
INFORMATICA, 1998, Vol. 9, No.1, 5-20
© 1998 Institute of Mathematics and Informatics, Vilnius

Use of Program Schemata in Lisp Programming:
an Evaluation of its Impact on Learning *

Maria Bielikova, Pavol Navrat
Slovak University o/Technology, Dept, o/Comp, Sci, and Eng.
Ilkovieova 3, 812 19 Bratislava, Slovakia
e-mail: {bielik.navrat}@elf.stuba.sk

Received: January 1998

Abstract. In the paper, we describe our approach and experience with teaching fundamentals of
functional programming by program schemata construction and explanation. Program schemata
for processing of lists are presented. Our approach reflects our ultimate goal - to support the
learning process. As the main result, we report on experiments that allow to judge quite favourably
the approach to teaching functional (Lisp) programming when the student learns a set of program
schemata and how to apply them.

Key words: program schema, functional programming, Lisp.

1. Introduction

Software engineering as a discipline and a field of study is going through a phase of
development that promises to elevate the level of its maturity. There are various efforts
aiming at developing standards that would describe both software processes and products.
Within the field of software engineering, there are emerging disciplines such as Archi
tecture of Software Systems that generalize, describe, and classify the standard patterns
of architectural style (Buschmann et al., 1996; Gegg-Harrison, 1991), design (Gamma et
aI., 1995; Pree, 1994), etc. Besides the very active area of design patterns, research in
frameworks and programming idioms contributes to the overall effort. The motivation is
for software engineering to proceed in gradually becoming a "true" engineering in the
more traditional and established sense.

The above outlined efforts overlap in some sense with efforts within programming
to identify parts of its knowledge in a more standardized way in form of program
plans (Soloway and Ehrlich, 1988; Davies and Castell, 1993; Davies, 1996; Koziak,
1997), program schemata (Bielikova and Navrat, 1997a; Flenner et al., 1997; Gegg
Harrison, 1996; Vasconcelos and Fuchs, 1995), program patterns (Weber and Mollen
berg, 1995; Sollohub, 1991), program skeletons, or programming techniques (Bowles,
and Brna, 1993; Vasconcelos, 1994; Sterling and Kirschenbaum, 1993). The motivation

"The work reported here was partially supported by Slovak: Science Grant Agency project No. G 114289/97.

6 M. Bielikova and P. Navrat

of investigating the nature of programming by identifying the relevant knowledge paral
lels and complements similar efforts at the level of software systems mentioned above.

In both cases, one possible effect of the achievements in codification of analysis,
design, implementation (including programming) experience results in formulating the
body of relevant knowledge in a more systematic way. This opens room for teaching the
discipline in new, possibly more effective ways (Navrat and Rozinajova, 1993). How can
teaching programming benefit from these efforts?

One fundamental aspect that determines organizing a programming knowledge hier
archy is the programming paradigm. It is a well known fact that knowledge of one pro
gramming language usually greatly facilitates learning another one, provided they both
fall into the same paradigm. If they do not, i.e., we have the case of an interparadig
mal transition, the above need not hold. On the contrary, one can observe a temptation
to transfer the programming habits from one paradigm to another. As a consequence,
learners may incline, e.g., to forming procedural style programs in a functional language.

We have outlined only one out of several issues connected with teaching functional
programming. We report on our experience in teaching the subject Functional and Logic
Programming. We use the programming language Lisp which is a choice that deserves
perhaps a word of explanation. The reasons for choosing Lisp were rather pragmatic and
we are fully aware of the restrictions that Lisp bears with it when used as a functional lan
guage. However, we employ as a rule only those features which allow programming func
tionally. The learners form programs using standard functions only from a pre-selected
set.

Our approach is best characterized as a development, explanation and use of program
schemata. This is in full correspondence with the main trend towards finding ways of rep
resenting standardised programming knowledge. Our contribution is directed to teaching
functional programming using program schemata that had been devised by us.

In the following section an approach to teaching functional programming is outlined.
In the third section program schemata for functional processing of lists are explained. We
give a hierarchy of schemata which we use in teaching and briefly comment on techniques
for schemata combining. The most detailed is the fourth section which reports on our
experiments aimed at verifying our hypotheses about suitability of this approach with
respect to learning functional programming by evaluating the effectiveness ofthe learning
process. Finally, some conclusions are drawn.

2. The Approach

To be able to form relatively large and practically interesting programs in Lisp requires
to master only "a few" syntactical constructs. However, it would be most naive to expect
that based on that fact, programming in Lisp can be learnt very swiftly and simply. More
likely, the opposite is true. To be able to form both elegant and efficient functional (Lisp)
programs requires as a rule a considerable programming experience. Additional difficulty
is inter-paradigmal transition, as manifested by the problems that experience many our

Use of Program Schemata in Lisp Programming 7

students who had mastered quite extensively the procedural paradigm (Khazaei et at.,
1996). Some of them seem to be constrained to the extent that their understanding of the
alternative paradigm effectively is blocked (cf. similar experience reported by Joosten et
al. (1993).

The subject Functional and Logic Programming is covered in one semester (13
weeks). The relative modesty of its extent forces to concentrate to the fundamentals of
functional programming (which constitutes only a part of the subject's contents; besides
it, logic programming is treated, too). We aim to help learners understand the essence
of this programming paradigm. We also aim to achieve this by a learning process that
involves practical problem solving. Again, the subject's extent constraints this aspect
as only relatively short programs can be explained or devised. "Larger" programs with
several dozens or hundreds of functions are written by students when completing their
assignments for subjects Artificial Intelligence or Knowledge Based Systems.

Our objective is that the students learn to recognize the kinds of problems and their
relevance to the structure of the solution, and this not only at the level of the original
problem, but at the levels of subproblems as well. When solving problems, basic schemata
should be combined according to various programming techniques. The crucial point is
to recognize a schema and then to specialize appropriately its generic parts. This is a
particular know-how that students should learn. To achieve that, they learn about the kinds
of problems that one can encounter most frequently, and they learn about the schemata
that correspond most closely to the kinds of problems.

The approach to learning programming as described above is based on proceeding
from specific examples to schemata (generalization). After the students master this phase
to the extent of being able to formulate useful schemata, they have achieved a level of
competence which allows them to make a choice of a schema and to specialize it ac
cordingly. As Navrat (1996) has pointed out, the interplay between generalization and
specialization is critically important for the method of programming.

As soon as the students learn to recognize properly the schema which is to be ap
plied in the given situation, the task of forming the function's definition is already quite
straightforward. We guide the students to organize their knowledge in form of a mental
library to allow a more effective use of schemata when solving more complex problems.
This can be achieved by gaining more practice through solving a bigger number of small
problems. One of the last assignments is to design and implement an abstract data type
(e.g., set, table, array, graph) from its specification. Here, strict adherence to functional
style in programming is expected.

This approach to teaching functional programming is very promising. It seems to be
especially effective for learning a paradigm which does not have a central role in the
curriculum nor in the industrial practice, but which nevertheless is considered vital for
deepening the learner's understanding of the fundamental processes of programming.
Main advantages of it can be summarized as follows:

• use of program schemata facilitates understanding the basic principles;
• process of acquiring the basic programming skills is speeded up (this fact is very

important in our specific case when not one, but two different paradigms are
treated in one subject);

8 M. BielikoVii and P. NCivrat

• already novices write programs which are better in the sense that they tend to be
truly functional; students in fact do not have much chance to try to apply their
previously acquired procedural habits as these soon came into conflict with the

schemata;
• schemata are a means not only to learn programming knowledge by the student,

but also to assess by the teacher the level to which the student has mastered it.

3. Schemata for Functional Processing of Lists

One of the sources of difficulty in learning functional programming is recursion, cf.
(Haynes, 1995). To understand it and to be able to apply it appropriately causes prob
lems to many learners. Another difficulty is lack of variables, and consequently avoiding
assignments. We therefore put much stress on explaining the role of recursion thoroughly.
We have found the problems related to processing of lists very suitable in this respect.

Our students can be considered novices in programming, especially with respect to the
functional paradigm. Therefore we restrict ourselves to problems in which: (i) the only
kinds of data are lists including atoms (numbers and symbols); later, we consider also
dotted-pairs; (ii) no indirect recursion is involved; (iii) no operations with side effects
are involved (such as input/output). Only gradually, when proceeding to solving more
complex problems, other schemata are presented (e.g., assignment, input/output, etc.).

3.1. Schema Representation

With regard to schema representation, our utmost objective has been simplicity. We delib
erately avoid introducing any unnecessary complexity, such as a new, different formalism
when new concepts can be satisfactorily represented using a known language, perhaps
with only a minor enhancement.

One feature that makes the programming language Lisp different from many other
languages is a relatively close distance from syntax to its interpretation. Assuming that
this property holds one can make conclusions on the semantical similarity of two func
tions by comparing their syntactic structure.

To keep the matters simple, we decided to write schemata in a language similar to
Lisp. We shall use two kinds of variables: first order variables (Lisp function arguments)
and schemata variables (variable function symbols). Variables begin with a capital letter.
Schemata that express classes of functions with various numbers of arguments or forms
are represented using an additional optional symbol. This symbol allows to mark place

for an argument or a form that may but need not occur in a definition of a particular
function of the class expressed by the schema. The optionality is represented by brackets.
Optional argument or form can be generalized by prefixing a schema variable with &.
For example, in the schema

(defun Map (List &V 1)

(cond «null List) nil)

Use of Program Schemata in Lisp Programming

(t (cons (Transform (car List) &V2)

(Map (cdr List) &V 3») »

9

the expression & VI can be replaced by a sequence of arbitrary number of arguments
(including none).

3.2. Hierarchy of Schemata

The basis for a particular schema is a typical structure of functions to solve some class of
similar problems. Moreover, we have defined a catalogue which includes several similar
schemata. The schemata can be organized into hierarchies. We have identified two im
portant groups of schemata, according to two general kinds of processing of lists: (i) list
processing at their top level only; (ii) list processing at all levels.

One of the important issues in teaching how to process lists is the order in which the
learners become acquainted with the different schemata. In both groups, we define pairs
of similar problems, e.g., substituing a symbol in a list by another one at the top level
of the list, and similarly, substituing a symbol in a list by another one at all levels of the
list. Our experience for several years has been that the students can cope better with the
kind of problems from the former class. In other words, to program processing of lists at
all levels seems to be more difficult for our students. That is why we start teaching the
former class and proceed to processing at all levels only later.

In Fig. 1, a hierarchy of schemata for processing of lists at the top level only is out
lined. The schemata identified in Fig. 1 can be found in Appendix. Thicker lines are used
to depict schemata that were actually taught during the semester that we report about
here.

In the case of processing of lists at all levels, the classes of problems are the same.
However, in many cases of processing of lists at all levels it is advantageous to consider
data not to be lists, but arbitrary s-expressions. In such a case the argument could be
considered to be a binary tree rather than a list. Each node in the binary tree is either
an atom or a dotted-pair. A node that is a dotted-pair has two successors (car and cdr).
Atoms are leaves of the tree. Each function must either process an atom (making use of
the fact that the empty list nil is an atom, too) or it must recursively call itself to car part
of the dotted-pair and the cdr part of the dotted-pair (and consequently, of the list).

Fig. 1. The hierarchy of schemata for processing of lists.

10 M. Bielikowi and P. Navrat

We grouped such schemata into one subgroup headed by the node DS-exp. It is a
parent for Reduce, Map and Predicate nodes in the hierarchy. A general schema for pro

cessing of a dotted-pair can be written:

(defun DS-exp (S-exp &V 1)
(cond &«Test S-exp &V2) Value)

[«atom S-exp) End-value)]
(t (Combiner (DS-exp (car S-exp) & V3)

(DS-exp (cdr S-exp) & V 4») »
In all the schemata we use a generalized optional argument (in form of &V i). It ex
presses an option that the schema instance (i.e .• a function definition) and similarly also
expressions which are applications of that function can have additional arguments (cf.
the schemata Map or DS-exp above). We assume that having in mind the main purpose of
the schema (i.e., processing oflists), these additional arguments usually play an auxiliary
role. Their incorporation can thus be reduced to a syntactical manipulation. Therefore,
we shall not include them in schemata.

The second aspect that must be taken into account when explaining schemata is the
function definition's syntactical structure itself. We have formed a set of schemata which
cover three important points of a recursive function definition:

1. a stopping condition (single test recursion, multiple test condition);
2. a method of performing the recursive step (tail recursion, fat recursion);
3. a way of reducing the original task to a simpler task (monotonic recursion,

nonmonotonic recursion, single parameter reduction, multiple parameter
reduction, single recursive call, multiple recursive call).

The schemata are described in full detail in (Bielikova and Navrat, 1997b). We note
that when explaining the processing of lists at the top level, we mention to students also
schemata with the tail recursion.

3.3. Schemata Combining and Programming Techniques

The crucial thing in applying schemata in programming is the ability to recognize a sit
uation when a combination of schemata is desirable. Let us consider an example when
those elements of a list which fulfil a condition are to be transformed and the other ones
simply deleted. The solution is to combine a schema for a list mapping and a schema
for a filter. The students should be explained a proper way of schemata combining. The
process is not always a simple one. One solution is to introduce a new schema that incor
porates both the schemata in question. We are firmly convinced (cf. also Sollohub, 1991)
that the programming experts in fact use such schemata. However, an introductory course
in functional programming should concentrate on those basic schemata from which the
other more complicated ones are formed. Number of schemata that a student is presented
and expected to learn within the limited period of time must be also quite limited.

When devising schemata. one important methodological tool that has proven invalu
able is generalization, and specialization as its inverse (Bielikova and Navrat, 1997a).

Use of Program Schemata in Lisp Programming II

Known examples of typical specific solutions are generalized. Several such generalized
skeletons are merged into one schema after possibly abstracting away some aspects in
some of them so that a common structure can be identified. As a result, we have a schema
that is rather general and abstract. To apply such a schema, a specialization (defining
a special value for a feature - inverse of generalisation) and a concretization (adding
a feature - inverse of abstraction) frequently takes place. Moreover, the schemata are

combined.

4. Experiments

It has been our assumption that teaching functional programming with schemata is more

efficient and that the students improve much faster (especially during the early stages
of the programming process). In order to either prove or refute this assumption, we pro

posed a set of experiments. The experiments build on our earlier experience with teaching
functional programming with schemata (limited to a few syntactically oriented ones such

as structural variants of a recursive function definition) which nevertheless improved the
speed with which the students mastered the basic practice in functional programming.

4.1. The Method of Experimentation

There are several issues that should be considered: what the students know, or what can be
assumed about their knowledge; experimental procedure; kinds of problems to be solved
and their assignment to students; which attributes to evaluate; the hypotheses.

The students who took part in the experiment can be divided according to two criteria.
First, whether they were given an explanation about the schemata. Second, whether they

had a catalogue of schemata available during the test. The first criterion is a consequence
of our University'S statutes, according to which attending lectures is not obligatory for
the students. Some students were present at the lectures when schemata were introduced

and explained to a considerable detail. The complement of the class can be assumed to be
practically ignorant (the version of our textbook (Bielikova and Navrat, 1997b) available
at that time did not include program schemata for processing of lists).

A subgroup of students was allowed to use the catalogue of schemata (elaborated
by the lecturer). The catalogue comprised of several schemata (six to eight). By apply
ing them, some assignments could be solved straightforwardly, some could be solved
after schemata were combined, and some after schemata specialization. The catalogue
included the schemata for processing of lists using both the fat recursion and tail recur
sion. In order to eliminate possible influence of other factors, schemata are named in such
a way that the names do not reveal the essence of the processing they express. For exam

ple, a schema for selectively counting those elements of a given list at the top level which

posses a given property was presented to the students in two forms:

12 M. Bielikova and P. Navrat

(defun Schema-l (List)
(cond «null List) 0)

«Test (car List» (+ 1 (Schema-l (cdr List»»
(t (Schema-l (cdr List»»)

(defun Schema-2 (List) (Schema-2-auxList 0»
(defun Schema-2-aux (List Aux)

(cond «null List) Aux)
«Test (car List» (Schema-2-aux (cdr List) (+ 1 Aux»)
(t (Schema-2-aux (cdr List) Aux»»

Each student was solving two tasks. Solving them was a two-phase process. First,
the student was expected to attempt to solve them with pencil and paper only. The time
alloted for this phase was 50 minutes. Next, the student was expected to implement the
solution (in the remaining time to 100 minutes). The number of assignments was chosen
with respect to the level of their difficulty.

We divided the assigned problems into two groups: (i) processing of lists at the top
level, and (ii) processing of lists at all levels. Solutions to assigned problems from both
groups could be formulated using the schemata from the hierarchy shown above. Each
student was assigned two problems from one group.

In the experiment, the following characteristics were evaluated:

1. correctness of the solution, taking into account also how application of a schema
contributed to it, expressed in marks out of two (maximum) for each problem;

2. role of computer in solving the problem (ideal interpreter in student's mind vs.
real interpreter implemented in computer);

3. the kind of recursion used (fat, tail).

4.2. Experimental Results

There were 105 students who took part in the experiments, all of them level 3 students
of our baccalaureate Informatics course in the software engineering track. Distribution of
the whole set of students into the four categories is shown in Table 1.

Perhaps the most important question to answer when trying to evaluate the approach
to learning functional programming based on schemata is concerned with a positive iden
tification of their influence on students' learning process. In our formulation, does the
use of schemata in learning functional programming influence results of novice learners?

Table I

Distribution of students into groups

Explanation

received?

Schemata available?

Yes

no

yes

31

19

no

21

34

Use of Program Schemata in Lisp Programming 13

Can it speed up the process of learning the paradigm? Our first hypothesis is: The results
when using schemata are better.

In Tables 2a and 2b we display the overall results of tests of students from all the
four subgroups (Table 1) either based on their marks out of 4, i.e., marks from the range
<0,4>, or expressed as a relative portion (per cent) of correct solutions within each sub
group.

The results in Table 2 allow some conclusions. Best results were achieved by the
students who had a prior information on schemata and at the same time they had the
catalogue of schemata at hand during the test. 83% out of them produced correct so
lutions. From the correctness point of view, accidentally the subgroup of students who
heard the presentation and explanation but did not have the catalogue of schemata at
hand during the test performed precisely equally as those students who had the catalogue
of schemata at hand during the test but did not hear their presentation and explanation
(both scored 58%). In the overall ranking, however, the students who learned about the
schemata beforehand, even if they did not have the catalogue of them at hand during the
test, performed better. Moreover, most of them were able to identify the schemata which
they had applied. We feel endorsed in drawing a conclusion that their knowledge of the
schemata was instrumental in achieving better results. The difference between them and
those students who had not heard the explanation before the test once again supports the
hypothesis about the positive influence of schemata on learning functional programming.

There is one problem which is relevant for most of our students. In their programming
career, at the moment when they are first confronted with the functional paradigm, they
have already gathered some experience with the procedural paradigm. Not only their first
programming course was in C and they were also using some assembly language and
Pascal later, but also most of them work in part time jobs for the local software indus
try where the use of the procedural paradigm is still quite frequent. Applying the tail
recursion when programming the processing of a list by way of introducing an auxil
iary parameter which serves as a local variable (cf. the Schema-2 above) is a technique
close in spirit to the procedural paradigm (it amounts in fact to an assignment). It can
be used also in a functional programming language, but it is not considered to be con
form with the functional style of programming. However, based on their procedural past,
we hypothesized that the students, when having available both options, choose the tail
recursion. Similar assumption was made by Gegg-Harrison, who chose the Prolog predi-

Table 2

Overall results of tests

Schemata available?

yes no

Explanation yes 3.52 3.26

received? no 2.61 2.27

a

yes no

yes 83% 58%

no 58% 38%

b

14 M. Bielikovti and P. Ntivrat

cates with the tail recursion to be the first ones to learn using schemata in learning logic

programming (Gegg-Harrison, 1991).
Evaluation of our experiment shows that from 105 students, only 5 students tried to

apply the schema with the tail recursion, and only 2 of them successfully. The hypothesis
that students prefer the tail recursion has been refuted.

Another question which is frequently discussed with respect to learning programming
concerns the role of computer and'importance of its direct usage when solving a program
ming problem. A quite frequent pattern of a student's problem solving procedure includes
an initial sketch of a design of the solution on a paper and then an interaction with a com
puter during which implementation of the solution is attempted to be completed. We shall
refrain in this paper from commenting on such a pattern with respect to its appropriate
ness etc. We wanted to find out whether the peculiar variety of the trial and error method
is applied because of greater comfort or because of inability to devise a correct solution
by using paper and pen only.

We have found out that 54% of all students had the correct solution already sketched
on a paper. The remaining students had not and most of them could not improve the origi
nal sketch during computer implementation. Their modifications concerned usually some
minor changes like amending of completing tests in cond forms. The likely conclusion
is that in most cases, direct usage of a computer when solving a programming problem
does not have a clearly positive effect.

Another hypothesis which we attempted to get confirmed or refuted was the one re
lated to the question if problems of processing of lists at all levels are harder to solve for
learners than processing of lists at the top level only. Our hypothesis is: processing of a
list at all levels is more difficult to programfor learners. We based our hypothesis, on our
several years' experience.

All the problems of processing of a list such that they preserve the structure of the list
can be generalized to processing of an arbitrary s-expression (i.e., an atom or a dotted
pair). In such a case, the general schema DS-exp should be used. Other (more special)
schemata are listed in Appendix.

Having been explained these schemata, the students could apply them equally (easily)
as the schemata for processing of lists at the top level. The choice of problems did not
influence the results.

Now, in the experiments reported here we specifically evaluated the success rate of
students for the two classes of problems. In Table 3, the results show that the overall av
erage of marks for solving problems of processing of a list at all levels is even slightly
higher than of processing of a list at the top level only. However, when we adjusted the
results by deleting the total failures, the relation became reversed in a very slight way. We
can conclude that students perform equally well for both kinds of problems.

One interesting result with respect to processing of a list at all levels emerged after
tracing how successful were those students who made use of the idea of considering a
binary tree instead of a list. From those students who applied the corresponding schema
only one student (0.9%) made an error. All the rest of them devised correct solutions. On
the other hand, when students applied the idea known from processing of a list at the top

Use of Program Schemata in Lisp Programming

Table 3

Success rates of solving processing of lists at the top level and at all levels

overall results Adjusted results (total

failures not considered)

4> marks 4> marks

top level only 2.79 3.27

all levels 2.93 3.14

Table 4

Solving processing of lists at all levels

the schema list = binary tree yes

applied no

correct solution

yes

33.6%

23.6%

no

0.9%

41.8%

15

level (process the empty list, depending on the test applied to the first element process
the first element and process the rest of the list), their error rate increased significantly.
The students forgot very often to process the first element of the list, or they prescribed
to process without testing if it was a list (but their function could not process an atom).

Finally we wish to summarize briefly the errors that occured most often during the ex
periment. We wish to emphasize that many kinds of errors which were commited mainly
due to acquired habits from other programming paradigms (especially the procedural
one) could be prevented by restricting the set of functions of the language Lisp that were
authorized to use. For example, the assignment (set, setq, set/) was not allowed.

The errors that we list below are the commonest ones according to our experience. We
are convinced that with even more emphasis on explaining and practising with schemata,
the errors will be still reduced in the future. The errors are:

• not a completed stopping condition;
• not recursing into the rest of the list (when processing of the list at all levels,

students frequently considered recursion for the first element only and forgot
completely about the rest);

• not recursing into the first element of the list (when not regarding the list to be a
binary tree);

• inappropriate constructor;
• complete conditions in each branch;
• conditions that can never be true;
• use of the form cond in connection with the logical functions and, or, i.e.,(cond

«and) t) (t nil))

• nesting cond forms into several levels.

16 M. BielikoVil and P. Navrat

5. Conclusions

In the paper we present the program schemata which we use in teaching functional (Lisp)
programming and the way how to represent them. The method is based on building a cat
alogue of program schemata (ultimately to be stored in learners' mind). This is the reason
why the simplicity of program schemata representation is crucial. We realise that formal
methods for representing program schemata, such as those presented in (Flenner et al.,
1997; Vasconcelos and Fuchs, 1995) for logic programming, are important and inevitable
when exploring properties of the created solution, its correctness, etc. On the other hand,
when teaching novices (especially when very short period of time is available), very sim
ple set of schemata should be devised. To speed up learning, ready to use knowledge
should be presented to learners. Our program schemata were devised with this point in
mind. They are purposely "incomplete" in the sense that their specialization cannot be
for some problems completed at the syntactic level.

The very basics of Lisp programming is covered in 2 three hour lectures (the language)
and 3 three hour lectures (programming with schemata). The lectures are by no means
sufficient to learn programming so a big stress is put on exercises. An important benefit
is that the students gain better fundamentals and less students remain "totally lost". In
discussions, their questions are more relevant and show more insight.

We have been aware of possible shortcomings of the use of schemata in teaching
programming, as voiced for example by Bowles and Brna (1993):

• when there are too many schemata or plans, it becomes difficult to learn them. We
use only a limited number of them and focus to master the fundamentals faster and
better;

• use of schemata supports the tendency to concentrate to structural properties of
the solution. Therefore, we complement the teaching by discussing programming
techniques, too (similarly to Bowles and Brna);

• there exists a danger that the student has not understood the essence of the
schema, but is simply able to apply syntactically one. We guide the students to
solve also more complex problems where a pure syntax based application cannot
lead to a correct solution. Schemata (such as those that we mentioned in this paper)
help form a bottom layer of the program. Frequently, schemata must be combined
using various programming techniques. Moreover, the schemata are not available
directly on a paper, but the students are expected to achieve a level of mastery
when they are able to devise new schemata and maintain known schemata in mind.

Our approach is based on the idea that by arriving swiftly to a correct understanding
of how to solve a rather modest number of basic classes of problems, the students will
be able to solve also other more or less similar problems. We have experimentally veri
fied the fact that the novices are able to devise correct functional programs in a shorter
time using schemata when comparing to the "traditional" approach. The use of schemata
makes teaching functional programming more effective. One interesting result is also that
when learning with schemata, students have less difficulty with processing of a list at all
levels.

Use of Program Schemata in Lisp Programming

6. Appendix - Program Schemata Used in Experiments

Processing of lists at the top
level only

(defun Map (List)

(cond «null List) nil)

(t (cons (Transf(car List»

(Map (cdr List»» »

(defun Reduce (List)
(cond «null List) Neutral-Value)

(t (Reduction
(car List)

(Reduce (cdr List»» »

(defun Count-if (List)

(cond «null List) 0)
«Test (car List»

(+ 1 (Count-if(cdrList»»
(t (Count-if(cdr List»»)

(defun Count-if-not (List)

(cond «null List) 0)

«Test (car List»
(Count-if-not (cdr List»)

(t (+ 1
(Count-if-not (cdr List») »)

(defun Find-if (List)

(cond «null List) Fail-Value)
«Test (car List» (car List»
(t (Find-if(cdr List») »

(defun Every (List)

(cond «null List) t)

«Test (car List»
(Every (cdr List»)

(t nil) »

(defun Some (List)
(cond «null List) nil)

«Test (car List) t)

(t (Some (cdr List») »

Processing of lists at aU levels

(defun DMap (S-exp)

(cond «Test S-exp)
(Transf(S-exp»

[«atom S-expr) S-exp)]
(t (cons (DMap (car S-exp»

(DMap (cdr S-exp»»»

(defun DReduce (S-exp)
(cond «Test S-exp) S-exp)

« atom S-exp) N eutral-Value)
(t (Reduction

DReduce (car S-exp»
(DReduce (cdr S-exp)))) »

(defun DCount-if(S-expr)
(cond «Test S-expr) 1)

«atom S-expr) 0)
(t (+

(DCount"if(car S-expr»

(DCount-if(cdr S-expr»»»

(defun DCount-if-not (S-exp)

(cond «Test S-exp) 0)

«atom S-exp) 1)
(t (+

(DCount-if-not (car S-exp»
(DCount-if-not (cdr S-exp»»»

(defun DFind-if(S-exp)
(cond «Test S-exp) S-exp)

«atom S-exp) nil)
(t (or (DFind-if(car S-exp»

(DFind-if(cdr S~exp»»»

(defun DEvery (S-exp)
(cond «Test S-exp) t)

«atom S-exp) nil)
(t (and (DEvery (car S-exp»

(DEvery (cdr S-exp»»»

(defun Dsome (S-exp)
(cond «Test S-exp) t)

«atom S-exp) nil)

(t (or (DSome (car S-exp»

(DSome (cdr S-exp»»»

17

18 M. BielikowJ and P. Ndvrat

(defun None (List) (defun Dnone (S-exp)

(cond «null List) t) (cond «Test S-exp) nil)

«Test (car List» nil) «atom S-exp) t)

(t (None (cdr List») » (t (and (DNone (car S-exp»
(DNone (cdr S-exp))))))

(defun Some-not (List) (defun DSome-not (S-exp)

(cond «null List) nil) (cond «null S-exp) nil)

«Test (car List» «Test S-exp) nil)
(Some-not (cdr List») «atom S-exp) t)

(t t) » (t (or
(DSome-not (car S-exp»
(DSome-not (cdr S-exp)))

) »

(defun Remove-if(List) (defun DRemove-if(List)
(cond «null List) nil) (cond «null List) nil)

«Test (car List» «Test (car List»
(Remove-if(cdr List») (DRemove-if(cdr List»)

(t (cons (car List) «atom (car List»
(Remove-if(cdr List») (cons (car List)

) » (DRemove-if(cdr List»»
(t (cons

(DRemove-if(car List»
(DRemove-if(cdr List»)

) »

References

Bielikovli, M., and P. Nlivrat (1997a). A schema-based approach to teaching programming in Lisp and Prolog.
In P. Bma and D. Dicheva (Eds.), Proc. PEG'97 Int. Con! pp. 22-29.

Bielikovli, M., and P. Nlivrat (I997b). Functional and Logic Programming. STU Bratislava (in Slovak).
Bowles, A. and P. Bma (1993). Programming plans and programming techniques. In P. Bma, S. Ohlsson and

H. Pain (Eds.), Proc. World CO'!f. on Artijiciallntelligence in Education. AACE Press. pp. 378-385.
Buschmann, F., R. Meunier, P. Sommerhand and M. Stal (1996). Pattern Oriented Software Architecture: A

System (~(Patterns. John Wiley & Sons.
Davies, S., an~ A.M. Castell (1993). Embodying theory in intelligent tutoring systems: an evaluation of plan

based accounts of programming skill. C(imputers and Education, 20(I), 89-96.
Davies, S. (1996). The role of external information sources in computer programming - a framework for un

derstanding programming strategies. In P. Vanneste, K Bertels, B. De Decker and J.M. Jaques (Eds.), Proc.
8th Annual Workshop Psychology (if Programming. pp. 167-173.

Flenner, P., KK Lau and M. Omaghi (1997). Correct-schema-guided synthesis of steadfast programs. In M.
Lowry and Y. Ledru (Eds.), Proc. IEEE Con! on Automated Software Engineering. IEEE Press.

Gamma, E., R. Helm, R. Johnson and R. Vlissides (1995). Design Patterns: Elements (if Reusable Object
Oriented Sl~(tware. Addison-Wesley.

Use of Program Schemata in Lisp Programming 19

Gegg-Harrison, T.S. (1991). Learning Prolog in a schema-based environment. Instructional Science, 20, 173-
192.

Gegg-Harrison, T.S. (1996). Extensible logic program schemata. In I. Gallagher (Ed.), Proc. I!f the 6th Int. Cont
on Logic Program Synthesis and Transj(Jrmation. Springer-Verlag.

Haynes, S.M. (1995). Explaining recursion to the unsophisticated. SIGSCE Bulletin, 27(3), 3-6.
Joosten, S. (Ed.), K van den Berg and G. van der Hoeven (1993). Teaching functional programming to first-year

students. 1. Functional Programming, 3(1), 49-65.
Khazaei, B., 1. Siddiqi, A. Harnack, R. Osborn and C. Roast (1996). Further investigations into transfer effect

of moving from procedural to logic programming. In P. Vanneste, K Bertels, B. De Decker and J.M. Jaques
(Eds.), Proc. 8th Annual Workshop Psychology I!f Programming. pp. 25-42.

Koziak, I. (1997). Analyzer: automated deriving of descriptions of student progmms. In P. Brna and D. Dicheva
(Eds.), Proc. PEG'97 Int. C01'!f pp. 47-54.

Navmt, P., and V. Rozinajova (1993). Making programming knowledge explicit. Computers and Education,
21(4),281-299.

Navrat, P. (1996). A closer look at programming expertise: critical survey of some methodological issues.
i1'!f(Jrmation and SI!frware Technology, 38(1), 37-46.

Pree, W. (1994). Design Patterns.f{Jr Object-oriented SI!frware Development. Addison-Wesley.
Shaw, M., and D. Garlan (1996). S(!frware Architecture - Perspectives l!f an Emerging Discipline. Prentice Hall.
Sterling, L.S., and M. Kirschenbaum (1993). Applying techniques to skeletons. In J.M. Jacquet (Ed.), Con-

structing Logic Programs. John Wiley. pp.127-140.
Sollohub, C. (1991). Programming templates: professional programmer knowledge needed by the novice. Com

puter Science Education, 3, 255-266.
Soloway, E., and K Ehrlich (1988). Empirical studies of programming knowledge. IEEE Trans. on SI!frware

Engineering, 10(5),595-609.
Vasconcelos, w.w. (1994). Designing Prolog progmmming techniques. In Proc. (!f"the 3rd Int. Workshop on

Logic Program Synthesis and Tran~formation. Springer-Verlag.
Vasconcelos, w.w., and N.E. Fuchs (1995). Prolog program development via enhanced schema-based transfor

mations. In Proc. 1!f7th Workshop on Logic Programming Environments.
Weber, G., and A. MOllenberg (1995). ELM programming environment: A tutoring system for Lisp beginners.

In KF. Wender, F. Schmalhofer, H.D. Bocker (Eds.), Cognition and Computer Programming. Albex. pp.
373-408.

Maria Bielikova was born in Slovakia in 1966. She received her Ing. (MSc.) in 1989
from Slovak University of Technology in Bratislava and her CSc. (PhD.) degree in 1995
from the same university. She is an assistant professor at the Department of Computer
Science and Engineering at Slovak University of Technology in Bratislava, where she is a
member of the Intelligent support of software development research group. Her research
interests include functional and logic programming, knowledge engineering, software
development and management of versions and software configurations. She is a member
of IEEE Computer Society and the Slovak Society for Informatics.

Pavol Navrat was born in 1952 in Bratislava, Slovakia. He received his Ing. (MSc.)
summa cum laude in 1975, and his CSc. (PhD.) degree in Computing Machinery in 1983
both from Slovak University of Technology in Bratislava. He has been with Slovak Uni
versity of Technology since 1975. In 1989-1990, he spent 5 months as a visiting associate
professor with the Department of Informatics, University of Athens, Greece. In 1992-
1994, he joined as an associate professor the Department of Mathematics, University of
Kuwait for two academic years. Since 1996, he is a full professor of Computer Science

20 M. Bielikova and P. Navrat

and Engineering. He (co-)authored two books and numerous scientific papers. His sci

entific interests include automated programming and software engineering, knowledge

based methods for assistance in programming and software development, as well as other
topics in Software Engineering. He is a member of the IEEE and its Computer Society,
the American Association for Artificial Intelligence, and the Slovak Society for Infor

matics. He is also a member of the Association for the Advancement of Computing in
Education, for which he volunteers as a regional liaison officer.

Programq schemq naudojimas programuojant LISP kaIba.
StudentQ mokymo aspektai

. Maria Bielikova, Pavol Navrat

Straipsnyje aprasoma patirtis, kaip, mokant furikcinio programavimo pagrindq, buvo naudo
tas programq schemq konstravimas ir aiskinimas. Pateikta sllraso apdorojimo programos schema.
Aprasyti eksperimentai, pagal kuriq rezultatus galima spr~sti, kad tikslinga mokyti funkcinio pro
gramavimo, pateikiant studentams programq schemq rinkini ir ismokant juos, kaip tas schemas
taikyti.

