
INFORMATICA, 1998, Vol. 9, No.1, 65-84
© 1998 Institute of Mathematics and Informatics, Vilnius

Handling Termination in a Logical Language
for Active Rules

Bertram LunA-SCHER, Georg LAUSEN
Institut fUr Informatik Albert-Ludwigs-Universitat Freiburg
Am Flughafen 17, 79110 Freiburg i.Br., Germany
e-mail: lausen@informatik.uni-freiburg.de

Received: January 1988

Abstract. State log is a Datalog extension integrating the declarative semantics of deductive rules
with the possiblity to define updates in the style of active and production rules. The language is
surprisingly simple, yet captures many essential features of active rules. After reviewing the basics
of active rules, production rules, and deductive rules, we elaborate on the problem of handling rule
termination in the context of Statelog: It is undecidable whether a Statelog program terminates
for all databases, and PSPACE-complete for a given database. The latter can be accomplished
within the logical language: for every Statelog program P, there is a terminating program p!
which decides for any given database 'D, whether P U 'D terminates.

Key words: active databases, deductive databases, production rules, termination.

1. Introduction

Motivated by the need for increased expressiveness and the advent of new applications,
rules have become very popular as a paradigm in database programming since the late
eighties (Minker, 1996). Today, there is a plethora of quite different application areas and
semantics for rules. From a bird's-eye view, deductive and active rules may be regarded
as two ends of a spectrum of database rule languages:

Deductive Rules
"higher" level

--stratified, well-
founded Datalog ~

Production Rules

RDLI
procedural Datalog~

A-RDL Arid

Active Rules
"lower" le'l.l~

Starburst Postgres

Fig. 1. Spectrum of database rule languages (adapted from (Widom, 1993».

On the one end of the spectrum, deductive rules provide a concise and elegant rep
resentation of intensionally defined data. Recursive views and static integrity constraints
can be specified in a declarative and uniform way using deductive rules, thereby extending
the query capabilities of traditional relational languages like SQL. Moreover, the seman

tics developed for deductive rules with negation are closely related to languages from the

field of knowledge representation and nonmonotonic reasoning, which substantiates the

66 B. Ludiischer and G. Lausen

claim that deductive rules are rather "high-level" and model a kind of natural reasoning

process. However, deductive rules do not provide enough expressiveness or control to di
rectly support the specification of updates or active behavior. Since updates playa crucial
role even in traditional database applications, numerous approaches have been introduced

to incorporate updates into deductive rules.
In contrast to deductive rules, active rules support (re)active behavior like triggering

of updates as a response to external or internal events. Conceptually, most rule languages
for active database systems (ADBs) are comparatively "low-level" and often allow to ex
ert explicit control on rule execution. While such additional procedural control increases
the expressive power of the language considerably, this is also the reason why the be
havior of active rules is usually much more difficult to understand or predict than the
meaning of deductive rules. Not surprisingly, researchers continue to complain about the
unpredictable behavior of active rules and the lack of a uniform and clear semantics. I

Production rules constitute an intermediate family of languages, which provide fa
cilities to express updates and some aspects of active behavior, yet avoid overly detailed
control features of active rules at the right end of the spectrum.

1.1. Properties of Rules

Although there is a great variety of rule semantics, the following fundamental properties
come up repeatedly and are of practical and theoretical importance.

• Termination is arguably the most crucial property of rule execution. Since rules may
trigger each other recursively, nontermination of active rules is a permanent threat.

• Confluence: A rule set is called confluent if - under the given semantics - there is
at most one final state for a given database and rule program. In genera!, confluence is
a desirable feature since the behavior of rules is easier to grasp if there is a unique final
result.

• The expressive power of a database language is the class of database transformations
expressible in the language, i.e., the class of mappings inst(R) -+ inst(R) between
database instances over a given schema R. While concrete ADBs often exhibit the full
computational power of Turing machines (e.g., via procedure calls to a host language or a
sublanguage), it is still interesting to investigate the impact of certain language constructs
on expressive power.

• The complexity of a set of rules or a rule language measures the computational cost
involved in determining the final result. Since the size of a database usually dominates by
far the size of the program, it is common to consider data complexity, where the size of
the program is fixed, and the size of the input databases varies. Not surprisingly, there is
a trade-off between expressive power and complexity.

In the sequel, we briefly review the basics of active rules, production rules, and de
ductive rules, respectively. We then introduce State log (=States+Datalog), an extension
of Datalog which allows to reconcile the seemingly discordant paradigms of active and

I "The unstructured. unpredictable. and {!ften nondeterministic behavior (If rule processing can become a
nightmare jor the database rule programmer" (Aiken et ai., 1995).

Handling Termination in a Logical Language for Active Rules 67

deductive rules. The language captures many essential features of active rules, yet is sur
prisingly simple; the key idea is to incorporate an explicit notion of state into deductive
rules. Finally, we investigate the problem of termination in the context of Statelog.

2. Active Rules

Active rules are typically expressed as Event-Condition-Action (ECA) rules of the form

on (event) if (condition) then (action).

Whenever the specified event occurs, the rule is triggered and the corresponding action
is executed if the condition is satisfied in the current database state. Rules without the
event part are sometimes called production rules, rules without the condition part are
sometimes referred to as triggers.

2.1. Events

Events can be classified as internal or external. Internal events are caused by database
operations like retrieval or update (insertion, deletion, modification) of tuples, or trans
actional events like commit or abort. In object-oriented systems such internal events may
take place through method invocations. External events occurring outside the database
system may also be declared and have to be monitored by the ADB. Starting from prim
itive (external or internal) events, more complex composite events can be specified using
an event algebra. The following constructors for composite events are frequently used in
active databases (Chakravarthy et al., 1994):

• The disjunction (El I E2) occurs when El or E2 occurs.
• The sequence (El ; E2) occurs when E2 occurs provided EI has already occurred.
• The conjunction (EI , E2) occurs when both EI and E2 occur, irrespective of the

order of occurrence. Thus, (EI , E2) :<=> (El ; E2) I (E2 ; El).
• The simultaneous conjunction (EI&E2) occurs when both El and E2 occur simul

taneously.
• The within evenr2 (E2 E [EI; E3]) occurs whenever E2 occurs within the interval

marked by the occurrences of EI and E3. The cumulative version E2 E* [EI ; E3] occurs
only once when E3 occurs, provided E2 has occurred within [EI; E3].

• The negation (not E2 E [EI; E3]) occurs whenever E3 occurs, provided E2 does
not occur within the interval (EI; E3].

In practice, one often needs parameterized events: For example, a database event
insert-into-R has to supply the attribute values of the tuple which is inserted into
relation R. Similarly, an external event like temperature-exceeds-threshold
may be parameterized with the current value of the temperature and the timestamp when
this value was observed. The parameters supplied by the event may then be referenced in
the rule's condition and action.

2Culled aperiodic event A(El, E2, E3) in (Chakruvarthy et al., 1994) (to contrast it with periodic events).

68 B. Ludascher and G. Lausen

2.1.1. Event Consumption Modes
A question arising from the use of composite events is which of the constituent events
"take part" in the composite event and how they are "consumed" by the composite event.
This event consumption policy is elaborated using so-called parameter contexts, which
were introduced for the SNOOP algebra in (Chakravarthy et al., 1994; Chakravarthy and

Mishra, 1994).

EXAMPLE 1. Consider the composite event E:= «F, G); H), which occurs if H
occurs after both F and G have occurred. Suppose the following event history is given:

G1 F1 Fa H1
I I I I

Here, the Fj's denote several occurrences of the same primitive event F, similarly
for Gk and HI. Using a so-called unrestricted parameter context, there are twelve oc
currences Ei of the composite event E comprising all possible combinations of Fj , G k,

and HI which make E occur, i.e., Ei E Fj X Gk X HI. Thus, constituent events are not
consumed, but are reused arbitrarily many times.

Alternative parameter contexts are motivated by applications where constituent events
should be consumed by the composite event in a certain way. Apart from the unre
stricted context, the following parameter contexts have been proposed (Chakravarthy et
al., 1994):

• Recent: In this context, only the most recent occurrences of constituent events are
used; all previous occurrences are lost. In Example 1, E will be raised twice: for the
constituent events {G2, F3, HI} and for {G2, F3, H2}.

• Chronicle: In this context, events are consumed in their chronological order. In a
sense, this corresponds to a first-in-first-out strategy. In Example 1, E will· be reported
for {G I , F I , HI} and for {F2' G2, H2}.

• Continuous: In this context, each event which may initiate a composite event starts
a new instance of the composite event. A constituent event can be shared by several
simultaneous occurrences of the composite event. In the example, each Gi and each
Fj starts a new instance. Thus, the composite occurrences {GI , F I , HIl, {FI' G2 , HIl,
{F2' G2, H l}, and { G2, F3, HI} are reported. The composite event initiated at F3 is still
to be completed.

• Cumulative: In this context, all occurrences of constituent events are accumulated
until (and consumed when) the composite event is detected. In the example, E is raised
once for the constituent events {GI' FI, F2 , G2 , F3 , HI}.

2.2. Conditions

If the triggering event of an active rule has been detected, the rule becomes eligible, and
the condition part is checked. The condition can be a conventional SQL-like query on the

Handling Termination in a Logical Language for Active Rules 69

current state of the database, or it may include transition conditions, i.e., conditions over
changes in the database state. The possibility to refer to different states or delta relations
is essential in order to allow for active state-changing rules.

2.3. Actions

If the condition of the triggered rule is satisfied, the action is executed. Internal actions are
database updates (insert, delete, modify) and transactional commands (commit, abort),
external actions are executed by procedure calls to application programs and can cause
application-specific actions outside the database system (e.g., send-mail, turn-on-sensor).
Usually, it is necessary to pass parameters between the different parts of ECA-rules, i.e.,
from the triggering event to the condition and to the action part. In logic-based approaches
this can be modeled very naturally using logical variables, while this issue may be more
involved under the intricacies of certain execution models.

2.4. Execution Models

The basic execution model of active rules is similar to the recognize-act cycle of produc
tion rule languages like OPS5: one or more triggered rules (i.e., whose triggering event
and condition are satisfied) are selected and their action is executed. This process is re
peated until some termination condition is reached; for example, when no more rules
can be triggered, or a fixpoint is reached. Clearly, there are a lot of possible choices and
details which have to be elaborated in order to precisely specify the semantics of rule
execution.

One issue is the granularity of rule processing, which specifies when rules are ex
ecuted. This may range from execution at any time during the ADB's operation (finest
granularity), over execution only at statement boundaries, to transaction boundary exe
cution (coarsest granularity). Another important aspect is whether rules are executed in a
tuple-oriented or set-oriented way. Set-oriented execution conforms more closely to the
standard model of querying in relational databases and is, in a sense, more "declarative"
than tuple-oriented execution. In contrast, tuple-oriented execution adds another degree
of nondeterminism to the language, since the outcome may now depend on the order in
which individual rule instances are fired.

Finally, several coupling modes have been proposed, which describe the relationship
between rule processing and database transactions. Under immediate and deferred cou
pling, the triggering event as well as condition evaluation and action execution occur
within the same transaction. In the former case, the action is executed immediately after
the condition has become true, while in the latter case, action execution is deferred to
the end of the current transaction. Under decoupled (sometimes called detached or con
current) execution mode, a separate transaction is spawned for condition evaluation and
action execution. Decoupled execution may be further divided into dependent or inde
pendent decoupled: in the former case, the separate transaction is spawned only after the
original transaction commits, while in the latter case the new transaction is started inde
pendently. In the most sophisticated models, one may even have distinct coupling modes
for event-condition coupling and for condition-action coupling.

70 B. Ludascher and G. Lausen

There are now a number of ADB prototypes which are based on the relational model,
e.g., A-RDL, Ariel, Starburst, or an object-oriented model, e.g., HiPAC, Chimera, ODE
(Fraternali and Tanca, 1995; Lausen et at., 1998).

3. Production Rules

Production rules can be viewed as ECA-rules without the event part. However, production
rules have been around long before the ECA paradigm has been established. For exam
ple, the production rule language OPS5 (Brownston et ai., 1985) has been used in the AI
community since the seventies. From a more abstract point of view, one can regard gen
eral ECA-rules also as production rules since the event detection part can be encoded in
the condition.3 This abstraction is very useful as it allows to apply techniques and results
developed for production rules to active rules.

A characteristic feature of production rule semantics is the forward chaining execu
tion model: The conditions of all rules are matched against the current state. From the
set of triggered rules (candidate set) one rule is selected using some conflict resolution
strategy and the corresponding actions are executed. This process is repeated until there
are no more triggered rules.

Iri the database community, such a forward chaining or fixpoint semantics has been
studied for a number of Datalog variants (see, e.g., (Abiteboul and Vianu, 1991» thereby
providing a logic-oriented formalization of production rules:

Let Dataiog~ denote the class of Datalog programs which allow negated atoms in
rule bodies. The inflationary Datalog~ semantics turns the well-known immediate conse
quence operator Tp developed for (definite) logic programs into an inflationary operator
Tt by keeping all tuples which have been derived before, i.e., Tt(I) := I U Tp(I)
where I is the set of ground atoms derived in the previous round. Starting with a set of
facts I (the inital state), Tt is iterated until a fixpoint (the final state) is reached. Since
the computation is inflationary, deletions cannot be expressed directly. In contrast, Data
log~~ has a noninflationary semantics by allowing negative literals to occur also in the
head of rules and interpreting them as deletions: if a negative literal -, A is derived, a pre
viously inferred atom A is removed from I. If both A and -, A are inferred in the same
round, several options exists: priority may be given either to insertion or to deletion, or a
"no-op" may be executed, using the truth value of A fr!=lm the previous state, or the whole
computation may be aborted (Vianu, 1997). While for inflationary Datalog~ termination
is guaranteed, this is no longer the case of Datalog~~. In fact, it is undecidable whether
a Datalog~~ program reaches a fixpoint for all databases; moreover, confluence is no
longer guaranteed if instead of the presented semantics, a nondeterministic semantics is
used (Abiteboul and Simon, 1991). On the other hand, nondeterminism can be a powerful
programming paradigm which increases the (theoretical and practical) expressiveness of
a language (Abiteboul and Vianu, 1991; Giannotti et ai., 1997).

A problem with these "procedural" Datalog semantics is that the handling of negation
can lead to quite unintuitive results:

3Por efficiency reasons however, the distinction between events and conditions may be crucial in practice.

Handling Termination in a Logical Language for Active Rules

EXAMPLE 2. Under the inflationary semantics, the program

tc(X, Y) +- e(X, V).
tc(X, Y) +- e(X,Z), te(Z, V).
non-te(X,Y) +- ..,te(X,Y).

71

does not compute in non-tc the complement of the transitive closure of a given edge
relation e. The reason is that the last rule is applied "too early", i.e., before the com
putation of the fixpoint for te is completed. Thus, despite the fact that the derivation of
non-te(x,Y) may be invalidated by a subsequent derivation of te(x,y), this unjustified tuple
remains in non-teo

Although the given program may be rewritten using a (somewhat intricate) technique for
delaying rules, a better solution is to use one of the declarative semantics developed for
logic programs whenever the use of negation is important; see Section 4.

ROLl (Kiernan, 1990) is a deductive database language with production rule seman
tics; a rule algebra is used as an additional control mechanism. A-RDL (Simon and Kier
nan, 1996) extends ROL 1 by active database concepts, in particular delta relations and a
module concept.

4. Deductive Rules

The logic programming and deductive databases communities have studied in-depth
the problem of assigning an appropriate semantics to logic programs with negation
like the one above. The stratified, well-founded, and stable semantics (Apt et al.,
1988; Van Gelder, 1989; Gelfond and Lifschitz, 1988) are now generally accepted as
intended and intuitive semantics of logic programs with negation. For stratified programs
like the one in Example 2, all three semantics coincide.4 For non-stratified programs, the
well-founded semantics yields a unique three-valued model, whereas the stable semantics
consists of a (possibly empty) set of two-valued stable models, each of them extending
the well-founded model.

For relational databases, i.e., finite structures, termination and confluence of declara
tive rules can be guaranteed: For example, under the stratified semantics, rules are par
titioned into strata according to the dependencies between defined relations. Thus, the
strata induce a partial order on rules which is used to evaluate programs. Within each
stratum, the rules are fired simultaneously in a set-oriented way. Since the computation
within strata is monotonic, the rules may also be evaluated in arbitrary order and/or tuple
oriented within a stratum without sacrificing confluence. Termination is guaranteed since
it is not possible to add and remove the same fact repeatedly as is the case for Oatalog~~
and noninflationary Oatalog~.

In principle, although Oatalog is primarily a query language, it could be used as a
relational update language, for example by interpreting relations like old_R and new.R

4 A program is stratified if no relation definition negatively depends on itself; thus, there is "no recursion
through negation".

72 B. Ludiischer and G. Lausen

as the old and new values of a relation R, respectively, or by assuming that R', R", etc.
refer to different states of R. However, such an approach has several drawbacks: First, part
of the semantics is encoded into relation names and thus outside of the logical framework.
More importantly, the language does not incorporate the notion of state which is central
to updates and active rules. In particular, only a fixed number of state transitions can be
modeled by "priming" relation names as described above.

A number of deductive database prototypes with declarative semantics exist including
Aditi, LDL, FLORID, Glue-Nail, Coral, LOLA, and XSB-Prolog (Ramamohanarao and
Harland, 1994; Minker, 1996; Sampaio and Paton, 1997).

5. Stateiog

Statelog is a Datalog extension which integrates the declarative semantics of deductive
rules with the possiblity to define updates in the style of production rules and active rules
(Ludascher et ai., 1996; Lausen et al., 1998). Using Statelog as a formal framework,
fundamental properties of active rules like termination, confluence and expressive power
can be studied (Ludascher, 1998). The framework does not account for all facets of active
rules which may be useful in practice (like, e.g., SQL3's before and instead of triggers,
or tuple-level execution), but covers many essential features including immediate and
deferred execution and composite events.

The basic execution model of Statelog is illustrated in Fig. 2: 80 denotes the initial
state of the database and may be queried using local StateIog rules. Triggered by the
occurrence of one or mOre external events, the transaction begins with the transition to
the intermediate state 81. Additional rules can be triggered until the final state Sn+1 is
reached which marks the end oftransaction. Note that only gray states, i.e., the initial
and final state, are materialized and directly accessible to the user; In this model, the state
space (or temporal domain) over which the database evolves is isomorphic to the natural
numbers INo, i.e., a linear time model is used. Other, more general models are possible,
for example branching time or a hierarchical state space (Ludascher et ai., 1996).

5.1. Syntax

In Statelog, access to different database states is accomplished via state terms of the form
[S+k], where S+k denotes the k-fold application of the unary function symbol "+1" to
the state variable S. Since the database evolves over a linear state space, S may only be
bound to some n E INo.

t> E vents <lActions

·. ~BOT ±.6 ±.6 ±.6 ±0 EOT .,~
e~e~ -';(0-+ ..

, Transaction

~--------------------~
Fig. 2. Database evolution: transaction and transitions.

Handling Termination in a Logical Language for Active Rules 73

A State log database D[k] at state k E INo is a finite set of facts of the form
[k] p(XI' ... ,xn) where p is an n-ary relation symbol and Xi are constants from the un
derlying domain. If k = 0, or is understood from the context, we simply write D.

A State log rule r is an expression of the form

where the head H is a Datalog atom, Bi are Datalog literals (atoms A or negated atoms
...,A), and ki E INo. If several literals share the same state term [8+kj, then [8+kj
can be "factored out": e.g., the body [8j B I , [8+1J B2, [8+1] B3 may be abbreviated
as [8] Blo [8+1] B2, B3.

We require that Statelog rules are progressive, since the current state cannot be defined
in terms of future states, nor should it be possible to change past states: A rule r is called
progressive, if ko .~ ki for all i = 1, ... , n. If ko = ki for all i = 1, ... , n, then r is
called local and corresponds to the usual query rules. On the other hand, if ko = 1 and
ki = 0 for all i ~ 1, r is called i-progressive and denotes a transition rule. A Statelog
program is a finite set of progressive Statelog rules.

5.2. Semantics

Every Statelog program P can be viewed as a logic program P*, by defining

([8+k] p(tl,"" tn))* := p(8+k, tl,.'" tn) and extending 0* to literals and rules in
the obvious way. Thus, the declarative semantics developed for deductive rules can be
applied directly to Statelog.

Here, we adopt the state-stratified semantics as the canonical model Mpu1) of a
Statelog program P with database D. P is called state-stratified, if there are no negative
cyclic rule dependencies within a single state (Ludascher et at., 1995). More precisely,
state-stratification is based on the extended dependency graph gp of P. Its nodes are the

rules of P. Given two rule rl, r2 there is an edge (rll~r2) E gp if the relation symbol
in the head of rl occurs positively (negatively) in the body of r2. Here, 1 is the leap of
the corresponding literal in r2. P is state-stratified if gp contains no local cycle C (i.e.,
where I: l.(~) 1 = 0) involving a negative edge. This notion is closely related

(q -+ j'2)EC
to XY-stratification (Zaniolo, 1993) and ELS-stratification (Kemp et al., 1995). Together
with the requirement of progressiveness, state-stratification implies local stratification
(Ludascher, 1998):

Theorem 1. Every progressive state-stratified program P is locally stratified. There

fore. it has a unique peifect model Mpu1) for every database D.

5.3. User-defined vs. System-defined Rules

In the Statelog core language presented above there is no distinction between user-defined
and system-defined rules. However, an active database system should provide the user

74 B. Ludtischer and G. Lausen

with a predefined intuitive programming "environment" which takes care of low-level
aspects of the execution model like transaction control and semantics of primitive update
requests. This is achieved by partitioning the relation schema R into different sets and
providing a set of system-defined rules for certain relations:

R = edb(R) U idb(R) U r>ev(R) U <1act(R) U 8(R) U ctl(R).

Here, edb(R) and idb(R) denote the usual extensionally and intensionally defined rela
tions, respectively. Relations from r> ev(R) represent external events of interest which
are monitored by the system. Consequently, external events can only occur in rule bod
ies. External actions are defined by the relations from <1act(R) and represent requests to
execute certain actions outside the database system. Relations denoting external events
and actions can be viewed as special input and output relations, and are prefixed with the
symbols "r>" and "<1", respectively.

For every base relation p E edb(R) there are delta relations (short: deltas)
del:p, ins:p E 8(R) denoting update requests to delete resp. insert the corresponding
tuples into p. Finally, ctl(R) contains special control relations like BOT, EaT, and abort
for transaction control, and protocol relations insd:p and deld:p (for inserted and deleted)
which store the accumulated net effect of a sequence of updates. The latter can be used to
enforce termination (Section 7), or as an auxiliary store holding all necessary information
to undo the effect of an aborting transaction.

5.3.1. User-defined Rules
To relieve the programmer from handling states explicitly, we require that user-defined
rules are local, so state terms may be omitted. Depending on the relation symbol p in
the head of a user-defined rule, different rule types can be distinguished, in particular
query rules (p E idb(R», update rules (p E 8(R», and control rules (p E ctl(R».
Restricting user programs to local rules results in no loss of expressive power since,
by using delta relations, non-local rules can be simulated by local ones. Particularly,
all transactions expressible in Statelog can be expressed using local and I-progressive
rules only (Ludascher, 1998). If a program only comprises query rules, termination is
guaranteed since the databases never changes. On the other hand, although user-defined
update rules are local - together with the above-mentioned frame rules - they can cause
progressive recursion and thus oscillating update requests (see Example 3 below).

5.3.2. System-defined Rules
If one or more external events r> E(x) occur, the beginning of a transaction is signaled:

[SJ BOT <- [SJ r>E(X).

Frame rules are used to specify the handling of update requests for every edb-relation p:

[S+ljp(X) <- [Sjins:p(X),-.abort.
[S+ljp(X) <- [Sjp(X),-.del:p(X),-.abort.

Thus, updates to base relations are executed immediately in the transition to the suc
cessor state. If a tuple is inserted and deleted at the same time, priority is given to in-

Handling Termination in a Logical Language for Active Rules 75

sertions since the first rule allows to derive p(R). Using a different set of frame rules,
also deferred execution can be modeled; similarly, other conflict resolution policies (e.g.,
priority to deletions) can be easily specified.

Protocol relations insd:p, deld:p E ctl(R) store the accumulated net effect of a se-
quence of a transaction as long as running holds:

[8+1J insd:p(X) +- [8jins:p(X), -,p(X), running. % store net effect ...
[S+1J insd:p(X) +- [SJ insd:p(X), -,del:p(X), running. % ... of insertions

[S+l] deld:p(X) +- [S] del:p(X),p(X), running. % store net effect ...
[S+lJ deld:p(X) +- [S] deld:p(X), -'ins:p(X), running. % ... o/deletions

Whether the current transaction is still running is determined by checking for pending
change requests:

[S] running +- [S] ins:p(X), --, p(X), --, abort.
[SJ running +- [SJ del:p(X),p(X), -, abort.

Finally, if there are no more unprocessed update requests and the transaction is not
aborted, commit is derived:

[S] commit +- [S] BOT, --, running, -, abort.
[S+l] commit +- [S] running, [S+1]-, running, -, abort.

[S+lJ EOT +- [S] commit. % signal end of transaction

If the transaction is aborted, the previous final state is restored by undoing the net effect
of the transaction:

[S+l]p(X) +- [S]abort,deld:p(X). % undo deletions
[S+l] p(X) +- [S] abort,p(X), -'insd:p(X). % undo insertions

[S+l] EOT +- [S] abort. % signal end of transaction

5.4. Composite Events

Various kinds of composite events and consumption modes can be expressed in Statelog,
as shown in (Motakis and Zaniolo, 1995) using the closely related language Datalogls.
Assume, for instance, that we want to detect the composite event

E(X, Y) := (F(X) ; G(Y)),

i.e., F(X) followed by C(Y) for some (external or internal) events F and C. Under an
unrestricted context, this can be expressed by temporal reduction rules (similar to (Lipeck
and Saake, 1987; Chomicki, 1995)):

[S] detdF(X) +- [SJ F(X).
[S+lJ detdF(X) +- [S] detdF(X).
[S+l] detdE(X, Y) +- [S] detdF(X) , [S+1] G(Y).

Auxiliary relations detdR store detected events. If one adds the goal -, F(_) to the sec
ond rule, only the most recent occurrences of F are used, thereby modeling event con
sumption with recent context. On the other hand, under the chronicle context, events are
processed in a first-in-first-out manner, and thus make use of a queue in an essential way.

76 B. Ludiischer and G. Lausen

Therefore, composite events with chronicle contexts are not expressible in pure Statelog

and require appropriate extensions, e.g., timestamping as in (Motakis and Zaniolo, 1995);

see (Ludascher, 1998).

6. Deciding Termination

Recall the basic Statelog execution model depicted in Fig. 2. Given the model Mpuv of

a program P with database 'D, the snapshot Mpuv[n] is the database instance reached

after n transitions.

DEFINITION 1. A Statelog program P terminates/or 'D, if for some no E 1No and all

k ~ 1 we have that Mpuv[no] = Mpuv[no+k]; the least such no is called the final
state. Otherwise, P diverges/or 'D.

P always terminates (diverges), if P terminates (diverges) for all databases 'D, and P
sometimes terminates '(diverges), if it terminates (diverges) for some 'D.

Thus, whether a program terminates always or sometimes is a compile-time property
of the program, independent of the given database. Conversely, for given a database 'D,
the question whether P terminates for 'D is a run-time property of P u 'D.

EXAMPLE 3. Consider the Statelog user program

P: ins:q <- ..., q, p. del:q <- q, p.

where the state term [8] has been omitted. We assume that frame rules for specifying the
meaning of deltas have been added to P. Clearly, P diverges for 'D[O] = {[OJ p}, since q

is repeatedly inserted and deleted. If'D[O] = 0, then P terminates for 'D, since the rules
with p in the body are not applicable.

6.1. Compile-time Termination

It is well-known that satisfiablity and validity of first-order sentences over finite struc
tures, (i.e., relational databases) is undecidable (Trakhtenbrot's Theorem (Trakhtenbrot,

1950)5). This implies that most non-trivial compile-time properties become undecidable

in languages which allow to encode first-order sentences like, e.g., stratified Datalog. As

a consequence, if a language allows to define possibly nonterminating updates which de

pend on first-order conditions, termination at compile-time becomes undecidable. Thus,

the following theorem not only holds for Statelog but for all such languages, in particular
XY-Datalog and (noninflationary) Datalog~~:

Theorem 2. Given a State log program P, it is undecidable whether P sometimes
(always) terminates.

5For a recent reference see, e.g., (Ebbinghaus and Flum, 1995).

Handling Termination in a Logical Language for Active Rules 77

Proof (Sketch). Every first-order sentence <p can be translated into an equivalent
stratified Datalog program PI{) with a distinguished answer relations ansI{)' S.t. in the
stratified model Mp",uv 1= ansI{) iff V 1= <po Consider the Statelog program P~ :=

PI{) U { [S+l] q +- [S]...., q,"'" ansI{) }. Clearly, P~ terminates for V iff Mp",uv 1= ansI{)'
which in turn holds iff V 1= <po Thus, P~ sometimes (always) terminates iff <p is satisfiable
(valid) in the finite, which is undecidable by Trakhtenbrot's Theorem.

A similar result for Datalog~~ has been presented in (Abiteboul and Simon, 1991)6
using a reduction from the undecidable FD-implication problem (basically, decide
whether for all databases V, a functional dependency on some edb-relation implies a
functional dependency on some idb-relation).

Note that also negation-free programs may diverge. A simple example is the program

[S+11 p <- [SI q. [S+11 q <- [SI p.

which oscillates between the states {p} and {q} given the database V = {[O] p}. Interest
ingly, for negation-free programs the problem becomes decidable, which follows from a
result in (Chomicki, 1995) on universal safety for Datalogns.

6.2. Run-time Termination

In Statelog it is easy to check for the occurrence of a fixpoint, and thus to detect termi
nation when it occurs: We only have to check whether the current state and the previous
state differ - if they are the same, a fixpoint has been reached (provided rules are in nor
malform, i.e., either local or I-progressive). For a Statelog program P over the schema
P, we can use the following rules for all pEP:

[S+l]p-l(X) <- [S]p(X).
[SI change <- [SI p-l(X), -,p(X).
[SI change <- [S] p(X), -'p-l(X).
[SI fixpoint <- [SI-,change.

Consider the converse situation: Is it possible to detect within the language that P does
not terminate for V? Interestingly, this is indeed the case: for every Statelog program P
there is a transaction equivalent program pL which always terminates. Notice that this
does not contradict Theorem 2, since pL solves the problem only for a given database V,
i.e., at run-time.

The proof for the following theorem (Ludascher, 1998) is based on the idea of simulta
neously evaluating P and a delayed version of P. This idea has been applied earlier in the
context of Datalog~~ under the name loop-free simulation (Abiteboul and Simon, 1991),
and for partial fixpoint logic in (Ebbinghaus and Flum, 1995). As a generic notation, we
write Mpuv[$] to denote the final database state if P terminates for V; otherwise we
agree to set Mpuv[$] := 0.

6In (Abiteboul and Simon, 1991), the name Datalog~· is used for Datalog~~.

78 B. Ludiischer and G. Lausen

Theorem 3. For every State log program P with schema P there is a transaction

equivalent program pl which always terminates. In particular, one can define relations
terminates and diverges in pl such that for all databases V:

MpLuv[$] 1= terminates {:} Mpuv terminates for V,
MpLuv[$] 1= diverges {:} Mpuv does not terminate for V.

Moreover, for all pEP one can define relations Pt, PI, Pu in pi such that

MpLuv[$] 1= Pt(:x) {:} 3noVn 2 no : Mpuv 1= [n] p(x),
MpLuv[$] 1= PI(x) {:} 3noVn 2 no : Mpuv 1= [n]-,p(x),
MpLuv[$] 1= Pu(x) {:} Vno3n, m 2 no: Mpuv 1= [n]p(x), [m]-,p(x).

Thus pl allows to "speak" about (non)tennination of P u V. In the case of non
tennination, the relations Pt, Pu, and PI can be used to detennine the atoms which are
eventually true in every, in some (but not every), or in no state, respectively.

The proof of Theorem 3 provides a theoretical construction to decide within Statelog
whether a program P tenninates for V. Therefore, it is possible to program compensating
reactions in response to nontenninating rules: The simplest strategy is to restore the old
database state before the update. The infonnation which tuples are oscillating between
true and false (those in Pu), or which are always true (those in Pt) can be useful in
implementing more elaborated strategies. However, since Statelog transactions have the
same expressive power as partial fixpoint logic (or, equivalently the language WHILE

(Abiteboul et al., 1995», one can show (Ludascher, 1998):

Theorem 4. Given a State log program P and a database V, deciding whether P
terminates for V is PSPACE-complete.

Therefore, run-time detection can be infeasible for general Statelog programs. In
the next section an approach for enforcing tennination is presented, which also yields
a tractable class of tenninating State10g programs.

7. Enforcing Termination

In State10g two kinds of recursion can be distinguished:
• Local recursion, (Le., involving locally recursive rules) describes the recursion

within a state [n], and captures the static "deductive" aspect of the language. It does
not lead to nontennination in the case of Statelog, because the language is restricted to
finite structures. In contrast,

• progressive recursion (i.e., involving progressively recursive rules) is the effect of
recursive rule triggering across different states. Even for finite structures, progressive
recursion may lead to nontenninating execution due to oscillating update requests.

Handling Termination in a Logical Language for Active Rules 79

For example, the local rules of Example 3 together with the corresponding frame
rules are progressively recursive and lead to an oscillation of q. Therefore, the basic idea
to enforce rule termination is to restrict progressive recursion such that oscillation· is
avoided.

7.1. Guarded Rules

Guarded rules are one possiblity, where user-defined update rules are "guarded" by a
positive goal of the form l>e(X):7

DEFINITION 2. A Statelog rule is called guarded, if some external event l>e(X) oc
curs positively in the body. A Statelog user program is guarded, if every update rule (Le.,
with ins:p, or del:p in the head) is guarded.

According to the execution model in Fig. 2, external events only occur once at the
beginning of transaction, so guarded rules are only applicable in the first transition of
a transaction and can be neglected in the termination analysis. In particular, if a user
program P is guarded, this implies that progressive recursion is bounded and therefore
termination of P is guaranteed. Many basic updates can be expressed in a concise and
intuitive way using guarded rules:

EXAMPLE 4. Updates in the style of SQL like the insertion of individual tuples, the
deletion of all tuples satisfying a certain condition cp, and the unrestricted. deletion of all
tuples of a base relation p can be expressed as follows:

ins:p(X) +- c>inserUnto...,p(X).
del:p(X) +- I>delete_from...,p(X), p(X), cp(X).
del:p(X) +- I>discard...,p,p(X).

The following rules swap the contents of two relations p and q of the same arity, whenever
c>swap_p_q occurs:

del:p(X),ins:q(X) +- c>swap...,p~q,p(X).
del:q(X), ins:p(X) +- c>swap...,p_q, q(X).

Here, we have to use frame rules for p and q which ignore conflicting insertions and
deletions, i.e., yield a "no-op" in case of conflict.

7.2. 6.-monotonic Rules

A common idea to guarantee the existence of a fixpoint and at the same time to obtain a
tractable language is to consider an inflationary semantics. However, such an inflationary
Statelog variant is not useful as an update language since deletions cannot be expressed.
The underlying idea of 6.-monotonic Statelog is to allow both insertions and deletions
(hence, the database evolution is not inflationary in general), but to ensure that the deltas

7The idea of guarded Statelog rules was presented earlier in (Lausen and Ludiischer. 1994).

80 B. Ludiischer and G. Lausell

change monotonically, thereby preventing oscillation.8 In this case, rules can trigger each
other recursively across different states as long as ~-monotonicity is obeyed. Thus, pro
gressive recursion is not bounded like for guarded rules, resulting in a more expressive
class of programs. ~-monotonicity can be achieved at several levels of granularity:

7.2.1. Compile-time ~-monotonicity
The coarsest granularity is to ensure by the following compile-time check that every
relation updated by a program is either increasing or decreasing:

DEFINITION 3. A Statelog user program P is compile-time ~-monotonic if for every
p E edb(P): (ins:p(...) f- •••) E P :::} (del:p(...) f- •.•) ~ P.

Therefore, for every edb-relation p of P, ins:p and del:p may not both be defined
in P, so it is determined at compile-time that every edb-relation is either monotonically
non-decreasing or non-increasing.

Notice that we tacitly assume that frame rules (as presented above) are used to prop
agate unchanged tuples through the transaction in the extended framework. Indeed, this
requirement is crucial as can be seen from the user program P := {ins:p f- ..., P }. P
is ~-monotonic and terminates since the inserted fact p is propagated by frame rules.
However, if a system-defined frame rule like

[8+1] P <- [8] p, -,del:p.

were not given, then p would oscillate between true and false: if -, P holds in [n], then
ins:p is derived, so [n+l] p holds. Thus, -,p is false in [n+l], preventing the derivation
of [n+1] ins:p. Therefore, p becomes false again at [n+2] (since there is no frame rule for
p), etc.

7.2.2. Run-time ~-monotonicity
Instead of restricting to programs which define either insertions or deletions, one can
obtain a more flexible class by allowing both types of updates and checking for ~
monotonicity at run-time. The price to pay is that it cannot be guaranteed in advance
that rule execution is ~-monotonic. Instead, if ~-monotonicity is violated, the current
transaction has to be aborted at run-time. Thus, although it is unknown at compile-time
whether the program is ~-monotonic, at least the program is guaranteed to terminatey -
if necessary via a transaction abort. At run-time, ~-monotonicity can be checked at the
level of relations, or at the level of individual tuples:

We say that a Statelog user program P is run-time ~-monotonic at the relation level,
if for every p E edb(P) it contains the rules:

[8+1] inc:p <- [8] ins:p(X), -,p(X).
[8+1] dec:p <- [8] del:p(X),p(X).

[8+1] inc:p <- [8] inc:p, -, EDT.
[8+1] dec:p <- [8] dec:p, -, EDT.

[8] abort <- [8] inc:p, dec:p.

8 A preliminary definition of essentially the same idea can be found in (Ludascher et al., 1995).

Handling Termination in a Logical Language for Active Rules 81

The first pair of rules check whether p is increasing or decreasing. This information is
propagated by the second pair of rules until the end of transaction. If at some point it is
detected that both, a request to insert into and to delete from p have occurred, the last rule
initiates a transaction abort.

In order to check Ll-monotonicity at the tuple level, we can make use of the protocol
relations insd:p and deld:p defined above. This yields a more precise approximation for
enforcing termination by preventing oscillation of tuples. A Statelog user program P is
called run-time Ll-monotonic at the tuple level, if it contains the rules

[Sj abort +- [Sj insd:p(X), del:p(X).
[Sj abort +- [Sj deld:p(X), ins:p(X).

for every p E edb(P). The first rule checks whether a previously inserted tuple p(x) is
now requested for deletion; the second rule checks the dual case. Observe that these rules
allow simultaneous insertion and deletion on the same relation p within a transaction, as
long as the sets of complementary update requests are disjoint.

EXAMPLE 5. Efficient access to intensional relations like te in Example 2 is obtained
by materializing te in some edb-relation, say mte, thereby avoiding the need to compute
te on demand:

rl: del:mte(X,Y) +-I>diseard_mte, mte(X,Y).

r2: ins:mte(X,Y) +-I>materialize_mte, e(X,Y).
r3: ins:mte(X,Y) +-e(X,Z), mtc(Z,Y), ...,mtc(X,Y).

Tl empties the materialized view upon the occurrence of an external event I>discard_mte,
whereas T2 and T3 materialize the view when I>materialize_mteoccurs. Ifl>materialize_mte
occurs in a separate transaction after I>diseard_mte has occurred, run-time Ll-monotonicity
is satisfied: the first transaction only deletes from the materialized view, and the second
only inserts into it. In contrast, run-time Ll-monotonicity is violated, if both events occur
simultaneously (although, in this example, the rules would terminate).

The common idea of the different Ll-monotonic Statelog variants is to prevent oscilla
tion of tuples, from which termination follows. As a "side-effect" Ll-monotonic programs
can also be evaluated more efficiently than general Statelog programs: Guarded and Ll
monotonic programs always terminate within PTIME (Ludascher, 1998).

8. Conclusions

Statelog provides a logical framework integrating deductive rules, production rules, and
many essential features of active rules. Some features like chronicle contexts of compos
ite events cannot be expressed directly, but require certain extensions like event queues or
timestamping. Also, low-level procedural constructs like before and instead of triggers,
which do not lend themselves to a logical semantics, are not covered. Using the Statelog
framework, formal properties of active rules, e.g., termination, complexity, and expres
sive power can be studied (Lausen et al., 1998; Ludascher, 1998). Here, we elaborated

82 B. Ludiischer and G. Lausen

on the problem of handling rule termination: Not surprisingly, termination is undecidable

at compile-time. At run-time, deciding termination is PSPACE-complete and can be ac
complished within the language. Guarded and A-monotonic rules constitute an efficient
(PTIME-Computable) class of terminating programs.

It should be noted that the basic ideas of Statelog are orthogonal to the underlying data
model and, thus, are not restricted to relational databases. Indeed, Statelog ideas have
been used in (May et al., 1997; May et al., 1997) to extend the deductive object-oriented
database language F-Iogic (Kifer et al., 1995) by states.

References

Abiteboul S., R. Hull and V. Vianu (1995). Foundations of Databases. Addison Wesley.
Abiteboul S., and E. Simon (1991). Fundamental properties of deterministic and nondeterministic extensions

of data1og. Theoretical Computer Science, 78(1), 137-158.
Abitebou1 S., and V. Vianu (1991). Datalog extensions for database queries and updates. Journall!fCompllfer

and System Sciences, 43(1), 62-124.
Aiken A., 1. Widom and 1. M. Hellerstein (1995). Static analysis techniques for predicting the behavior of

active database rules. ACM Transactions on Database Systems (TODS), 20(1),3-41.
Apt K.R., H. Blair and A. Walker (1988). Towards a theory of declarative knowledge. In 1. Minker (Ed.),

Foundations I!f Deductive Databases and Logic Programming. Morgan Kaufmann. pp. 89-148.
Brownston L., R. Farrel, E. Kant, and N. Martin (1985). Programming Expert Systemf ill OPS5: An Introductioll

10 Rule-Based Programming. Addison-Wesley.
Chakravarthy S., V. Krishnaprasad, E. Anwar, and S.-K. Kim (1994). Composite events for active databases:

semantics., contexts and detection. In 1. B. Bocca, M.1arke, and C. Zaniolo (Eds.), Proc. Inti. Conference OIl

Very Large Data Bases (VLDB), Santiago de Chile. pp. 606-617.
Chakravarthy S., and D. Mishra (1994). Snoop: An expressive event specification language for active databases.

Data & Knowledge Engineering, 14, 1-26.
Chomicki J. (1995). Depth-bounded bottom-up evaluation of logic programs. Journal I!f'Logic Programming,

25(1), 1-31.
Chomicki 1. (1995). Efficient checking of temporal integrity constraints using bounded history encoding. ACM

Transactions on Database Systems (TODS), 20(2), 149-186.
Ebbinghaus H.-D., and J. Flum (1995). Finite Model Theory. Perspectives in Mathematical Logic. Springer.
Fratemali P., and L. Tanca (1995). A structured approach for the definition of the semantics of active databases.

ACM Transactions on Database Systems (TODS), 20(4), 414-471.
Gelfond M., and V. Lifschitz (1988). The stable model semantics for logic programming. In R. Kowalski and

K. Bowen (Eds,), Proc. Intl. Conference on Logic Programming (ICLP). pp. 1070-1080.
Geppert A., and M. Berndtsson (Eds.) (1997). In Pmc. I!fthe 3nd IntI. Workshop on Rules ill Database Systems

(RIDS), 1312 in LNCS. Sk6vde, Sweden.
Giannotti F., S. Greco, D. Sacca and C. Zaniolo (1997). Programming with non-determinism in deductive

databases. Annals l!f Mathematics and Artijiciallntelligence, 19(1-11),97-125.
Kemp D.B., K. Ramamohanarao and P. J. Stuckey (1995). ELS programs and the efficient evaluation of non

stratified programs by transformation to ELS. In Ling et al. (Eds), Proc. Illtl. Conference on Deductive and
Object-Oriented Databases (DOOD), 1013 in LNCS. Singapore. pp. 91-108.

Kiernan G., C. de Maindreville and E. Simon (1990). Making deductive database a practical technology: a step
forward. In Proc. ACM IntI. Conference on Management I!f'Data (SIGMOD). pp. 237-246.

Kifer M., G. Lausen, and 1. Wu (1995). Logical foundations of object-oriented and frame-based languages.
Journal of the ACM, 42(4),741-843.

Lausen G., and B. Ludiischer (1994). Updates by reasoning about states. In 1. Eder and L. Kalinichenko (Eds.),
2nd Inti. East-West Database Workshop. Workshops in Computing. Klagenfurt. pp. 17-30.

Lausen G., B. Ludiischer and W. May (1998). On logical foundations of active rules. In 1. Chomicki and
G. Saake (Eds.), Logics for Databases and In/ormation Systems, 12. Kluwer Academic Publishers (to ap
pear).

Handling Termination in a Logical Language for Active Rules 83

Ling T.W., A.O. Mendelzon and L. Vieille (Eds.) (1995). In Proc. Inti. Co'!ference on Deductive and Object
Oriented Databases (DOOD), 1013 in LNCS. Singapore.

Lipeck U.w., and G. Saake (1987). Monitoring dynamic integrity constraints based on temporal logic. I'!for
mation Systems, 255-269.

Ludascher B. (1998). Integration llf Active and Deductive Database Rules. PhD thesis, Institut fiir Informatik,
Universitat Freiburg (to appear).

Ludascher B., U. Hamann and G. Lausen (1995). A logical framework for active rules. In Proc. 7th Inti.
Co'!ference on Management llfData (COMAD). Tata McGraw-Hili, Pune, India. pp. 221-238.

Ludiischer B., W. May and G. Lausen (1996). Nested transactions in a logical language for active rules. In
Pedreschi and Zaniolo (Eds.), Proc. Inti. Workshop on Logic in Databases (LID), 1154 in LNCS. Springer,
San Miniato, Italy. pp. 196-222.

May w., B. Ludiischer and G. Lausen (1997). Well-founded semantics for deductive object-oriented database
languages. In F. Bry, K. Ramamohanarao and R. Ramakrishnan (Eds.), Proc. Inti. Co'!ference on Deductive
and Object-Oriented Databases (DOOD), 1341 in LNCS. Montreux, Switzerland, Springer. pp. 320-336.

May w., C. Schlepphorst and G. Lausen (1997). Integrating dynamic aspects into deductive object-oriented
databases. In Geppert and Berndtsson (Eds.), Proc. of the 3nd Inti. Workshop on Rules in Database Systems
(RIDS), 1312 in LNCS. Sk6vde, Sweden.

Minker J. (1996). Logic and databases: a 20 year retrospective. In D. Pedreschi and C. Zaniolo (Eds.), Proc.
IntI. Workshop on Logic in Databases (LID), 1154 in LNCS. Springer, San Miniato, Italy. pp. 3-57.

Motakis I., and C. Zaniolo (1995). Composite temporal events in active database rules: A logic-oriented ap
proach. In Ling et aI. (Eds.), Proc. Inti. Col!ference on Deductive and Object-Oriented Databases (DOOD),
1013 in LNCS. Singapore. pp. 19-37

Paton N.W., and M.H. Williams (Eds.) (1993). Proc. lifthe 1st Inti. Workshop on Rules in Database Systems
(RIDS), Workshops in Computing. Springer, Edinburgh, Scotland.

Pedreschi D., and C. Zaniolo (Eds.) (1996). Proc.1ntl. Workshop on Logic in Databases (LID), 1154 in LNCS.
San Miniato, Italy, Springer.

Ramamohanarao K., and J. Harland (1994). An introduction to deductive database languages and systems. The
VLDB Journal, 3(2), 107-122.

Sampaio P., and N. Paton (1997). Deductive object-oriented database systems: A survey. In Geppert and
Berndtsson (Eds.), Proc. lifthe 3nd Inti. Workshop on Rules in Database Systems (RIDS), 1312 in LNCS.
Sk6vde, Sweden. pp. 1-19.

Simon E., and J. Kiernan (1996). The a-rdl system. In J. Widom and S. Ceri (Eds.), Active Database Systems:
Triggers and Rules for Advanced Database Processing,S, 111-149.

Trakhtenbrot B.A. (1950). Impossibility of an algorithm for the decision problem in finite classes. Doklady
Akad. Nauk. SSSR, 70, 569-572.

Van Gelder A. (1989). The alternating fixpoint oflogic programs with negation. In Proc. ACM Symposium on
Principles l!f Database Systems (PODS). pp. 1-10.

Vianu V. (1997). Rule-based languages. Annals lif Mathematics and Artificial Intelligence, 19(1-11), 215-259.
Widom 1. (1993). Deductive and active databases: Two paradigms or ends of a spectrum. In Paton and Williams

(Eds.), Proc. l!f the 1st IntI. Workshop on Rules in Database Systems (RIDS). Workshops in Computing.
Springer, Edinburgh, Scotland.

Zaniolo G. (1993). A unified semantics for active and deductive databases. In Paton and Williams (Eds.),
Proc. lif the I,vt Inti. Workshop on Rules in Database Systems (RIDS). Workshops in Computing. Springer,
Edinburgh, Scotland. pp. 271-287.

B. Ludascher has received his Diploma in Informatics from the University of Karl
sruhe in 1993. Since then he has been a member of the database group headed by
Prof. Dr. G. Lausen; first at the University of Mannheim, now at the University of
Freiburg, where he has just completed his PhD thesis on the integration of active and
deductive database rules. His research interests include rules in databases (active, deduc
tive, object-oriented), logic programming, database theory, and Web query languages.

84 B. Ludiischer and G. Lausen

G. Lansen is head of the research group on Databases and Information Systems at the

Albert-Ludwigs~University of Freiburg. He received a Diploma in Industrial Engineering,
majoring in Computer Science/Operations Research, in 1978, his Ph.D. in 1982, and his
Habilitation (Angewandte Informatik) in 1985 from the University of Karlsruhe. From
1986 to 1987 he was associate professor for Information Technology and its Integration
Problems at the Technical University of Darmstadt. From 1987 to 1994 he was professor
for Databases and Information Systems at the University of Mannheim and since 1994 at
the University of Freiburg.

Georg Lausen has broad research interests in the areas of databases and information
systems. His current work focusses on object-oriented and deductive databases, active
databases, workflow modelling and analysis, and rule-based mining of the web.

Programq, parasytq Iogine kalba sn aktyviomis taisyklemis,
baigtinnmas

Bertram LUDAsCHER, Georg LAUSEN

Statelog - tai praplesta Datalog kalba. Prapleciant Datalog kalb!\, dedukcinil.\ taisyklil.\
deklaratyvioji semantika buvo papildyta priemonemis, leidzianciomis specifikuoti bazil.\ atnau
jinim!\ panasiu budu, kaip tai daroma naudojant aktyvillsias taisykles ar produkcij4 taisykles. Nors
kalba labai paprasta, ji turi daugeli svarbiausi4i1.\ aktyvi4i1.\ taisyklil.\ formalizml.\ savybill. Straip
snyje apzvelgiami svarbiausieji aktyvilijl.\ taisyklill, produkcij4 taisyklil.\ ir dedukcinil.\ taisykli4
ypatumai, ir, Statelog kalbos kontekste, nagrinejama taisykles baigtinumo problema. Problema, ar
Statelog programa baigs darbll, visl.\ duomen4 bazill atvejui neissprendziama. Konkrecios duomeml
bazes atveju problema yra PSPACE-sudetingumo. Tai reiskia, kad bet kuriai Statelog programai
egzistuoja baigianti darbll programa, kuri bet kuriai konkreciai duomenll bazei gali nustatyti, ar
dirbdama su ja Statelog programa baigs darbll.

