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Abstract. In this paper we examine data dependence in a nested loop programs which are obtained 
by inserting one loop program into another. This is viewed as the composition of structural modules 
(S-modules) in the structural blanks (SB) approach. SB is a method for expressing computations 
based on recurrence relations. It is built on top of traditional programming languages like Fortran 
or Pascal. SB aims at supporting the transformational development and reuse of program modules 
that have complex data dependence patterns and provides an architectural framework for software 
packages. 
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1. Introduction 

The structural blanks (SB) approach was developed to express solutions to mutually de­

pendent recurrences in the form of reusable program components defining loops over 

arrays. In this paper we investigate the composition ofloop programs. Thus we aim at the 

development of the SB approach as it was presented by Cyras and Haveraaen (1995). 

The problem of synthesizing a right sequence of array element updates in order to 

compute a set of mutually dependent recurrences was formulated by Lyubimskii as early 

as in 1958 (published in 1960), and later on investigated by Zadykhailo (1963). The 

organisation of computations for linear recurrences over multidimensional arrays was 

studied by Karp, Miller and Winograd (1967) independently of the earlier research. The 
foundations of data dependence in loops are presented in literature about compilers for 
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parallel computing, e.g., Banerjee (1993), Wolfe (1996), etc. SB is also related to the 

Algorithmic Skeletons approach proposed by Cole (1989). 
The SB approach distinguishes between structural components (S-modules) and func­

tional components (F-modules). It is well suited to define mutually dependent recurrences 
(4), and F- and S-modules derived directly from such recurrences are called elementary 
F- and S-modules. Each module contains a data dependence part and a procedure part. 
The S-module describes the data dependences, the set of initial elements and the set of 
output elements, and in the S-procedure it defines a driver algorithm for recurrences with 
this dependence structure. Conceptually the SB technology can be built on top of any 
existing programming language. SB provides a framework for defining data dependences 
explicitly when writing procedures, and taking these data dependences into account when 
combining modules into larger programs. 

The structural blanks approach and the composition of loop programs was first pre­
sented by Cyras (1983), then by Greshnev, Lyubimskii and Cyras (1985). The approach 
was inspired by the computation of finite difference solutions of partial differential equa­
tions (PDE), where driver routines for sets of mutually dependent recurrences were 
needed. One of the aims was to develop a framework where the correctness of the driver 
routine need only be proved once, while the scheduling it defines may be reused for dif­
ferent problems with the same basic dependence structures. The solution to this was to 
define driver routines (S-modules) based on the structure of the recurrence, and requiring 
that the routines (F-modules) for solving each recurrence included a declaration of its 
dependence structure. The driver routine could then be applied to all recurrences with a 
compatible structure. Compatibility was shown by exhibiting an injective function from 
the S-module to the global arrays underlying the F-modules. 

This paper is structured as follows. First, we discuss some basic properties of re­
currences. Second, the structural blanks approach is presented and the application of an 
S-module to F-modules is explained. Third, the nested application of S-modules to an 
F-module is examined. 

2. Motivation 

An order k linearly dependent recurrence r with the natural numbers as index domain is 
a relation defined by a set of equations 

rn = ¢(rn-l, rn-2,.·., rn-k), n ~ k, 
rk-l = Ck-l, 

ro = co, 

(1) 

where the indices are natural numbers, ¢ is a k-ary expression, k ~ 0 not referring to r, 
and the Ci, representing initial values, are expressions not referring to r. The choice of 
ro, ... ,rk-l as initial elements is arbitrary. The archetypical second order recurrence 
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Fig. I. Data dependence graph of a second order one·dimensional recurrence, such as the Fibonacci function. 
The numbers in circles label the two arcs from a node. The nodes are enumerated by the plain numbers un· 
derneath them. The dependence of one step is a pair ({ n - 1, n - 2} -v-+ {n}). The dependence of the whole 
computation is a pair of index sets ({D, I} -v-+ {2, 3, 4, ... , N}). 

relation is the Fibonacci function Fn = Fn- l + Fn-2, where Fl = 1 and Fo = 0, 
defining the sequence 0, 1, 1, 2, 3, 5, 8, 13, .... The dependence pattern of this function 

is iIIustrated in Fig. 1. 

A straight forward method to compute all values ro, rl, ... , r n is as follows. The array 
should be declared R[O:nj, and the computations be 

R[j] :=¢ (R[j-1], R[j-2j, ... , R[j-kJ), (2) 

where R[j j will then contain r j for ° ~ j ~ n. Other result sets may also be defined, and 
have to be mirrored in the declaration and use of the array R. 

Recurrences may be generalized to arbitrary index domains. Given a sufficient set of 

initial values Cil, ... ,i",, the m-dimensional order k general recurrence has the form 

(3) 

where the m-ary functions 8i , each returning an m-tuple of indices, have to be well 
founded with respect to the set of initial values. Since the 8i have a more complex re­
lationship than the linear dependence in (1), it is impossible to give a general algorithm 

for computing rn1, ... ,n",. Moreover, finding such an algorithm for a given set of 8i may be 
difficult. But the structure of the algorithm to compute the recurrence is dependent only 

on the 8i , the data dependence pattern of the recurrence, and is independent of the actual 
</>, known as the computational aspect of the recurrence. The data dependence of (3) will 

be represented as a pair of index sets 

Sometimes we will be working with a set of recurrences, all mutually dependent on 
each other. A set o/mutually dependent recurrences is a set of f recurrences rl, ... ,rt , 
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the recurrence ri being of dimensionality mi and order ki' of the form 

(4) 

together with a suitable set of initial values. Here ij,q E {I, ... , n, and OJ,q is an mrary 
function returning an mij,'l-tuple of indices. Without loss of generality we can assume 
that all the dimensionalities are equal: ml = ... = m£ = m. 

3. Structural Blanks 

The SB approach distinguishes between structural components (S-modules) and jimc­
tiona I components (F-modules). An F-procedure defines the algorithm to compute one 
step of one recurrence expression r j of (4), and the containing F-module describes the 
data dependences of this step. An S-module is applied to a collection of F-modules by 
matching the dependences of the F-modules with those of the S-module as defined by a 
substitution B on the S-module. The application produces a new F-module containing an 
algorithm to compute the full recurrence. 

In the case of an order k linear recurrence (1) an elementary structural module would 
capture the computational idea of (2) by 

S-module LDEP ( Fmod <p(integer); k, N : integer) == 
formal x: array[*) 

internal-template 
( var q: integer; (x[t), t=q-k .. q-1) ""+ x[q) ) 

external-template 
(x[t), t=O .. k-1) ""+ (x[t), t=k .. N) 

procedure 

end 

var q: integer; 
for q := k to N do 

call <p(q) 

(5) 

This is to be interpreted as: given a one-dimensional (one argument in the declaration 
of formal F-module <p) order k recurrence over the array x (as declared in the internal 
template), the S-module defines a procedure that will invoke <P to compute all elements 
x[kJ, ... , x[N) given that x[O), ... , x[k-1) are defined (external template). The set of array 
elements to the left of the "-" (gives) in the external template is the set of initial elements, 
and the set to the right is the set of output elements. The parameters to the formal F­
module <1> range over the index domain of the recurrence. The formal array x will be 
part of the environment for the argument F-module "<1>". The S-module only needs size 



Data Dependence in Nested Loops 25 

information for the formal array x since it is only used in the templates to declare the 
dependences. The parameters - formal arrays - of the S-module are not parameters in the 
traditional sense, but they will be matched by the substitution rules. The data dependence 
graph of the computation organized by the S-module LDEP when k = 2 is shown in 
Fig. 1, where square nodes mean that the nodes here have initial values, while the disc 
nodes represent nodes that will be computed. 

The elementary functional module giving the computational aspect of each step of the 
Fibonacci function is 

F-module FIBSTEP (q: integer) == 
global X: array[*] of integer 

template X[q-1], X[q-2] "'" X[q] 
procedure X[q]:= X[q-1] + X[q-2] 

end 

(6) 

This is to be interpreted as: FIBSTEP contains a one-dimensional (index domain pa­
rameter q) second order recurrence expression over the array X (as as can be seen from 
the template). The size of the array X is not declared in the F-module, but it will be de­
clared in the program unit that uses the modules. The base type of X is declared since 
the operations on the elements require this knowledge. We view X as being declared in a 
global external environment with respect to FIBSTEP (6). 

To be able to use FIBSTEP to compute the Fibonacci function, we need a driver pro­
cedure that will schedule the computations of its F-procedure. Driver procedures are part 
of the S-modules, and are applicable if the internal template of the S-module matches 
the template of the F-module. This occurs when the dependence pattern Lin""" Lout of 
the S-module's corresponding internal template is equal to the pattern Fin""" F out of the 
F-module's template. In our example we obtain an equality by substituting 

(7) 

Calling the substitution (7) for S, we denote the application by 

FIB = LDEPis(FIBSTEP). 

The actual parameter FIBSTEP indicates that the internal template's pattern <.P in 
LDEP should match that of FIBSTEP. The actual application is defined by the use of 
the substitution .S, and this substitution must be compatible with the argument of the 
application. 

Unfolding the application above we get a new F-module 

F-module FIB ( N : integer) == 
global X: array[*] of integer 

template X[O], X[1] "'" X[2 .. N] 
procedure 

var q: integer; 
for q := 2 to N do 

X[q]:= X[q-1] + X[q-2] 
end 
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The resulting F-module FIB is not an elementary one. The template of FIB specifies 

that X contains Fibonacci numbers numbered from 0 to N, where X[2 .. N] are regarded as 
output,based on the initial values of X[Oj and X[1j. 

3.1. The F-module 

An elementary F-module defines the dependence pattern and the computational aspect 
of a step of the recurrence equation. When programming recurrences using the SB ap­
proach, the set of mutually dependent recurrence relations (4) is taken as starting point. 
Global arrays Xl, ... , Xix with the corresponding dimensions are declared for each of the 
recurrences rl, ... , r£, and an F-module Fj has to be declared for each of the recurrence 

equations <Pj of the set. 
The basic form of the F-module referring to one recurrence in the set of mutually 

dependent recurrences (4) is 

F·module FNAME ( nl, n2, ... , nm : integer) == 
global Xl: array[*, ... ,*j of <typel>; 

X2 : array[*, ... ,*J of <type2>; 

XiX: array[*,. .. ,*j of <typeix > 

template 
Fin"'" Fout 

procedure 
w 

end 

(8) 

where \]! are program statements, nl, ... , nm are index domain parameters, Xl, ... , X£:l( 
are global array names, and the number of stars of an array Xi corresponds to its num­
ber of dimensions. Normally the <typei> will all be the same, namely the type of the 
recurrence (typically real or complex numbers). In the case of an elementary F-module 
FNAME, the \]! is the program statement defining the actual expression 

with the appropriate array elements replacing the ri expressions, and assigning this value 

to the array element corresponding to r~l , ... ,n",' 

Embodied in the F-module is a procedure, the F-procedure, obtained by removing the 
template definition. 

procedure FNAME ( nl, n2, ... , nm : integer); 
global Xl: array[*,. .. ,*J of <typel>; 

X2 : array[*, ... ,*j of <type2>; 

XiX: array[*, ... , *j of <typeix >; 

end 
Procedure calls to an F-module are interpreted as calls to the embodied F-procedure. 

(9) 
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The template :Fin ..... :Fout in (8) represents the data dependence of W. Let us denote 
the template of the F-module FNAME by templ(FNAME) and the program statements 
by pgm!(FNAME). We may place the F-module name as a subscript to these operators 
rather than as an argument to enhance readability in some situations. 

DEFINITION 3.1 [F-module consistency requirement]. An F-moduleFNAME is con­
sistent when his template describes correctly the data dependence of his F-procedure. 

A programmer has to ensure consistency when writing an F-module. 

3.2. The S-module 

The purpose of an S-module is to organize the computations needed to solve a recurrence 
equation. An S-module declares arrays Xl, ... , xls, and is polymorphic in the sense that 
element-types are immaterial, as are the dimensions (the number of dimensions however 
is important). Thus the S-module array declarations need only emphasize this. The inter­
nal templates of the S-module serve the same purpose as the template of the F-module: 
to identify the data dependences of the computation steps. The external template of the 
S-module states which elements of the arrays must be initialized in order to compute the 
recurrences for a specific set of index domain points. It is defined using a dependence 
pattern £in ..... £out, where £in to the left of the arrow" ..... " describes the initial values, 
while the elements £out to the right of the arrow identify the values being computed. 

The S-module only relates to the dependence pattern of a recurrence (i.e. functions 
OJ,i, i = 1, ... , kj ). Thus the specific F-modules II>j, j = 1, ... , e associated with each 
recurrence are parameters to the S"module. The F-module parameters are declared with 
only the index domain parameters. This convention applies to all uses of the F-modules 
within the S-module. 

The dependence pattern embedded in each F-module parameter is described in the 
internal template. For every procedure II> j the pattern is declared using 

( var qj,l,. .. ,qj,mj: integer; Ij,in ..... Ij,out ), 

where the qj,i denote index domain variables. The alphabet of the Ij,in and Ij,out is 
the set of global variables. The specific patterns for each II> j will depend on the vari-
ables qj,l' ... ,qj,Tn; of the pattern, and sometimes we will accentuate this by writing 
Ij,in( qj,l' ... ,qj,mj) and Ij,out(qj,l' ... ,qj,m)' In this presentation the index domain 
variables qj,i will be ranging over the full Cartesian product domain of mj integers, but 
in the general setting they may be constrained to some subdomain. The interpretation of 
the pattern is similar to the F-module case: the call II> j (qj, I' ... , qj,m) will use the array 
elements in Ij,in to compute the array elements in Ij,out. 

The S-procedure is a driver routine that will call the F-procedures in a predetermined 
order, so that the computation successively will define new elements of the arrays until 
the entire output has been computed. 
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S-module SNAME ( Fmod <1>1 (ql,l. ... ,ql,17Il: integer); 
Fmod <1>2 (q2,1. ... ,q2,17I2: integer); 

Fmod <l>l (ql,l. ... ,ql,mf,: integer); 
Nl : h; ... ; Nm : tm ) == 

. formal Xl: array[*, ... ,*]; 
X2 : array[*, ... ,*]; 

XiS: array[*, ... ,*] 
internal-template 

(var ql,l. ... ,ql,ml: integer; Il,in ..... Il,out) 

(var q2,1, ... ,q2,m2: integer; I2,in ..... I2,out) 

(var ql,l, ... ,ql,ml: integer; Ii,in ..... Il,out) 

external-template 
[in ..... [out 

procedure 
W 

end 
Fig. 2. The general form of an S-module based on a set of mutually dependent recurrences (4). 

Although the actual parameter declarations and their ordering may vary, the recur­

renceform ofthe S-module is based on the pattern of (4) and has the form shown in Fig. 2. 
The 1][ is the program statement defining the driver algorithm, and ( Nl : h, ... , Nm : tm ) 
are other parameters the S-module may need. In our examples they play the role of loop 
boundaries. To refer to the constituents of an S-module S, we introduce simple oper­
ators. The internal template Ij,in ~Ij,out for parameter F-module <I>j is extracted by 
inUempl(S, j) (we will omit the j if there is only one template). The external template 
of S is referred to as exUempl(S) and the program statements 1][ by pgms(S). For the 
purpose of clarifying an expression we may place the arguments as subscripts rather than 
in parenthesis. 

DEFINITION 3.2 [S-module consistency requirement]. An S-module S is consistent 
when its external template describes correctly the data dependence of its S-procedure 
assuming that each internal template 

describes correctly the data dependence of the call <I> j (qj,l' ... , qj,m;i) for every formal 
F-module <I>j of S. 

As with the F-module. it is up to the programmer to ensure consistency. 
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3.3. Substitution Rules 

The F-module and the S-module capture different aspects of how to compute a recurrence. 
In order to compute the values of an actual recurrence, the expressions encoded in the 
F-procedures must be combined with the driver routine of a compatible S-module. An S­
module is compatible with a list of F-modules, if the individual internal templates of the 
S-module match the templates of the corresponding F-modules. The application yields a 
new F-module. 

Since F- and S-modules may be programmed independently of each other, different 
programmers may choose different names for the same entities, or be working on more or 
less specific instances of the equations for a problem. In order to combine such modules, 
they must be made to agree with each other, hence certain substitution rules are needed for 
the S-modules. In order to avoid unintentional variable capture, none of the free variables 
must be equal to variables declared in a local context in the S-module. 

In order to simplify further explanation and without loss of generality we assume: 
(i) F-modules operate with one actual array (usually named X), (ii) S-modules operate 
with one formal array (usually named x), and (iii) S-modules have one internal template 
and thus one formal F-module parameter (named ill). 

DEFINITION 3.3. A substitution 2: is a triple [,6, C r] where 

• ,6 is a sequence of binding substitutions, 
• ~ is a sequence of array domain substitutions, and 
• r is a sequence ofJormal F-module index domain substitutions. 

Each atomic substitution has the general form < pattern> \--+ < pattern> where 
variables introduced in the pattern to the left of "\--+" are bound in the substitution, those 
introduced on the right are free in the substitution. 

These substitutions are applied to the S-modules. 

DEFINITION 3.4. The binding substitution is of the form N \--+ e where N is a normal 
parameter to the S-module, and the e is an expression of the same type. The effect is to 
replace all occurrences of N in the body of the S-module with the expression e, to remove 
the declaration of N from the parameter list, and adding declarations for the free variables 
of e to the parameter Jist of the S-module. 

DEFINITION 3.5. The array domain substitution is of the form 

where x is a formal array of at least n dimensions in the S-module, and X must be a global 

array, of at least d dimensions, and ~ = < 6, ... , ~d > is a d-tuple of n-ary functions such 
that ~ is injective. 
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The effect is to take all occurrences of X[P1,.··, Pnl and replace them with 

X[6 (PI, ... ,Pn), ... ,~d(PI' ... ,Pn)l doing the required manipulations of all index ex­
pressions in all occurrences of x. Finally, the x is removed from the formal array decla­
rations of the S-module, and declarations for any free variables of ~( . 1, ... , . r') being 
added to the parameter list of the S-module. 

DEFINITION 3.6. The formal F-module index domain substitution is of the form 

(10) 

where <l> has m arguments and is a formal F-module parameter to the S-module, and F 
is an actual F-module. The function T must be injective. It plays the role of parameter 
transformation when replacing <l> by F. 

The effect is to take all occurrences of CI>( . 1, ... , . m), throughout the S-procedure, 
and replace them with F(T(' 1, ... , . m)), doing the required manipulations of all index 
expressions in all occurrences. Finally, the <l> declaration is removed from the parameter 
list ofthe S-module, and declarations for any free variables of T( . 1, ... , . m) being added 
to the parameter list of the S-module. 

This substitution allows the change of the number of arguments to an F-module pa­
rameter, as well as changing the expressions used in calls of the F-module. The purpose of 
this rule is to allow greater flexibility in the use of S-modules. With this substitution it is 
possible to let a two-dimensional S-module drive the computations of a three-dimensional 
F-module along a hyperplane, or shift the indexing conventions, e.g., by rotating the in­
dex domain, of a formal F-module, as well as add other parameters being used by the 
actual F-module. 

3.4. Application of an S-module to F-modules 

Given a declaration of an S-module of the form shown in Fig. 2, it may be applied to an 
argument list of.e F-modules F1, ... , Fl. As mentioned earlier, without loss of generality 
we further assume that e = 1. Thus the application of the S-module S to the F-module F 
is denoted by 

( 11) 

where:::: is a parameter substitution. A new F-module F is yielded. 
The application of S to F with respect to the substitution:::: is legal if the template of F 

matches the internal template of S (essentially, with respect to O. 

DEFINITION 3.7. Given an S-module S, an F-module F, and a substitution :::: 
[,8,~, T]. An application Sls(F) is legal if 

~( inUemplsfi(q) ) = templp( T(q) ), (12) 
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where the superscript (3 denotes the total effect of all binding substitutions. 

The effect of the parameter transformation T will show up in the code of the resulting 
F-module, while the array transformation ~ plays a role in the template definition. 

DEFINITION 3.8. Given a legal application F = SI::::(F) of an S-module S to an F­

module F with a substitution 3 = [(3,~, Tj. Then F is defined by 

• the parameters of F are the parameters of the S-module that remain when all 
substitutions in 3 have been performed; 

• the global array of F is the global array of the actual F-module F; 
• the template of F is the external template of the S-module after all substitutions in 

3 have been performed, i.e., 

• the statements of F are the statements of the S-procedure that result when the 
substitution 3 has been performed, i.e., 

(13) 

(14) 

Examples of the application of an S-module to an F-module are given in the next 
section. 

We are now ready to formulate the central consistency theorem for the reuse of the 
computational structures as embodied in the F- and S-modules. 

Theorem 3.1 [The main theorem of the SB approach]. Given a legal application 
SI::::(F) of an S-module S to an F-module F with substitution 3 = [(3,~, Tj, then the data 

dependence of the F-procedure ofSI::::(F), which is defined by (14), equals to the template 

ofSI::::(F), which is defined by (13). 

In other words, Theorem states, that the diagram shown in Fig. 3 commutes. 
The definition of matching and application is illustrated in the computation of the 

recurrence (15). The S-module LDEP, (5), with linear internal template is here applied 
to the F-module GSTEP, (16). The result of the application G = LDEPI::::(GSTEP), as 

given in (18), provides the Fibonacci-like computation, but on the exponential scale. The 
substitution 3, (17), defines an exponential expansion by ~ and a shift adjustment by T. 

3.5. Development Methodology 

The development procedure of the SB approach can be formulated as three steps. In the 
first step a domain expert, e.g., a physicist, formulates the problem as a set of mutu­
ally dependent recurrence equations, which is encoded as a collection of F-modules and 
global array declarations, comprising the computational model for the problem. 
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As an example take the problem that can be formulated as the real valued general 

recurrence equation on the exponential scale 

g(2i+2) = 'Y (g(2i+l), g(2i)) , 

g(2l) = el, 

g(20) = co, 

(15) 

where we want to find g(2i) for i = 0,1,2, ... , N. This may be formulated as the decla­
ration of "Y : array[1 .. 2**N] of real" together with the F-module 

F -module GSTEP ( i : integer) == 
global Y: array[*] of real 

template Y[2**i], Y[2**(i+ 1)] .... Y[2**(i+2)] 
procedure Y[2**(i+2)] := 'Y ( Y[2**(i+ 1 )], Y[2**i] ) 

end 

The data dependence graph of this recurrence is shown in Fig. 4. 

(16) 

The second step is to devise a driver routine for the computational model, i.e., to find 
an appropriate S-module. For this purpose there may be a library of S-modules, and one 
of them may be adapted to the problem at hand by using a substitution. 

In the case of the recurrence (15) we may reuse the S-module LDEP with the substi­
tution 

S = [k ~ 2; x[ . ] ~ Y[2*~ . ]; ~( . ) ~ GSTEP( . -2)] , (17) 

involving all three substitution rules. Here the array domain substitution does the ex­
ponential expansion, while the formal F-module domain substitution, shifts the formal 
F-module parameters two positions in order to adjust the starting point of the loop in 

APPLICATION PROGRAM 

I 

pgmf 

Sls(F) pgmf( SIs(F) ) 

1 tempi 1 io 

DATA DEPENDENCY DATA DEPENDENCY 

id Data dependency of 
tempi ( SIS(F) ) pgmf ( SIS(F) ) 

Fig. 3. The main theorem of the structural blanks approach states that the above diagram commutes, i.e., 
io 0 pgmf = id 0 tempi = tempi. 
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Fig. 4. Data dependence graph of the recurrence 9 defined in (15). 

the S-procedure to the indices used by the F-module. This yields the application G = 
LDEPIB(GSTEP) 

F -module G ( N : integer) == 
global Y : array[*) of real 

template Y(1), Y(2) ....... (Y[2**t), t=2 .. N) 
procedure 

end 

var q: integer; 
for q := 2 to N do 

call GSTEP(q-2) 

(18) 

The third step is to show that an application is correct. In this case it is obvious 
since the function on the array index domain, j ~ 2j as embodied in "x[ .) ~ Y[2**· )", is 
injective. 

Note that only N elements of the array Y are involved in the computation. The array Y 
is treated as part of the environment and has to have at least 2N elements. 

4. Nested Application 

Suppose that semantics of two loop programs which operate with recurrences is given. 
What is the semantics of a program, which is obtained by inserting a loop program into 
a loop program? In other words, what is the form of recurrences the resulting program 
operates with, and what is the data dependence of the resulting program? Examples in 
the following subsections start answering theses questions. 

DEFINITION 4.1. The nested application of S-modules SI, ... ,Sc to an F-module F is 
a new F-module denoted Sclo;;' ( ... SIlo;;' (F) ... ) with Bl, ... , Bc standing for substitutions. 

~c ~1 

First, an F-module SII~ (F) is yielded. Then an F-module S21~ (SII~ (F)). and so on. 
~1 ~2 ~1 

The F-procedure of a nested application is in the form of nested loops. Examples pre-
sented in following subsections illustrate the nested application for c = 2, short denoted 
by S2(SI(F)) . 
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Fig. 5. A rectangle is traversed using the F-module Fu (20) that defines one step of the recurrence (19). Array 
elements assumed to be initialized are denoted by squares. Data dependence graph to produce one row is to the 
right: the row i2 depends on the row i2, - 1. 

4.1. The Traversal of a Rectangle 

Consider an F-module Fu which defines the function cp to compute one step of the recur­
rence 

Xil,i2 = CP(Xi l,i2- 1 ), 

Xt,o=ct, t=O,I, ... ,P'. 

(19) 

It feeds "up" in direction i2 over a two-dimensional array X as shown in Fig. 5, and is 
defined 

F -module Fu ( i 1, i2 : integer) == 
global X: array[*, *] of real 

template Xli 1 ,i2-1] ""'" Xli 1 ,i2] 
procedure X[i1 ,i2]:= <p ( X[i1 ,i2-1]) 

end 

A program is required to compute all the elements from the rectangular set 

{ X[h,h]I t1 = 0,1, ... , P'; t2 = 1,2, ... , Q' } , 

(20) 

(21) 

where the boundary parameters P' and Q' are natural numbers. The bottom row i2 = ° 
elements are assumed to be initialized. They are 

{ X[t, 0] I t = 0,1, ... , P' } . (22) 

The above set (22) plays the input's role, and the set (21) - the output's one of depen­
dence specification denoted by 

M = X[O .. P', 0] ""'" X[0 .. P',1 .. Q']. (23) 

To exploit the feeding in direction i2 is of the essence when writing a program. The 
required code is quite obvious, for example, the nested loop 
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x l 'l l l l • • • • • y 
o 1 2 P 

Fig, 6, Data dependence graph of the S-module Sd (24) that provides a loop computation according to the 
"disjoint" internal template y[p]--+ X[p] for p E {O" , " P}, The one-dimensional array X plays the output's 
role. Its elements are denoted by discs. The array y plays the input's role. Its elements are supposed to be 
initialized and are denoted by squares. The loop computation can be parallel. 

for i2 := 1 to Q' do 
for i1 := 0 to P' doparallel 

X[i1, i2]:= cp (X[i1, i2-1]) 

Below we aim to illustrate program synthesis as nested application of two S-modules 
Sd (24) and St (28) to Fu (20) thus yielding an F-module St(Sd(Fu)). First, Sd is applied 

to Fu to traverse over one row in direction i 1. Then St is applied to traverse over all rows 
in direction i2. 

The S-module Sd organizes a computation in accordance with a "disjoint" internal 
template y[p] "" x[p]. The array x plays the output's role, and y - the input's one. The loop 
computation does not exploit any kind of feeding, therefore, it can have a parallel code as 
shown in the corresponding S-procedure of the S-module 

S-module Sd (Fmod <I>l(integer); P : integer) == 
formal x, y : array[*] 

internal-template (var p: integer; y[p] --+ x[p] ) 
external-template y[O .. P] --+ x[O .. P] 
procedure 

end 

var p: integer; 
for p := 0 to P doparallel 

call <I>l(p) 

The data dependence graph of Sd is shown in Fig. 6. 

(24) 

The template of Fu (20) matches the internal template of Sd if coordinate i1 IS 

matched to p. The rows i2 and i2 - 1 of X match the arrays x and y respectively. Therefore 
Sd can be applied to Fu. A yielded new F-module Sdl~ (Fu) has parameters P' and i2'.lts 

'::'1 
input and output are sets of X elements in the rows i2 - 1 and i2 respectively. The param-
eter name i2' is "primed" to emphasize a difference between an old and new parameter 
names. Both i2 and i2' play the role of coordinate i 2 . The parameter substitution is 

y[.] f-+ X[· ,i2'-1]; 
(25) 

<I>1( .) f-+ Fu( . ,i2'); P f-+ P' ]. 

To illustrate the notation, we present below the transformation 7" of S-module's inter­
nal template parameters to F-module's parameters, i.e., the function < i1, i2> = T(p). To 
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emphasize this transfonnation, the yielded F-module Sdls1 (Fu) is also denoted by 

SdFu = Sdl { i1 = p(Fu). 

i2= i2' 

The transfonnation r(·) = < ., i2' > depends on the parameter i2'. Thus r is a pa­
rameterized transfonnation, i.e., r = ri2'. In general, r can be parameterized by all the 

parameters of a new F-module Sls(F). 

Recall that the F-procedure of SIS(F) is obtained by substituting the calls to F( r(p)) 

for the call to ~(p) in the S-procedure of S. In our case the yielded F-module SdFu is 

F-module SdFu ( i2', p' : integer) == 
global X: array[*, *] of real 

template X[O .. P',i2'-1] "'" X[O .. P',i2'] -- Row i2'-1 "'"' row i2'. 
procedure (26) 

end 

·var p: integer; 
for p := 0 to P' doparallel 

call Fu(p,i2') 

The data dependence graph of SdFu is shown in Fig. 5 to the right. The template and 
the F-procedure of SdFu (26) are obtained by substituting in the external template and in 
the S-procedure of Sd (24) respectively according to 3 1 (25). 

The F-procedure of SdFu (26) can be unfolded. The call to Fu in (26) is replaced by 
the procedure body from (20). After this unfolding, the following procedure results 

procedure SdFu ( i2', P' : integer); 
global X: array[*, *] of real; 
var p: integer; 

end 

for p := 0 to P' doparallel 
X[p, i2']:= r.p (X[p, i2'-1] ) 

(27) 

Note what the template of SdFu (26) specifies. It states that the dependence of the row 
i2' on the row i2'-1 is i2'-1 "'" i2'. This dependence is exactly as in the internal template of 
the following "trivial" S-module St (when i2' is matched to q) 

S-module St ( Fmod IP2(integer); Q : integer) == 
formal v: array[*] 

internal-template (var q: integer; v[q-1] "'"' v[q] ) 
external-template v[O] "'"' v[1 .. Q] 
procedure 

end 

var q: integer; 
for q := 1 to Q do 

call IP2(q) 

(28) 
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Fig. 7. Data dependence graph of the S-module St (28) that provides a loop computation according to the 
"trivial" dependence V[ q-1] "'-'+ V[ q] for q E {I, ... , a}. 

The data dependence graph of St is shown in Fig. 7. For the template of SdFu (26) to 
match the internal template in (28), the whole row of X is matched to one element of v, 
formally, v[t] f-+X[O .. P',t], for t E {O, ... , a}. The two-dimensional array X is treated as 
the Cartesian product - a one-dimensional array of one-dimensional arrays. 

Consequently, the matching condition (12) is fulfilled, and St (28) can be applied to 
SdFu (26) with the parameter q transformation T being identity one i2' = T( q) = q. A 
new F-module StSdFu = StlS2 (SdFu) traverses the required rectangle. The substitution is 

32 = [v[·] f-+ X[O .. P', ']i iP2( .) f-+ SdFu(· ,P')i a f-+ a' ]. 

The produced F-module StSdFu is 

F-module StSdFu ( P', a' : integer) == 
global X:· array[*, *] of real 

template X[O .. P',O]"'-'+ X[O .. P', La'] -- Rectangle. 
procedure 

end 

var q: integer; 
for q := 1 to a' do 

call SdFu(q,P') 

(29) 

The template in (29) is obtained by substituting X[O .. P',t] for v[t] in the external tem­
plate of St (28), where v[1 .. a] is the abbreviation for (v[t], t=1 .. a). The F-procedure in (29) 
is obtained by substituting the call to SdFu(q,P') for the call to iP2(q) in the S-procedure 
of St (28). 

Note that the template in (29) equals to the required dependence specification M (23). 
Consequently, StSdFu (29) indeed provides the required computation. 

The required program is obtained by unfolding the F-procedure of StSdFu (29). The 
call to SdFu in (29) is replaced by its body from (27). After this unfolding, the nested 
loop program results 

procedure StSdFu ( P', a' : integer); 
global X: array[*,*] of real; 
var p, q: integer; 

end 

for q := 1 to a' do 
for p := ° to P' doparallel 

X[p, q]:= cp (X[p, q-1] ) 

(30) 

Finally, a program to provide the required computation on the rectangle shown in 
Fig. 5 is obtained, namely, the above one (30). 
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4.1.1. Representing the F-module 5t(5d(Fu)) as the S-module 5to5d 

First, we finalise the unfolding of 5t5dFu F-procedure from (29) to (30). The unfolded 

F-module is denoted by U5t5dFu. Then, we extract from the obtained U5t5dFu a new 
S-module 5t5d which can be treated as the composition 5to5d of the S-modules 5t (28) 

and 5d (24). 
The unfolded version of 5t5dFu (29) can be finalised taking into account the proce­

dure (30), and representing it as a new F-module U5t5dFu 

F-module U5t5dFu ( P', Q' : integer) == 
global X: array[*, *] of real 

template X[O .. P',O] ..... X[O .. P',1 .. Q'] -- Rectangle. 
procedure 

end 

var p, q: integer; 
for q := 1 to Q' do 

for p := 0 to P' doparallel 
X[p,q]:= <p (X[p,q-1] ) 

(31) 

The above F-module (31) can be represented as a new S-module 5t5d. This is possible 
because U5t5dFu (31) was produced for any two-dimensional array X and any F-module 
Fu which has the given template (20). Therefore we can generalise X and Fu by repre­
senting the template of Fu as the internal template (up to renaming) of 5t5d. This also 
explains in what wayan S-module's internal template represents a precondition on the 

formal parameter <1> (more precisely, a recurrence precondition on any actual F-module 
being substituted for <1». The template of 5t5dFu (29) serves as the external template for 
5t5d. To rename environment parameters, we introduce the name x' instead of X. Finally, 
a new S-module 5t5d is obtained 

S-module 5t5d (Fmod <I>(integer, integer); P', Q': integer) == 
formal x' : array[*,*] 

internal-template (var p, q: integer; x'[p,q-1] ..... x'[p,q]) 
external-template x'[O .. P',O] ..... x'[O .. P',1 .. Q'] -- Rectangle. 
procedure (32) 

end 

var p, q: integer; 
for q := 1 to Q' do 

for p := 0 to P' dopar~lel 
call <I>(p,q) 

The above S-module 5t5d (32) can be applied to the F-module Fu (20) with identity 
substitution thus producing the F-module U5t5DFu (31). Therefore Fig. 5 serves to show 
the data dependence graph of 5t5d (32) too. 

DEFINITION 4.2. The composition of two S-modules 51 and 52 is the S-module de­
noted by 52 0 51 such that satisfies the following. If an F-module F is such that an F-
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Fig. 8. A right-slanted trapezium is traversed using the F-module Fr (34) that defines one step of the recur­
rence (33). Data dependence graph to produce olle row is to the light: the row i2 depends on the row i2 - 1. 

module S21~ (Sll~ (F» is defined for some substitutions 3 1 and 3 2, then such a substi­
'::'2 '::'1 

tution 3 exists, that the equality between F-modules holds 

To give an example, we advocate that the S-module StSd (32) can be treated as the 
composition StoSd. No matter that an intermediate F-module, Fu, was used to produce 
StSd. The F-module Fu (20) is "the simplest" one for the nested application of S-modules 
St (28) and Sd (24) to Fu. The definition of "the simplest" is treated on the following 
basis. The F-module UStSdFu (31) has 110 such free parameters in order to match it to 
any recurrence. Therefore no S-modulc is applicable to it. The absence of "recurrence 
parameters" can be seen in the template in (31). 

4.2. The Traversal of a Right-slanted Trapezium 

Consider an F-module Fr which defines the function 'IjJ to compute one step of the recur­
rence 

Xil,i2 = 'IjJ(Xil,i2-1, Xil+1,i2-1), 

Xt,O = Ct, t = 0,1, ... , P'. 

(33) 

It feeds according to the "light-slanted" dependence over a two-dimensional array X as 
shown in Fig. 8, and is defined 

F-module Fr ( i1, i2 : integer) == 
global X: array[*,'] of real 

template X[i1, i2-1], X[i1+1, i2-1] ~. X[i1, i2] 
procedure X[i1, i2]:= 1p ( X[i1, i2-1], X[i1 + 1, i2-1] ) 

end 

(34) 

A program is required to compute all clements from the right-slanted trapesoidal set 

{X[h,h] I t1 = 0, 1, ... , P' - t2; t2 = 1,2, ... , Q' }, (35) 



40 V. {;yras 

x 

~~~~~ y • • • • • • o 1 2 P P+l 

Fig. 9. Data dependence graph of the S-module Sr (38) that provides a computation according to the disjoint 
right-slanted internal template y[p], y[p+ 1] .... X[p]. The loop computation can be parallel. 

where P' and 0' are natural numbers, and 0' ~ P'. The row i2 = 0 elements are assumed 

to be initialized. They are 

{X[t,O] I t = 0,1, ... , P' }. 

A pair of above sets (36) and (35) forms the dependence specification 

M = X[O .. P', 0] .... (X[O .. P'-t, t], t=1 .. 0' ). 

The required code is quite obvious - the nested loop 

for i2 := 1 to 0' do 
for i1 := ° to P'-i2 doparallel 

X[i1, i2]:= 1/J ( X[i1, i2-1], X[i1 + 1, i2-1] ) 

(36) 

(37) 

As in the previous subsection, we aim to illustrate program synthesis as the nested 

application of two S-modules Sr (38) and St (28) to Fr (34) thus yielding an F-module 

St(Sr(Fr)). First. Sr is applied to Fr to traverse over one row. Then St is applied to traverse 

over all rows. 

The S-module Sr is like Sd (24) in the previous example. but the input of its internal 

templateconsists of two elements: y[p] and y[p+1]. The loop computation can have the 

same parallel code as Sd (24). But both the internal and the external templates of Sr are 

different from those of Sd. The S-module Sr is 

S-module Sr (Fmod <l>l(integer); P : integer) == 
formal x, y : array[*] 

internal-template (var p: integer; y[p]. y[p+1] ...... x[p] ) 
external-template y[0 .. P+1] .... x[O .. P] 
procedure 

end 

var p: integer; 
for p := ° to P doparallel 

call <l>l(p) 

The data dependence graph of Sr is shown in Fig. 9. 

(38) 

The template of Fr (34) matches the internal template of Sr if i 1 is matched to p. The 

rows i2 and i2 - 1 of X match the arrays x and y respectively. Therefore Sr can be applied 

to Fr. A yielded new F-module srlB1 (Fr) has parameters P' and i2'. Its output consists of 
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row i2 elements indexed from 0 to P·-i2·. Its input is one row below and consists of one 
more element than the output. The substitution is 

3 1 = [x[.] ~ X[· .i2·]; y[.] ~ X[· .i2·-1]; 

<.t>1(·) ~ Fr(· .i2·); P ~ P·-i2·]. 
(39) 

To emphasize the transformation < i1 , i2> = r(p). the yielded F-module srl_ (Fr) is 
'::'1 

also denoted by 

SrFr = sri { i1 = p(Fr). 

i2 = i2' 

The yielded F-module SrFr is 

F-module SrFr ( i2·. P' : integer) == 
global X: array[*.*] of real 

template X[O .. P·-i2·+1.i2·-1] .... X[O .. P·-i2·.i2·] --Row i2·-1 .... row i2·. 
procedure (40) 

end 

var p: integer; 
for p:= 0 to P'-i2' doparallel 

call Fr(p. i2') 

The data dependence graph of SrFr is shown in Fig. 8 to the right. The template and 
the F-procedure of SrFr (40) are obtained by substituting in the external template and in 
the S-procedure of Sr (38) respectively according to 3 1 (39). 

The F-procedure of SrFr (40) can be unfolded. The call to Fr in (40) is replaced by the 
procedure body from (34). After this unfolding. the following procedure results 

procedure SrFr ( i2·. P' : integer); 
global X: array[*. *] of real; 
var p: integer; 
for p := 0 to P'-i2' doparalleJ 

X[P. i2'] := 'IjJ ( X[P. i2·-1]. X[p+1. i2'-1]) 
end 

(41) 

Note what the template of SrFr (40) specifies. It states that the dependence of the row 
i2' on the row i2'-1 is i2'-1 .... i2·. No matter that the intput consists of one more element 
than the output. Therefore the template in (40) matches the internal template of St (28) 
(when i2' is matched to q). A set of elements indexed from 0 to P'-t in the row t is matched 
to one element v[t], formally, v[t] ~X[O .. P'-t.t], for t E {O, ... , Q'}. 

Consequently, the matching condition (12) is fulfilled, and St (28) can be applied to 
SrFr (40) with the parameter q transformation r being identity one i2' = r( q) = q. A new 
F-module StSrFr = Stl~ (SrFr) traverses the right-slanted trapezium. The substitution is 

'::'2 

3 2 = [v[.] ~ X[O .. P·-· •. ]; <.t>2(·) ~ SrFr(·. P'); Q ~ Q']. (42) 
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The produced F-module StSrFr is 

F -module StSrFr ( P', Q' : integer) == 
global X: array[*, *] of real 

template X[O .. P',O] "" ( X[O .. P'-t, t], t=1 .. Q') -- Right-slanted. 
procedure (43) 

end 

var q: integer; 
for q := 1 to Q' do 

call SrFr(q, P') 

The template and the F-procedure in (43) are obtained by substituting in the external 
template and the S-procedure of St (28) respectively in accordance with 3 2 (42). 

Note that the template in (43) equals to the required dependence specification M (37). 
Consequently, StSrFr (43) indeed provides the required computation. 

The required program is obtained by unfolding the F-procedure of StSrFr (43). The 
call to SrFr in (43) is replaced by its body from (41). After this unfolding, the nested loop 

program results 

procedure StSrFr ( P', Q' : integer); 
global X: array[*, *] of real; 
var p, q: integer; 
for q := 1 to Q' do 

for p := 0 to P'-q doparallel 
X[p,q] := 'Ij; (X[p,q-1], X[p+l,q-1]) 

end 

(44) 

Finally, a program to provide the computation on the right-slanted trapezium shown 
in Fig. 8 is obtained, namely, the above one (44). 

4.2.1. Representing the F-module St(Sr(Fr)) as the S-module StoSr 

First, we finalise the unfolding of StSrFr F-procedure from (43) to (44). The unfolded 
F-module is denoted by UStSrFr. Then, we extract from the obtained UStSrFr a new S­

module StSr which can be treated as the composition StoSr of the S-modules St (28) and 
Sr (38). 

The unfolded version of StSrFr (43) can be finalised taking into account the proce­
dure (44), and representing it as a new F-module UStSrFr 

F-module UStSrFr ( P', Q' : integer) == 
global X: array[*, *] of real 

template X[O .. P',O] ""'"' (X[O .. P'-t, t], t=1 .. Q' ) -- Right-slanted. 
procedure 

end 

var p, q: integer; 
for q := 1 to Q' do 

for p := ° to P' - q doparallel 
call Fr(p, q) 

(45) 
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The above F-module (45) can be represented as a new S-module StSr. As in the previ­
ous example, we can generalise X and Fr by representing the template of Fr as the internal 
template (up to renaming) of StSr. The template of StSrFr (43) serves as the external tem­
plate for StSr. To rename environment parameters, we introduce x' instead of X. Finally, 
a new S-module StSr is obtained 

S-module StSr ( Fmod 9(integer,. integer); P', Q': integer) == 
formal x': array[*, *] 

internal-template (var p, q: integer; 
x'[p, q-1], x'[p+1, q-1] "'" x'[p, q]) 

external-template 
x'[O .. P',O] "'" (x'[O .. P'-t, t], t=1 .. Q') -- Right-slanted trapezium. (46) 

procedure 

end 

var p, q: integer; 
for q := 1 to Q' do 

for p := 0 to P'-q doparallel 
call 9(p,q) 

Fig. 8 serves to show the data dependence graph of StSr (46) too. Due to the "sim­
plicity" of Fr which was intermediate to produce StSr, the last can be treated as the com­
position St 0 Sr. 

4.3. The Traversal of a Left-slanted Trapezium 

Consider an F-module FI which defines the function ¢ ,to compute one step of the recur­
rence 

(47) 

Xt,O = et, t = 0, 1, ... , P'. 

It feeds according to the "left-slanted" dependence over a two-dimensional array X as 
shown in Fig. 10, and is defined 

F -module FI ( i 1, i2 : integer) == 
global X: array[*,*] of real 

template X[i1,i2-1], X[i1-1,i2-1] ..... X[i1,i2] 
procedure X[i1,i2]:= ¢ ( X[i1,i2-1], X[i1-1,i2-1]) 

end 
A program is required to compute all elements from the left-slanted trapezium set 

{X[tr,h] I tl = t2, t2 + 1, ... , P'; t2 = 1,2, ... ,Q' }, 

(48) 

(49) 

where P' and Q' are natural numbers, and Q' ~ P'. The row i2 = ° elements are assumed 
to be initialized. They are 

{X[t,O] I t = 0,1, ... , P' }. (50) 
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Fig. 10. A left-slanted trapezium is traversed using the F-module FI (48). Data dependence graph to produce 
one row is to the right: the row i2 depends on the row i2 - 1. 

A pair of above sets (50) and (49) forms the dependence specification 

M = X[O .. P',O] "-"+ (X[t .. P',t], t=1..Q'). (51) 

The required code is quite obvious - the nested loop 

for i2 := 1 to Q' do 
for i 1 := i2 to P' doparallel (52) 

X[i1, i2]:= rP ( X[i1, i2-1], X[i1-1, i2-1]) 

As in the previous subsection, we aim to illustrate program synthesis as the nested 
application of two S-modules 51 (53) and 5t (28) to FI (48) thus yielding an F-module 
5t(51(FI)). First, 51 is applied to FI to traverse over one row. Then 5t is applied to traverse 
over all rows. 

The S-module 51 is like 5d (24), but the input of its internal template consists of 
two elements: y[p] and y[p-1]. The loop computation can have the same parallel code as 
5d (24). But both the internal and the external templates of 51 are different from those of 
5d. The S-module 51 is 

S-module 51 (Fmod 4>l(integer); P : integer) == 
formal x, y : array[*] 

internal-template (var p: integer; y[p], y[p-1] "-"+ x[p] ) 
external-template y[-1 .. P] "-"+ x[O .. P] 
procedure 

end 

var p: integer; 
for p := 0 to P doparallel 

call 4>l(p) 

The data dependence graph of 51 is shown in Fig. 11. 

(53) 

The template of FI (48) matches the internal template of 51 if i 1 is matched to p. The 
rows i2 and i2 - 1 of X match the arrays x and y respectively. Therefore 51 can be applied 
to FI. A yielded new F-module 511~ (FI) has parameters P' and i2'. Its output consists of 

01 
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Fig. II. Data dependence graph of the S-module SI (53) that provides a computation according to the disjoint 
left-slanted internal template y[pj, y[p-1j--+ x[pj. The loop computation can be parallel. 

row i2 elements indexed from i2' to P'. Its input is one row below and consists of one 

more element than the output. The substitution is 

31 = [x[ .jl-+ X[· +i2',i2'ji y[ .jl-+ X[· +i2',i2'-1ji 
(54) 

cf?l( .} 1-+ FI(· +i2',i2'}i P 1-+ P'-i2']. 

To emphasize the transformation <i1, i2> = r(p), the yielded F-module SII_ (FI) is 
=-1 

also denoted by 

SIFI = SII { i1 = P + i2,(FI}. 

i2 = i2' 

The yielded F-module SIFI is 

F -module SIFI ( i2', P' : integer) == 
global X: array[*, *j of real 

template X[i2'-1 .. P',i2'-1j--+ X[i2' .. P',i2'j -- Row i2'-1--+ row i2'. 
procedure (55) 

end 

var p: integer; 
for p := 0 to P'-i2' doparallel 

call FI(p+i2',i2') 

The data dependence graph of SIFI is shown in Fig. 10 to the right. The template and 

the F-procedure of SIFI (55) are obtained by substituting in the external template and in 

the S-procedure of SI (53) respectively. This substitution is done according to 8 1 (54) and 

is explained below. 
Recall that x[O .. Pj is the abbreviation for (x[tj, O=1 .. P). Therefore, the external template 

in (53) is rewritten replacing x[tj and y[tj within it in accordance with 81 (54). Thus the 

template is obtained 

( X[t+i2', i2'-1j, t=-1 .. P'-i2' )-( X[t+i2', i2'j, t=O .. P'-i2' ). 

Let us denote t'=t+i2'. Then the above template changes to 

(X[t', i2'-1j, t'=i2'-1 .. P' )-( X[t', i2'j, t'=i2' .. P'), 
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and this is simplified to 

X[i2'-1 .. P', i2'-1]-X[i2' .. P', i2'], 

what is the template in (55). Q.E.D. 
The F-procedure of SIFI (55) can be unfolded. The call to FI in (55) is replaced by the 

procedure body from (48). Thus the procedure results 

procedure SIFI ( i2', P' : integer); 
global X: array[*, *] of real; 
var p: integer; 
for p := 0 to P'-i2' doparallel 

X[p+i2', i2']:= </J (X[p+i2', i2'-1], X[p+i2'-1, i2'-1]) 
end 

(56) 

Note what the template of SIFI (55) specifies. It states that the row i2'-1 is fed to the 
row i2' in the way i2'-1 ..... i2'. No matter that the intput consists of one more element than 
the output. Therefore the template in (55) matches the internal template of St (28) (when 
i2' is matched to q). A set of elements indexed from t to P' in the row t is matched to one 
element v[t], formally, v[t]I-+X[t..P',t], for t E {D, ... , Q'}. 

Consequently, the matching condition (12) is fulfilled, and St (28) can be applied to 

SIFI (55) with the parameter q transformation being identity one i2' = q. A new F-module 
StSIFI = Stl32 (SIFI) traverses the left-slanted trapezium. The substitution is 

32 = [v[ .]1-+ X[· .. P', .]; 1l>2(·) 1-+ SIFI(· ,P'); Q 1-+ Q']. 

The produced F-module StSIFI is 

F-module StSIFI (P', Q': integer) == 
global X: array[*,*] of real 

template X[O .. P',O] ..... ( X[t..P',t], t=1 .. Q' ) -- Left-slanted. 
procedure 

end 

var q: integer; 
for q := 1 to Q' do 

call SIFI(q,P') 

(57) 

(58) 

The template and the F-procedure in (58) are obtained by substituting in the external 
template and the S-procedure of St (28) respectively in accordance with 32 (57). 

Note that the template in (58) equals to the required dependence specification M (51). 
Consequenly, StSIFI (58) indeed provides the required computation. 

The required program is obtained by unfolding the F-procedure of StSIFI (58). The 
call to SIFI in (58) is replaced by its body from (56). After this unfolding the nested loop 
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program results 

procedure StSIFI ( P', Q' : integer); 
global X: array[*, *] of real; 
var p, q: integer; 
for q := 1 to Q' do 

for p := 0 to P' - q doparallel 
X[p+q, q]:= r/> ( X[p+q, q-1], X[p+q-1, q-1] ) 

eud 
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(59) 

Finally, a program to provide the computation on the left-slanted trapezium shown in 
Fig. 10 is obtained, namely, the above one (59). 

4.3.1. Representing the F-module St(SI(FI)) as the S-module StoSI 

First, we finalise the unfolding of StSIFI F-procedure from (58) to (59). The unfolded 
F-module is denoted by UStSIFI. Then. we extract from the obtained UStSIFI a new S­
module StSI which can be treated as the composition StoSI of the S-modules St (28) and 
SI (53). 

The unfolded version of StSIFI (58) can be finalised taking into account the proce­
dure (59), and representing it as a new F-module UStSIFI 

F-module UStSIFI ( P', Q' : integer) == 
global X: array[*. *] of real 

template X[O .. P',O] ....... ( X[t..P', t], t=1 .. Q' ) -- Left-slanted. 
procedure 

end 

var p, q: integer; 
for q := 1 to Q' do 

for p := 0 to P'-q doparallel 
call FI(p+Q, q) 

(60) 

The above F-module (60) can be represented as a new S-module StSI. As in two 
previous examples, we can generalise X and FI by representing the template of FI as the 
internal template (up to renaming) of StSI. The template of StSIFI (58) serves as the 
external template for StSI. To rename environment parameters, we introduce x' instead 
of X. Finally, a new S-module StSI is obtained 

S-module StSI ( Fmod <l>(integer, integer); P', Q': integer) == 
formal x' : array[*, *] 

internal-template (var p, q: integer; 
x'[p, q-1], x'[p-1, q-1] """ x'[p, q] ) 

external-template 
x'[OooP',O] """ (x'[t..P', t], t=100Q') -- Left-slanted trapezium. (61) 

procedure 

end 

var p, q: integer; 
for q := 1 to Q' do 

for p := 0 to P'-q doparallel 
call <l>(p+q, q) 
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Fig. 10 serves to show the data dependence graph of 8t81 (61) too. Due to the "sim­
plicity" of FI which was intermediate to produce 8t81, the last can be treated as the com­

position 8t 0 81. 
Note that the code for loop organization in (52) slightly differs from that in (61) 

(which is the same as in (59». The first one (52) is expressed in array coordinates i1 
and i2, while the second one (61) - in loop coordinates p and q. The transformation 

< i1 , i2> = T(p, q) is 

{ ~1 = P + q, 
12 = q, 

(62) 

and is present in (61) in the call to the formal parameter 11>( T(p, q)). 
The function T (62) maps isomorphically the right-slanted trapezium shown in Fig. 8 

to the left-slanted trapezium shown in Fig. 10. Therefore the F-module U8t81FI (60) (op­
erating on the left-slanted trapezium) can be obtained as the application of the S-module 
8t8r (46) (operating on the right-slanted trapezium) to the left-slanted F-module FI (48). 
The above transformation T (62) is considered by· the following substitution 

:::: = [X'['I"2]I-+X['I+'2"2]; 

<l>1( '1,' 2) 1-+ FI( '1+' 2,' 2); P'I-+ P';Q' 1-+ Q' J. 

The yielded F-module 8t8rls(FI) is also denoted by 

8t8rl {~1 = P + q(FI). 

12 =q 

(63) 

(64) 

Indeed the above F-module (64) is equal to the F-module U8t81FI (60). In other words, 
their templates and F-procedures coincide. To prove this fact, one can simply substitute 
into the external template and the S-procedure of 8t8r (46) according to the substitu­
tion (63). 

5. Summary 

The structural blanks approach extends a traditional imperative programming language 
with constructs for defining explicitly the dependence pattern of a recurrence. The pro­
gram to compute the recurrence is defined as a collection of global arrays and several 
program components: one for each equation of the recurrence (4), and a scheduler for 
the entire computation. These components may be reused, and especially the scheduler 
may be applied on many different recurrence relations. In SB the time axis is explicit. 
This is because a data dependence graph is explicitly represented in computer memory. 
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This explicit representation allows the usage of matrix mathematics in affine graph trans­
formations. The whole array representing the nodes of explicit data dependence graph is 
viewed as the output. The SB approach provides an architecture of software packages in 
the numerically oriented domain. 

The operation of applying an S-module to an F-module thus producing a new F­
module can be viewed as one step of loop program synthesis. The complexity of this step 
is linear with respect to the lenth N of the loop "for i:= m to N". Thus exponential growth 
during this operation is avoided. 
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Cikliniq programq duomenq priklausomybe struktiiriniq ruosiniq 
metode, skirtame. programavimui su rekurencijomis 

Vytautas CYRAS 

Tiriama ciklines programos. kuri gaunama ~statant vienq ciklin~ programq \ kitq, duomenll 
priklausomybe. Tai traktuojama kaip struktiirinill moduliij (S-moduliij) kompozicija strukturinil{ 
ruosinil{ metode. Sis metodas akcentuoja cikliniij programij daugkartinio panaudojimo galimyb~. 
Tyrimo objektas yra programij moduliij neprocediirinis aprasymas. Siiilomas formalus aparatas 
programij specifikacijoms. 


