed automata we can easily obtain classical language
recognition devices. For instance:

• The attributed automaton without attributes isa classical finite automaton .
• The attributed automaton with stack as it's only attribute in every state is a

push-down automaton.

Below we consider two different approaches of using attributed automata as language
recognizers. First, we consider a string to be recognized, if the analysis of that string
ends with the final configuration where the whole input string is consumed. In the second
approach we introduce predicates on final attribute values to represent contextual require
ments for the acceptable string. We will introduce both notions of the accepted language
as follows.

DEFINITION 5. Let M = (1, S, A, CT, 80, SF) be an attributed automaton. The language
accepted by the automaton M is defined as follows

L(M,ao) = {w E 1* I (So, ao,W)I---7M(8F,a, c), a E ASF }'

The final attribute value a E ASF can be interpreted as the meaning of the string win
the language L(M, ao). For example, the attributed automaton from the Fig. 1 recognizes
binary numbers and the final attribute value a represents the decimal value of the binary
number. For instance if the input string is W = "1101.01" then the final attribute value is
a = 13.25.

As an another example, consider the language £, = {an bn en I n ~ O} which is
context-sensitive. A recognizer for the language £, is the automaton given in Fig. 2. In
this example attributes playa different role - they collect contextual information which
is used on some states to decide which transition to choose.

Because of domains of attributes can be infinite and transition relation can be arbitrary
computable relation, the expressive power of attributed automata are that of Turing ma
chines. On the other hand, we often don't use the full generality of attributed automata.

As we see in our examples, in most cases attributes are used to collect some informa
tion, which is used only on some special places for deciding the transition to choose. In

90 M. Meriste et al.

Fig. 2. Recognizer of the language t:, = {anbncn I n ~ O}.

fact, the automaton in Fig. 1 don't use attributes at all for the recognition and the au
tomaton in Fig. 2 uses them only on the last transition. This gives idea for the following
decomposition of attributed language recognizer.

DEFINITION 6. An attributed automaton M = (I, S, A, 0", So, SF) is simple if all its
enabling predicates are constantly true.

In our examples the first automaton is simple, but the second isn't. We can make it
easily to the simple one by taking the sub-automaton without the final state and transition
to it (and declaring the state 2 to be final) .

. Clearly, by means of Definition 5, simple attributed automata can recognize exactly
the class of regular languages. It's because they can collect arbitrary contextual informa
tion (and compute arbitrary meaning to the string), but they can't use this information for
the recognition. To make the use of collected information, we use the additional predicate
to tell whether the string belongs to the language or not.

DEFINITION 7. Let M = (I, S, A, 0", So, SF) be a simple attributed automaton, ao E Aso
the initial attribute value and P : ASF --+ bool a computable predicate on final attribute.
We define the language accepted by the automaton M and the accepting predicate P as

L(M, P) = {w E 1* I (so, ao, w)~M(SF' a, c), P(a), a E AsF }.

From languages point of view, the initial attribute ao E Aso represents the initial
context and the predicate P accepting context.

Now, the recognizer for the language I:- = {anbncn I n ~ O} can be constructed
by taking M to be the simple sub-automaton from Fig. 2 (as described above) and the
accepting predicate P to be the enabling predicate from the last transition. This shows
that at least some context-sensitive languages can be recognized by a simple attributed
automaton, which just counts the occurences of certain substrings, together with an ac
cepting predicate which is also very simple (checking the equality of natural numbers).
Because, in general, the accepting predicate P can be any computable predicate, the class
of languages recognizable by a simple automaton M and a predicate P is the class of
recursively enumerable languages. However, this doesn't mean that all recursively enu
merated languages can be recognized as easily as in the I:- = {anbncn I n ~ O} case. For

Models of Attributed Automata 91

a) serial composition:

x x,
... ~

~ ~ y

b) parallel composition: c) hierarchical composition:

AA

, +
.:----.~IU

y
Z"'j(t)

~
t z=j(t)

Fig. 3. Compositions of attributed automata.

instance, it is impossible to recognize Dyck languages (Le., the languages of balanced
parenthesis) with more than one type of parenthesis by a simple attributed automaton
and an accepting predicate similar to the previous example. In fact, to recognize a Dyck
language, the automaton has to simulate the stack as in the classical push-down automata.

As we see in our examples, we have two alternative possibilities to construct a recog
nizer on the basis of an attributed automaton. First, we can specify predicates at transi
tions, i.e., we select the next move in accordance with context conditions. Second, we can
simply collect the contextual information we need to some state and specify by a pred
icate the acceptable context at that state. The second approach appears to be interesting
from the methodological point of view, as it suggests more systematic and modular way
for building language recognizers.

2.2. Compositions of Attributed Automata

The Definition 7 decomposed the problem oflanguage recognition into two parts: the syn
tactic recognition of regular structures by a simple attributed automaton and the analysis
of contextual dependences by an accepting predicate. Because the accepting predicate
can be viewed as an attributed automaton with one transition labelled by the predicate,
we have the (sequential) composition of two automata.

In general, the composition problem of attributed automata is: how and when a com
plex attributed automaton can be simulated by interconnected sets of simpler attributed
automata; how these component automata are related to the automaton under consider
ation?

There are three different types of composition of attributed automata into the system
that have been studied previously (Fig. 3):

• a sequential composition (a serial composition), where two automata are
connected by "pasting" together the final state of the first automaton and the initial

92 M. Meriste et al.

Grammar: S -->ss I () I (S) I [)I [S)

a) Accounting of parenthesis '(' and ')': c' = A (?c)

n:n+l; c=c

b) Accounting of parenthesis 'I' and 'J': c' = A [Cc)

n=n+I:I.:=C

Fig. 4. The implementation of the Dyck language.

state of the second one;
• a parallel composition, where two automata are connected by "pasting" together

their initial states and final states;
• a hierarchical composition, where during the transition the another attributed

automaton is called (or even the same automaton in the case of direct recursion).

In fact, the sequential and the parallel composition are both special cases of the hi
erarchical composition. In the sequential case, we can add a new final state to the first
automaton together with the transition from the old final state and call the second au
tomaton at this transition. It is exactly the reverse what we did with the automaton from
Fig. 2 to get the simple automaton. In the parallel case, we add a new transition from
the initial to the final state in the first automaton and call the second automaton at this
transition.

The hierachical composition of simple attributed automata can be used to specify pars
ing of Dyck languages. In this case, the regular structure of the string is represented by
transitions controlled by enabling predicates, balance of parentheses is accounted by at-

Models of Attributed Automata 93

tributes. For every type of parentheses, one attributed automaton is used that calls another
automaton when another type of a parentesis appears. In Fig. 4 the system of attributed
automata for the recognition is shown for two types of parentheses used.

2.3. Generalizations of Attributed Automata

Transformational Attributed Automata
Because arbitrary attribute domains are allowed, the presence of input tape is not neces
sary. It can be modelled by the special component of attributes in the automaton without
input tape as shown in (Meriste and Penjam, 1995; Meriste and Penjam, 1995b; Meriste
and Vene, 1995).

DEFINITION 8. A transformational attributed automaton is a transition network M =
(S, T), where:

• S is a finite set of states with two distinguished states: an initial state So E S and a
final state SF E S. Every state S E S is associated with an attribute as E As;

• T ~ S x S is a set of transitions. Every transition t = (s, s') E T is associated
with

- an enabling predicate Pt : As --+ bool, and
- a transformation function it : As --+ As"

Enabling predicates and transformation functions both have to be computable, but other
wise are arbitrary.

The functioning of the transformational automaton is analoguous to the case of finite
attributed automata: it starts from the initial state So with the initial attribute value x =
ao E ABo' A transition from one state two another is possible only if the corresponding
enabling predicate is true. The transition is accompanied by evaluation of the attribute of
the next state using the associated transformation function. The automaton stops if there
is no transitions enabled. If this happens in the final state SF, then the automaton finished
successfully and the current value of the attribute y = aF E As! is treated as the output
of automaton. This situation is denoted by M(x) = y. If automaton stops in some other
state or doesn't stop at all, then the automaton fails and this is denoted by M(x) = J..
This explains why such automata are called transformational - their only effect is the
transformation of inputs into outputs.

In general, a transformational automaton specifies a relation between it's input and
output attribute domains. If the automaton is deterministic (i.e., in every state there is
at most one transition enabled), then the specified relation is a function. In (Meriste and
Vene, 1995), it has been shown that even in the case of so called deterministic "primitive
automata" - where all attribute domains are tuples of natural numbers, enabling predi
cates are checking the component of tuple to be zero and transformation functions are
successor, predecessor or constant functions - every partially recursive function can be
specified by it. It means that transformational attributed automata can be used as general
model of (algorithmic) computation.

94 M. Meriste et al.

ChI: (bit, x)

Ch2: ack

Fig. 5. A client-server system.

Interactive Attributed Automata
When one considers the modelling of interactive systems (Wegner, 1995), transforma
tional attributed automata become inadequate. It's because of they have initial/final at
tributes as only means of communication with the outer world. In (Penjam, 1994) an
extension of attributed automata with additional input/output primitives was considered
and used to specify the Alternating Bit Protocol (ABP).

Consider the classical client-server network with two entities connected by two chan
nels (see Fig. 5). The server (PRODUCER) sends messages through the channel ChI to
the client (CONSUMER). Every message consists of two components - the data frame x
and the header bit which under normal transition without errors should alternate 0 and 1
for successive frames. Through the channel Ch2 acknowledgements, which are also bits,
can be passed.

In Fig. 6, the ABP is modelled using two separate attributed automata for PRODUCER
and CONSUMER respectively. Operations ?ChI(x, y) and ?Ch2(z) are representing
reading messages from channels ChI and Ch2 respectively, and storing the values x,
y and z into appropriate attributes. Operations !Chl(x, y) and !Ch2(z) are representing
sending the attribute values as messages to appropriate channels. Procedures J NO and
OUT(x) "produce" and "consume" the data exchanged using the modelled mechanism.

3. A Functional Specification of AA

3.1. The Representation of Attributed Automata

An attributed automaton M takes an initial attribute value a E Aso together with an input
string W E J* and returns the computed value together with the remaining input string
(i.e., the pair (a, w') E Asp x J*). In general, the automaton can be non-deterministic. It
means that automaton is a relation between Aso x 1* and Asp x J*. Instead of this we
treat automaton M as a set-valued function Aso x J* -+ {A • .r x 1*}. The empty set as
the result denotes failure; the singleton set means that only one recognition for the given
string is possible.

By abstracting away from the concrete attribute domains of initial and final states we
define the type of attributed automata as follows:

PRODUCER

bit:=O

CONSUMER

Models of Attributed Automata

ack = bit

!Ch2(ack)

?Chl(bit,x) ack:= ack

ack <> bit

ack:= (ack + I) mod 2

!Ch2(ack) OUT(x)

Fig. 6. An attributed model of the ABP.

AA == 'Vab. a x 1* -+ {b x 1*}.

3.2. Primitive Attributed Automata

• The first primitive automaton consumes the first symbol from input string if it

matches the given symbol and fails otherwise:

, . ' : 'Va. I ----+ AA{a, a),

,., == '() {{{a,w')} ifw = iw',
2 /\ a, w. {} .

otherwIse.

95

96 M. Meriste et al.

• The second primitive automaton checks whether the input string is empty or not:

€ : Va. AA(a, a),

..:... '() {{(a,wH ifw = €,
€ - A a,w. {} . otherwIse.

• The next primitive automaton corresponds to the predicate at the transition. It
succeeds if the predicate holds and fails otherwise:

.? : Va. (a --+ bool) --+ AA(a, a),

P? == A(a w). {{(a, wH if P(a).'
, {} otherwIse.

• The fourth primitive automaton corresponds to the function at the transition.
Using the function, it computes the new attribute value:

.! : Vab. (a --+ b) --+ AA{a, b)),
f! == A{a, w). {(f{a), wH·

As the shorthand notation we denote the always failing automaton by <> and the identity
automaton by 0:

<> :: (Aa.ff) ? D::id! (= (Aa.tt)?).

3.3. Basic Composition Operators

Next we need to define basic primitives for combining attributed automata - the sequen
tial and parallel composition operators.

• In sequential composition, we apply the second automaton to the result of the first
one. We have to take care of flattening the resulting set to make the composed
automaton to have the correct type:

*: Vabc. AA{a,b) x AA{b,c) --+ AA{a,c),
Ml * M2 == A{a, w). U {M2(a' , w') I (aI, w') E Ml(a, wH.

• In parallel composition, we apply both automata to the same input and take the
union of the resulting sets as follows:

EB : Va b. AA{a, b) x AA(a, b) ---t AA{a, b),
Ml EB M2 == A{a, w). MI(a, w) U M2(a, w).

Another useful construction is the iteration of an attributed automaton zero or more
times. It can be defined using the serial composition together with parellel composition
as follows:

.* : Va. AA{a, a) --+ AA{a, a),
M* == (M *M*) EB D.

Models of Attributed Automata 97

Also we use shorthand notation for the sequential composition of several' . ' automata:

"w" == 'iI' * 'i2' * ... * 'in' ,

EXAMPLE 1. The automaton from Fig. 1 can be defined as follows:

Mi ~ ('1' * ('xa. 2a + 1) !
E9'0'*('xa.2a)!)*,

Mf ~ ('1' * (,x (a,b,e). (a,2b+1,e+1))!
E9 '0' * ('x(a, b, c). (a, 2b, e + 1))!)*,

The automaton Mb2d recognizes the binary number and converts it to the decimal
form. First it initializes the attribute a and then uses the automaton Mi to recognize the
integral part of the number. Then, if the whole input string is consumed it returns the
decimal value of the number. Otherwise, if the remaining string starts with the decimal
point, it uses the automaton Mf to recognize the fractional part.

The automaton recognizing the language.c = {anbnen I n ~ O} can be defined as
follows:

M ~ ('xx. 0) ! * ('a' * ('xk. k + 1) !)*
* ('xk. (k, O))! * ('b' * ('x(k, i). (k, i + 1))!)*
* ('x(k, i). (k, i, 0)) ! * ('e' * ('x(k, i, m). (k, i, m + 1)) !)*
* c * ('x(k,i,m).(k=i)l\(k=m))?
* ()"(k, i, m). k)!

First three lines corresponds to the automata counting symbols a, band e respectively.
Then the automaton checks whether the input string is empty and all counters are equal.
Finally, it returns the counter as its final attribute value.

4. Properties of Attributed Automata

Operators defined in the last section satisfy several nice algebraic properties. Here we list
some of them which are most interesting .

• Sequential composition is associative with 0 as the zero and ° as the identity
element:

MI *(M2 *M3) = (MI *M2)*M3 ,

O*M = 0 = M*O,

O*M = M = M*O.

(I)

(2)

(3)

98 M. Meriste et al.

• Sequential composition of two primitive automata of a similar kind can be joined

together:

"u"* "w" = "uw",

c*e: = e:,

PI ? * P2? = (PI 1\ P2) ?

1!*g! = (Jog)!

(4)
(5)

(6)

(7)

• Parallel composition is associative. commutative and has <> as its identity element:

MI E9 (M2 E9 M3) = (Ml E9 M2) E9 M3•

Ml E9 M2 = M2 E9 Ml,

<>E9M =M= ME9<>.

• Sequential composition distributes over parallel composition:

Ml * (M2 E9 M3) = (Ml * M2) E9 (Ml * M3),

(Ml E9 M2) * M3 = (MI * M3) E9 (M2 * M3)'

• Sequential composition of . ? or . ! with' . ' or e: is commutative:

P? * 'i' = 'i' * P?

P?*e: = e:*P?

I! * 'i' = 'i' * I!
1!*e:=e:*I!

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

The proof of the equational laws above is a simple calculation using the definitions
of the corresponding operators together with the properties of set union. For instance the
first law can be proven as follows:

Ml * (M2 *M3)
= {The definition of *}

>.(a,w). U {U {M3(a", wll) I (a",w") E M2(a',w')} I (a',w') E M1(a,w)}
= {The associativity of U}

>.(a,w)·U{M3(al ,w") I (a",w") E U{M2(a',w') I (a',w') E M1(a,w)}}
= {The definition of * }

(Ml * M2) * M3·

As a simple consequence of these laws is that our specification language is a proper
generalization of the classical regular expressions:

Models of Attributed Automata 99

COROLLARY 1. Expessions created using only 0, ' . ',*, EB, . * are regular exprssions.

It means that every (sub-)automaton created using only these five operations can be
transformed to the equivalent minimal deterministic (sub-)automaton using well known
algorithms from the classical automata theory.

Generally the automaton returns a set of results. If the automaton is deterministic, the
result is always a singleton (if the automaton succeeds) or empty set (if it fails). Note that
converse is not nessesarily true. The automaton M is called unambiguous iff for every
possible input it either fails or returns singleton set. Otherwise the automaton is called
ambiguous. Two automata exclude each other iff for every possible input the success of
one yields the failure of the other.

Following easily provable facts can be used to determine whether an automaton is
ambiguous or not:

• All primitive automata' . " c, .?, . ! are unambiguous.
• If automata MI and M2 are unambiguous, then their sequential composition

MI * M2 is also unambiguous.
• If automata MI and M2 are unambiguous and exclude each other, then their

parallel composition MI EB M2 is unambiguous.
• If automata MI and M2 are unambiguous and exclude each other, then the

composition MI * * M2 is unambiguous.
• Primitive automata 'i' and c exclude each other.
• Primitive automata 'iI' and 'i2' exclude each other iff i l f. i2.
• Primitive automata PI ? and P2 ? exclude each other iff PI ::J ",P2.
• If automata MI and M2 exclude each other, then MI and M2 * M3 also exclude

each other.

Note also that sequential composition of two automata excluding each other is equiv
alent with always failing automaton O.

5. Generalizations of Attributed Automata

5.1. Transformational Attributed Automata

A transformational attributed automaton can be defined as a set-valued function from the

initial attribute value to the final one:

AA == 'r:/ab. a - {b}.

Because the type of attributed automata has changed we have to modify primitive au
tomata and composition operators accordingly:

100 M. Meriste et al.

. ? : Va. (a ~ bool) ~ M(a, a),

P?~A. {{a}ifP(a),
. a. {} otherwise .

. !: Vab. (a ~ b) ~ AA(a, b)),
f! ~ A.a. {J(a)},

*: Vabc. AA(a,b) x M(b,c) ~ AA(a, c),
MI * M2 ~.A.a. U {M2(a') I a' E MI(a)} ,

$: Va b. M(a, b) x M(a, b) ~ M(a, b),
MI $ M2 ~ A.a. MI(a) U M2(a).

Definitions for 0, D and .* stay the same. Also, it is easy to see that all relevant laws (not
involving' . ' and €) still hold.

5.2. Interactive Attributed Automata

Interactive attributed automata can be modelled using the tape(s) in the role of input

output channels. For instance to model the Alternating Bit Protocol· from Figure 6 we
define the type of attributed automaton as following:

AA ~ Vab. a x ChI x Ch2 -t {b x ChI x Ch2}.

Primitive automata·?, . ! and composition operators *, $ should be redefined to follow
the type of attributed automata. In addition, four new primitives should be defined for

sending and receiving messages on both channels:

sendChl : Va. AA(a, a)
sendChl ~ A.(a, ChI, Ch2). {(a, a: ChI, ch2)}

getCh l : Vab. AA(a,a x b)
getChl ~ A.(a,b: chl ,ch2). {((a,b),chb ch2)}

sendCh2 : Va. AA(a, a)
sendCh2 ~ A.(a, ChI, Ch2). {(a, ChI, a: ch2)}

getCh2 : Vab.M(a,bxa)
getCh2 ~ A.(a,chl,b: Ch2). {((b,a),ch17 ch2)}

Models of Attributed Automata 101

Now, automata corresponding to the PRODUCER and Consumer can be defined as fol
lows:

PRODUCER == ()"b. O)! * PROl
PROl == ()"b. (b,IN()))! * sendChl * PR02
PR02 == getCh2 * PR03
PR03 == Pl? * ()..(a, (b,x)). (b+l)mod2)! * PROl

EI1 P2? * ()..(a, (b,x)). (b,x))!* sendChl * PR02

CONSUMER == ()..a. I)! * CONl
CONl == getCh1 * CON2
CON2 == (P1 ? * ()..(a, (b, x)). a) !

E9 P2? * ()..(a, (b, x)). (a, (b, OUT(x))))!
* ()..(a, (b,x)). (a + 1) mod 2) !)

* sendCh2 * CONl

6. Functional Parsers

In functional programming, recursive descent parsers are defined as functions from an
input string into a list of parse tree / remaining string pairs:

type Parser a = String --+ [(a, String)]

together with some primitive parsers:

zero :: Parser a
zero inp = []

result :: a -+ Parser a
result a inp = [(a, inp)]

item :: Parser Char
item [] = []
item (c : inp) = [(c, inp)]

and composition operators:

bind :: Parser a -+ (a -+ Parser b) -+ Parser b
p 'bind' f = \inp -+ [f v inp' I (v, inp') +- p inp]

plus :: Parser a -+ Parser a -+ Parser a
pI 'plus' p2 = \inp -+ pI inp ++ p2 inp

102 M. Meriste et al.

Here are some simple examples illustrating the use of basic parser combinators:

sat
satp

char
char c

:: (Char ~ Bool) ~ Parser Char
= item 'bind' \x ~

if P x then result x else zero

.. Char ~ Parser Char
= sat (\y ~ x = y)

string :: String ~ Parser String
string [] = [[]]
string (x: xs) = char x 'bind' _ ~

string xs 'bind' _ ~
return (x: xs)

The parser sat p consumes one character from input string. If the character satisfies
the given predicate p, then the parser succeeds with the consumed character as the return
value, otherwise the parser fails. It is used to define the parser char c which corresponds
to the primitive attributed automaton 'c'. Similarily the parser string s corresponds to

the automaton "s".
One can see a great similarity between attributed automata and functional parsers.

Indeed, the main difference between them is that while the former are parametrized by
the initial attribute value, the latter are not. This makes the sequential composition of
functional parsers a little bit more complicated and asymmetrical, as the transmission of
computed values has to be explicit. The typical parser written in this style will look like:

Ml 'bind' \al ~
M2 'bind' \a2 ~

Mn 'bind' \an ~
return (f al a2 ... an)

Note the role of A-abstractions for explicitly binding temporary values. As a result,
the distinction between control structure and attribute manipulation is not so clear as in

the case of attributed automata.

Functional parsers are a little bit more powerful, as we can easily model sequential
composition of attributed automata using 'bind' as follows:

But, the modelling of 'bind' with terms of * is not possible.

Models oj Attributed Automata 103

As was noted in Section 4, sequential composition of attributed automata is associa
tive and has 0 as its identity; i.e., they form a monoid. In the case of functional parsers
similar laws holds2 for bind and return:

PI 'bind' (\a -+ P2 'bind' f) = (PI 'bind' \a -+ P2) 'bind' f
return a 'bind' f = fa
P 'bind' return = P

In functional programming, the type constructor T, together with the operations
retUTn :: a -+ T a and bind :: T a -+ (a -+ T b) -+ T b which satisfy the laws given
above, is called a monad. The notion is borrowed from cathegory theory where monads
are used (among others) for modularizing the semantics of programming languages. In
modern functional programming, monads are accepted as the basic tool to structure pro
grams which deal with impure features like side effects, input-output, non-determinism,
etc. We refer to (Wadler, 1992) for a good overview of how monads are used in functional
programming. Exploiting the monadic structure of parsers gives an elegant way for their
factorization and generalization. We refer to (Hutton and Meijer, 1996) for details.

7. Conclusion

We have developed a method of functional specification of attributed automata. It has
good compositional and algebraic properties which allow systematic derivation of effi
cient implementations from readable specifications of attributed automata using correct
ness preserving transformations. Also, it is easily extendible to cope transformational,
interactive and other different kind of attributed automata.

Our approach is very similar to the approach of defining recursive descent parsers in
functional programming. Based on the simpler concept of monoids, instead of monads,
it is less general. On the other hand, we achieve a cleaner separation between the regular
control structure and attribute manipUlations. It remains an open problem whether the
loss of generality is outweighed by greater modularity or not.

References

Granfors, T., and M. Meriste (1992). Attributed Automata in Pattern Recognition (!f"Digital Signals, Res.Rep.
R-92-1, Computer Science, University of Turku, Finland.

Hutton, G., and E. Meijer (1996). Monadic Parser Combinators.
Juhola, M., and M. Meriste (1992). An attributed automaton for recognising of nystagmus eye movements. In

H.Bunke (Ed.), Advances in Structural and Syntactic Pattern Recognition, World Scientific, Singapore, pp.
194-203.

Kaljulaid, U., M. Meriste and J. Penjam (1993). Algebraic Theory (!fTape-Controlled Attributed Automata. Res.
Rep. CS59/93. Inst. of Cybernetics, Estonian Academy of Sciences, Estonia, Tallinn.

2Note, that the scope of the variable a, in the left hand side of the first equation (associativity) includes f,
but excludes f in the right hand side. So the law holds only if the variable a does not occur free in f.

104 M. Meriste et al.

Meriste, M. (1994). Attributed Automata - Some Results and Open Problems. Res. Rep. CS75/94. Inst. of
Cybernetics, Estonian Academy of Sciences, Estonia, Tallinn.

Meriste, M., and J. Penjam (1992a). Attributed finite automata. In: Proc. I!f'/nternational Workshop on Compiler
Compiler CC'92, Technical report no 103, University ofPaderborn, pp. 48-51.

Meriste, M., and 1. Penjam (1992b). On Formal Models l!t· Finite Attributed Automata. Res. Rep. CS52/92,
Inst. of Cybernetics, Estonian Academy of Sciences, Estonia and Dep. of Compo Sci., University of Turkll,
Finland, Tallinn.

Meriste, M., and 1. Penjam (1995a). Attributed Models I!f Executable Specifications, Res. Rep. CS80/95. In
stitute of Cybernetics, Estonian Academy of Sciences and Department of Computer Science. University of
Tartu, Tallinn.

Meriste, M., and J. Penjam (1995b). Attributed models of computin, ProC. Estonian Acad. Sci., Engineering, I.
2. 139-157.

Meriste. M., and V. Vene (1995). Attributed automata and language recognizers, In Proc. I!f'the Fourth Sympo
sium on Programming Languages and Sq{tware Tools. Visegrad. Hungary, 1995, pp. 114-121.

Penjam, 1. (1994). Attributed Automata: A Formal Model jor Protocol Specification. Res. Rep. CS71193. Inst.
of Cybernetics. Estonian Academy of Science, Estonia, Tallinn.

Wadler, P. (1992). Monads for functional programming. In M. Bray (Ed.), Proc. Marktoberdoif Summer School
on Programming Design Calculi. Springer-Verlag.

Wegner, P. (1995). ECOOP Tutorial Notes: Models and Paradigms oj Interaction, Tech. Rep. CS-95-21. De
partment of Computer Science, Brown University.

M. Meriste is born in 1950 in Estonia, graduated from Tartu University in 1972 in applied
mathematics, Ph.D in computer science (1984). Currently the head of the Centre of Strate
gic Competence at Tartu University. His scientific interests include attribute methods in
software construction, knowledge representation methods and systems, and telematics in
higher education.

J. Penjam is born in 1955 in Estonia, graduated form Tartu University in 1979 as math
ematician, Candidate of Science (Soviet equivalent of PhD) in computer science (1984).
Currently professor and director of the Institute of Cybernetics at Tallinn Technical Uni
versity. His scientific interests vary from semantics of programs and computational logic
to artificial intelligence, constraint programming and high performance computing, net
works.

V. Vene is born in 1968 in Estonia, graduated from Tartu University in 1994 in computer
science. Currently Ph.D student in the Department of Computer Science at Tartu Uni
versity. His scientific interests are programming language design and implementation,
functional programming, type theory, semantic based program manipulation, category
theory.

Models of Attributed Automata 105

AtributiniQ automatQ modeliai

Merik MERISTE, Jaan PENJAM, Varmo VENE

Atributinis automatas (AA) - tai formalizmas, skirtas specifikuoti koncepcines zinias, naudo
jant reguliari!l sintaks~, papildytll atributais. apraSanciais konteksto slllygotus rysius bei semantines
konceptll savybes. Atributin~ automatll galima traktuoti kaip apibendrinimll baigtinio automato su
atributais ir isskaiciuojamais rysiais. jungiamais ir prie biisenll. ir prie automato perejimll. Straips
nyje pasiiiIytas naujas atributinill automatl\ specifikavimo metodas. Metodas sudarytas. panaudojus
funkcines kombinatorikos idejas. Naudojant s\ metodll. galima moduliarizuoti atributinill automatll
specifikacijas. Metodas pasizymi geromis algebrinemis savybemis ir tinka specifikuoti tvairill riisill
atributinius automatus.

