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Abstract. In this research, we develop an algorithm for linear programming prob­
lems based on a new interpretation of Karmarkar's representation for this problem. Ac­
cordingly, we examine a suitable polytope for which the origin is an exterior point, and in 
order to determine an optimal solution, we need to ascertain the minimum extent by which 
this polytope needs to be slid along a one-dimensional axis so that the origin belongs to 
it. To accomplish this, we employ strongly separating hyperplanes between the origin and 
the polytope using a closest point routine. The algorithm is further enhanced by the gen­
eration of dual solutions which enable us to deform the polytope so that it is favorably 
positioned with respect to the origin and the axis of sliding motion. The overall scheme is 
easy to implement, requires a minimal amount of storage, and produces quick good qual­
ity lower bounds for the problem in its infinite convergence process. A switchover to the 
simplex method or an interior point method is also possible, using the current available 
solution as an advanced start. Preliminary computational results are provided along with 
implementation guidelines. 
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1. Introduction. Consider a linear programming problem of the fonn 

Minimize {cy: Ay = b, y ~ O} (1.1) 

where A is an m x n matrix. The algorithm proposed below constructs a poly­

tope based on (1.1), using both the objective function and constraints. By using a 

suitable sliding, rotation, and defonnation of this polytope, the algorithm deter­

mines an optimal solution to (1.1). To define this polytope, let us first transfonn 
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the given linear programming problem to an equivalent form having the repre­
sentation used by Karmarkar (1984). 

Toward this end, following Tomlin (1985), let us impose an upper bound 
Q on the sum of the variables in (1.1), where this constraint either artificially 
bounds the polyhedron in (1.1), or is implied by it. Denoting the slack variable in 
this constraint as Yn+ 1, and constructing a dummy variable Yo defined to be unity 
in order to homogenize the constraints, we can write this linear program as 

Minimize cy 

subject to Ay - byo = 0, 
n 
E Yj + Yn+1 - Qyo = 0, 
j=l 

n 
E Yj + Yn+! + Yo = (Q + 1), 
j=l 
Yo,··· ,Yn+1 30, 

where the last two equality constraints imply that Yo == 1. Finally, using the 
variable transformation Aj = Yj/(Q + 1) for j = 0,1,2, ... , n + 1, we may 
equivalently write this problem as follows, where A = [a1, ... , an]. 

Minimize 

subject to 
n 

LajAj - bAo = 0, 
j=l 

n 

LAj + An+1 - QAo = 0, 
j=l 

n 

L Aj + An+! + AO = 1, 
j=l 

AO,'" ,An+! 3 O. 

(1.2a) 

Define A = AO,' .. ,An+1)t, C = (co, Cl, . .. , Cn, Cn+1) with Co = Cn+1 == 0, let 
G = [go, ... , gn+!l, where 



An exterior-point polytope sliding and deformation algorithm 561 

and denote by e a (row) vector of n + 2 ones. Then, we may write the linear 
program (LP) in (1.2a), which is the problem we intend to solve, as follows 

LP: Minimize {C>.: G>' = 0, e>' = 1, >. ~ O}. (1.2b) 

Note that our choice of the notation "X' is to emphasize the convex combi­
nation interpretation afforded by (1.2b). To further develop this interpretation, let 
zk be some known lower bound on the optimal objective value for LP at iteration 
k of some algorithmic process, and define the vectors 

k _ [Cj - zk] v· -
J 9j 

Consider the polytope 

for j = 0, ... , n + 1. 

X(Zk) = conv{vj: j = 0, ... , n + I}, 

(1.3) 

(1,4) 

where conv{- } denotes the convex hull operation (see Fig. 1). Note that if 
° E X(zk), then 0 can be represented by some convex combination of vj, 
j = 0, ... ,n + 1, that is, there exists a vector>' = >.k which satisfies the system 

n+l 

Lvj>'j = 0, e>' = 1, >. ~ 0. 
j=O 

Therefore, this >. = >. k satisfies the system 

C>'=Zk, G>'=O, e>'=l, >.~O. 

(1.5a) 

(1.5b) 

Since zk is a lower bound on the optimal objective value for LP, we therefore 
have that>. is an optimal solution to LP of objective value zk. On the other hand, 
suppose that the origin lies exterior to X(zk). The problem then becomes one 
of determining the minimum amount by which zk needs to be increased for the 
origin to belong to the resulting X(zk), if at all possible. Noting from (1.3) and 
(1,4) that increasing zk simply results in reducing the first component of each 
vector vj Vj by that same amount, this process is equivalent to sliding the poly­
tope X(zk) for any zk along the negative first axis direction, until the origin 
belongs to this polytope. Fig. 1. illustrates this process conceptually. For conve­
nience, we will hereafter refer to the first axis direction as the z-axis. Note that 
the shape of the polytope X (zk) is invariant with respect to zk; only its position 
with respect to the z-axis changes as zk is increased. Furthermore, observe that if 
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Fig. 1. Polytope sliding algorithm. 
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the z-axis does not pierce the polytope. then zk -+ 00 in this sliding process. and 
the problem is evidently infeasible. Otherwise, if z* denotes the optimal objec­
tive value for LP, then by sliding X{zk) along the negative z-axis by the amount 
(z* - zk), we will obtain X(z*) with the origin belonging to this latterpolytope. 
The convex combination weights A* that represent the origin in X{z*) in terms 
of its vertices would then yield an optimal solution to LP. Observe also that if we 
continued this sliding process further, we would trace solutions that take on all 
the objective values possible for LP, up to the maximizing solution value, beyond 
which the origin would again become exterior to the polytope. 

The algorithm proposed here exploits this interpretation by iteratively im­
proving the lower bound zk via a closest point routine. This routine either ver­
ifies that 0 E X(zk), whence z* = zk, or else generates a strongly separating 
hyperplane between the origin and the polytope. This hyperplane permits us to 
increase zk, and hence to slide the polytope by an additional amount !:J.. k (see 
Figure 1), and the process continues until c-optimality is achieved (finitely), for 
any chosen tolerance c > O. Furthermore, we also exhibit how a sequence of 
dual feasible solutions, approaching an optimal solution, may be generated and 
used algorithmically to deform the polytope at each iteration so that all its vertices 
have nonnegative z-axis components. Additional enhancements are also proposed 
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to curtail computational effort, and to increase the amount of sliding at each iter­
ation by suitably rotating the separating hyperplanes. 

The proposed algorithm may be used in one of two capacities, besides as 
a direct algorithm for solving linear programming problems. First, because it is 
easy to implement, makes rapid initial progress, and has a minimal storage re­
quirement, it offers a useful alternative for obtaining lower bounds based on lin­
ear programming relaxations for discrete optimization problems. In this context, 
the primal and dual solutions available can moreover be used to derive heuris­
tic solutions for discrete problems, and to generate strong Benders' inequalities 
if necessary (see Parker and Rardin, 1987). Second, this method can be used to 
provide an advanced-start solution for the simplex method or for interior point 
methods. As an algorithm for linear programming, this switchover is also recom­
mended in order to accelerate the convergence of the method. 

The remainder of this paper is organized as follows. Section 2 presents a 
generic statement of the basic algorithm, and establishes its convergence. A tech­
nique for tightening the lower bound via a suitable rotation of the constructed 
separating hyperplanes is provided in Section 3, and Section 4 discusses the gen­
eration of dual solutions along with an accompanying deformation of the poly­
tope. The overall algorithm with these modifications is stated in Section 5, and 
its convergence is established. Finally, Section 6 presents some computational 
results along with implementation guidelines. 

2. Generic rudimentary algorithm. The basic polytope sliding procedure 
introduced in Section 1 hinges on the generation of a strongly separating hyper­
plane via a closest point routine (CPR) that can determine a closest point to the 
origin in the convex hull of a finite number of points relative to a given point. 
Specifically, we require a closest point routine (CPR) which is capable of ac­
complishing the following. (Sherali and Choi, 1993, present and test one such 
method, and compare it with some alternatives.) 

Closest Point Routine (CPR) 

Input: We are given IIj, j = 0, ... , n + 1 for some lower bound zk on LP, 
a point xk E X(zk) == conv{lIj, j = 0, ... , n + I} along with the convex 

combination weights )..k such that xk == I:j~g IIj)..J, where e)..k = 1 and)..k ~ 
0, and we are also given a constant ° < J.L ~ 1, and some tolerance c > 0. 

Output: Case (1). If ° E X (zk), then starting with pl = xk, the method 
should generate a sequence {pt} in X(zk) which either terminates finitely with 
an element pT = 0, or else {pt} -+ 0. Hence, in a finite number of iterations, we 
should obtain xk+l == pT for some T ~ 1 such that Ixk+ l l2 ~ c. 
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Case (2). If 0 ~ X{zk), then starting with pI = xk, an element xk+l _ 
pT E X{zk) should be produced for some finite T ~ 1, such that 

Hence, we would then have 

(2.2) 

while the origin would lie strictly in the opposite half-space, i.e., 

Therefore, the hyperplane defining (2.2) would strongly separate the origin from 
X{zk). In particular, note that ifit happens that xk+l is the closest point in X (zk) 
to the origin, then (xk+l )t{x - xk+l) ~ 0 for all x E X{zk), and so from (2.1), 

(xk+l)tllj(k) = Ilxk+1112. This motivates our choice of 0 < J.L ~ 1 in (2.1), 
which controls the degree of accuracy imposed on determining the closest point 
in X{zk) to the origin. 

Moreover, in either Case (1) or Case (2), the CPR should also yield a 
corresponding set of convex combination weights A k+1 such that xk+ 1 = 
L:;~~ lIj A;+I, where eAk+l = 1 and Ak+l ~ O. Then, using any such pro­
cedure as a subroutine, we derive the following algorithm. 

Polytope Sliding Algorithm (PSA) 

Initialization: Put k = 1, select zk = Cmin == min { Cj: j = 0, ... , n + I} 
as a starting lower bound for LP, and define lIj, j = 0, ... , n + 1, and X (zk) as 
in (1.3) and (1.4), respectively. Define 

A~ = l/{Q + 1), AJ = 0 for j = 1, ... , rn, and A~+1 = Q/{Q + 1), 

as a starting set of convex combination weights, and accordingly, let 

n+l [-Cmin 1 
xk=?:lIjAj== -b/(Q+l) 

)=0 . 0 

be the corresponding point in X{zk). Select a termination tolerance e > 0, a 
constant 0 < J.L ~ 1, and proceed to Step 1. 
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Step 1 (CPR): Starting with xk E X(zk), invoke a closest point routine CPR 
to produce a solution 

n+! 
xk+! == L vj A~+1 E X(zk). 

j=O 

If II xk+!1I2 ~ c (Case (1) or Case (2) of CPR), go to Step 3(a). Otherwise, 
Ilxk+1112 > c, and as in Case (2), we obtain xk+! E X(zk) satisfying (2.1) and 
(2.2). 

Step 2 (Sliding operation): If the component x~+! ~ 0, go to Step 3(b). 
Otherwise, compute the point (~k, 0, ... ,oy lying on the intersection of the z­
axis and the hyperplane defined in (2.2). Hence, we obtain ... 

(2.3) 

Consequently, the polytope (and the separating hyperplane) can be slid along the 
negative z-axis by the amount ~ k, and the hyperplane will remain a separating 
hyperplane between the origin and the polytope. In other words, we can raise the 
lower bound to zk+l = zk + ~k and accordingly, put 

and let 

be the new iterate. Note that xk+1 = L:7':;~ vj+1 A~+1 E X (Zk+l). Increment k 
by one and return to Step 1. 

Step 3(a) (c-optimality): Consider the convex combination vector corre­
sponding to xk+!. Now we have 
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and 
I(GA)rl=lx~til:::;llxk+ll1oo for r=1, ... ,m+1. 

Since Ilxk+1l1oo :::; Ilxk+1 11 :::; ..rc, we have 

That is, A = Ak+1 is an c-optimal solution to Problem LP. Note that with integer 
data, and with c = 2-2L , where L is the number of binary bits required to store 
the data, Ak+l can be rounded to a feasible solution using the method of Gacs and 
Lovasz (1981). Alternatively, we can switchover to the simplex method for ex­
ample, using suitable artificial variables and the purification technique described 
in Bazaraa et al. (1990), and hence polish Ak+l to an exact optimum. 

Step 3(b) (Infeasibility): Since x~+1 :::; 0, Ilxk+1112 > c, and (2.1) and (2.2) 
hold, we now have for any point <I> = (cP, 0, ... , O)t on the z-axis, cP ~ 0, that 

(Xk+l)t(<I> - IIJ(k)) = cPx~+1 - (Xk+1 )t IlJ(k) ~ -(xk+1)t IlJ(k) 

:::; -JLllxk+111 2 < -JLc. (2.4) 

Hence, the nonnegative z-axis is strongly separated from X(zk) by the hyper­
plane (2.2), and so we can terminate with the indication that LP is infeasible. 

The above algorithm therefore produces an increasing sequence of valid 
lower bounds for LP, and when it terminates at Step 3, it does so with either 
an c-optimal solution or with a valid indication of infeasibility. The following 
result establishes finite convergence of the algorithm, and addresses the issue of 
running the algorithm with c = O. 

Theorem 1 (Convergence theorem). 
(a) Given c > 0 and 0 < JL ~ 1, the Polytope Sliding Algorithm (PSA) 

terminates finitely in less than 1 + (Cmin - Cm in)2 / JLc iterations, where Cmax and 
Cmin are, respectively, the largest and the smallest values of Cj, j = 0, ... , n + 1. 

(b) Suppose the PSA is run with c = 0, for some 0 < JL :::; 1. Then either 
(i) CPR will generate a sequence {pt} in X(zk) for some k such that pT = 0 
for some finite t = T, or such that {pt} -+ 0, or (ii) the Algorithm PSA will 
terminate finitely at Step 3(b) with an infeasibility indication, or (iii) an infinite 
sequence {xk} will be generated such that {xk} ---4 O.lfpT = o occurs finitely 
in Case (i), then the convex combination weights corresponding to pT solve LP. 
Otherwise, in the first and third cases, the limit of any convergent subsequence 
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o/the convex combination weights generated, corresponding to {pt} in Case (i) 
and to {xk} in Case (iii), solves LP. 

Proof. (a) Note that while termination has not occurred, we have II xk+111 > 
c and x~+1 > O. In particular, and since {zk} is an increasing sequence with 
zl = Cmin, we have 

n+1 n+1 

o < x~+1 = L >.j+1 (Cj - zk) = (L >.j+1Cj ) - zk ~ Cmax - Cmin. (2.5a) 
j=O j=O 

This implies that 

Cmin ~ zk < Cmax , and that 0 < x~+1 ~ Cmax - Cmin. (2.5b) 

However, from Step 2 of PS A, we have using (2.1), (2.3), and (2.5b), that 

(xk+1 )tvk 
zk+1 = zk + fj,k = zk + J(k) 

-k+1 
Xl 

Consequently, from (2.5b) and (2.6), we deduce directly that 

k 1 (k - l)j.tC (k - l)j.tc 
Cmax > Z ~ Z + ( ) = Cmin + ( ) . 

Cmax - Cmin Cmax - Cmin 

If k ~ 1 + (Cmax - Cm in)2 / j.tC, this gives a contradiction, hence establishing the 
required bound on the number of iterations. 

(b) The assertions concerning cases (i) and (ii) are readily evident. On the 
other hand, if cases (i) and (ii) do not occur, then an infinite sequence {xk} is 
generated such that x~+1 > 0 for all k. Hence, we have (2.5) holding, and as in 
(2.6), we obtain 

Since {zk} is bounded above by Cmax from (2.5b) and is strictly increasing, this 
means that {zk} converges to some Z, and moreover, we must have {II xk+ 111} -­
o and also {fj,k} __ O. But IIxk +111 ~ Ilxk +111 + fj,k. Hence, {lIxk ll} __ 0, and 
so {xk} __ o. Since an optimal solution to LP corresponds to a set of convex 
combination weights that represent the origin in terms of the vertices of X(z) 
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for some lower bound z, whence z must be the optimal value, this completes the 

proof. 

Several remarks which offer in sights into the operation and interpretation of 
the above algorithm are given below. 

REMARK 1. The algorithm can be initialized using any known feasible solu­
tion to (1.1), if so desired. The starting solution suggested at the initialization step 
of the procedure is adequate in practice because of the rapid initial improvements 
made by the algorithm. Moreover, the algorithm is oblivious to any degeneracy 
related issues or to the rank deficiency of A in (1.1). 

REMARK 2. There is an interesting interpretation for Algorithm PSA in 
light of Newton's algorithm (see Bazaraa et al., 1993). Noting (1.3), let us de­
fine 

2 

~ [c. -z] f(>",z) = L...J J. >"j 
j=O g3 

(2.7a) 

and consider the function 

'l/J(z) = Minimum{f(>.., z): e>.. = 1, >.. ~ o}. 
A 

(2.7b) 

Note that 'l/J(z) is the distance of the closest point in X (z) to the origin, and we 
wish to find the smallest z for which 'l/J(z) = O. Now, given zk, suppose that CPR 
finds Xk+l as the actual closest point in X(zk) to the origin, where x1+1 > O. 
Hence, because of the uniqueness of the closest point, for any optimal solution 
>..k+l to (2.7b), we have 

uniquely. Moreover, if 'l/J(. ) is differentiable at z = zk, then its derivative can be 
obtained as 

'l/J'(Zk) = _2(C>..k+l - zk) = - 2x1+1 . 

Therefore, the first-order approximation to 'l/J(. ) at z = zk is given by 

and this is zero when 
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where we have used (2.1) at the last step. However, note that this Newton step is 
half the actual stepsize we take in (2.3), and hence, this method accounts for the 
curvature of 'lj;(. ) as well, and goes beyond a Newton based scheme for finding a 
( smallest) root for 'lj; (. ). 

3. Rotation of the separating hyperplane. Recall that in the Polytope 
Sliding Algorithm PSA, the closest point routine either generates an element in 
X (zk) which is sufficiently close to the origin, or else, unless infeasibility is rec­
ognized at this step, it constructs a separating hyperplane (2.2) which permits 
the revision of tlk given by (2.3) in the lower bound. We can possibly further en­
hance the improvement in the lower bound beyond that given by (2.3) by suitably 
rotating the separating hyperplane before conducting the sliding operation, while 
maintaining it as a strongly separating hyperplane. 

Specifically, noting (2.1), (2.2), and (2.3), consider the separation problem 
(SP) given below, where x~+1 ~ O. 

SP: Maximize (3tv;(k) (3.1a) 

subject to (3t(v; - V;(k)) ~ 0 for j = 0, ... , n + 1, (3.1b) 

{3 - x-k +1 1 - 1 . (3.1c) 

Note that {3 = xk+l is a feasible solution to SP with objective value 

(xk+1)tv;(k) ~ pllxk+1112 > pe from (2.1). Hence, if {3* solves SP, then from 

(3.1b) the hyperplane (3*t(x - v;(k)) = 0 will strongly separate the origin from 

X(zk). Moreover, from (3.1a), (3.1b), and (2.3), this hyperplane will permit a 
maximum improvement in the lower bound from among all such separating hy­
perplanes which support X(zk) at v;(k)' Of course, (4.1) is itself a linear pro­
gramming problem, and naturally, we do not require this to be solved optimally. 
Instead, we propose a Gauss-Seidel type of coordinate ascent heuristic which 
starts with the solution {3 = xk+1 and finds a feasible solution (3 = fJ with at 
least as good an objective value. Hence, in this case, we have 

~t(X-V;(k))~O forall XEX(zk), (3.2a) 

and from (3.1a), (3.1c), and (2.3), we can revise the lower bound by 

(3.2b) 
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To present this method, substitute (3 = xk+1 + 8 in SP in order to equivalently 

write this problem as 

M .. {ot k ot( k k) ./ (-k+l)t( k k) aXlmlze Vj(k): vj(k) - Vj :::::: x Vj - vj(k) 

for j = 0, ... , n + 1, 01 == 0, 02, ... , Om+2 unrestricted}. (3.3) 

We present below a heuristic for approximately solving Problem (3.3), and 
hence determining a suitable rotation of the separating hyperplane. 

Byperplane Rotation Algorithm (BRA) 

Initialization: Put 0 = 0 and let Sj, j = 0, ... , n + 1 be the corresponding 
nonnegative slack variable values for the inequalities in (3.3). Put row index i = 
2, and proceed to Step 1. 

Step 1: If (vj(k»)i < 0, then go to Step 2a to possibly decrease Oi. Similarly, 

if (vj(k»)i > 0, then go to Step 2b to possibly increase Oi. Otherwise, go to Step 3. 
Step 2a (Decrease Oi): Define 

If J1 is empty, then go to Step 4. Otherwise, put 

Accordingly, revise the slack values Sj to Sj -8i (vj(k) -vj)i for j = 0, ... , n+l. 
Go to Step 3. 

Step 2b (Increase Oi): Define 

J2 = {j E {O, ... , n + I}: (vj(k) - vj)i > O} . 

If J2 is empty, go to Step 4. Otherwise put 

1: •• { Sj . J.} 
Ui = mlmmum (k _ k).: J E 2 . 

Vj(k) Vj t 

(3Ab) 

Accordingly, revise the slack values Sj to Sj -8i(vJ(k) -Vj)i for j = 0, ... , n+ 1. 
Go to Step 3. 
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Step 3: If i = (m + 2), stop with 73 = xk+1 + 8. Otherwise, increment i by 
one and return to Step l. 

Step 4: The problem (3.3) is unbounded, and so the lower bound can be 
increased indefinitely. Hence, terminate with the indication that the original linear 
program LP is infeasible. 

Observe that the procedure HRA holds the first component of the normal to 
the separating hyperplane (2.2) fixed, and examines changing one component of 

this normal at a time in attempting to improve the objective value in (3.1), while 
maintaining the separation property, and hence augmenting the permissible in­
crease in the lower bound zk. For example, referring to the conceptual illustration 

in Fig. 1, note that (vj(k) h < o. Hence, at Step 2a of the procedure HRA, hold­
ing the first component of the normal to the separating hyperplane fixed, we can 
decrease the second component. Doing this to the maximum extent permissible 
rotates the separating hyperplane clockwise while being hinged at vj(k)' until it 
supports the polytope along the face containing the minimizing solution. Hence, 

for this example, the rotation enables us to increase the lower bound right up to 
the optimal value for LP. 

4. Obtaining dual solutions and polytope deformation. The Polytope 
Sliding Algorithm PSA also inherently generates a sequence of dual feasible so­
lutions of increasing dual objective function values, as we show below. Moreover, 
the dual solutions can be used to modify the algorithm based on a "reduced cost" 
representation of the linear program LP, so that all the vertices of the polytope un­
der consideration have nonnegative z-axis components. This modification results 
in deforming the polytope in addition to sliding it along the negative z-axis. 

To present this development, consider the dual (DLP) to LP of (1.2b), as 

stated below. 

DLP: Maximize {7I"0: 7I"tgj + 71"0 ~ Cj for j = 0, ... , n + I} . (4.1) 

At the Initialization Step of Algorithm PSA, when k = 1, let us define 
71"1 == 0 and 7I"~ = z1 == Cmin. Note that (71"1, 7I"~) is a dual feasible solution 
with objective value z1 in (4.1). Now, at any iteration k ~ 1, consider the linear 

program. 

Minimize{(C-(7I"k)tG)A: GA=O, eA=I, A~O}. (4.2) 

Note that because of the constraint GA = 0, (4.2) is precisely the same as the 
linear program LP defined in (1.2b). In particular, zk is a lower bound on the 
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optimal v'alue for this problem, and we are interested in finding a solution to the 

system 

if one exists. Accordingly, we define 

(4.3a) 

for j = 0, ... , n + 1, and denote 

X(Zk) = conv {lIj, j = 0, ... , n + I}. (4.3b) 

Note that all the points IIj, j = 0, ... , n + 1, and hence points in X(zk), have 
non negative z-axis components since we are given that (7rk, 7r~ == zk) is feasible 
to the dual (4.1). Now, as before, we use the closest point routine to either find 
a point xk+1 E X(zk) with Ilxk+1112 ~ c, or to generate a strong separating 
hyperplane as in (3.2a), where /3 may be xk+1 itself. If/31 ~ 0, then LP is infea­

sible. Otherwise, from (3.2a), we get /3 t (lIj - IIj( k») ~ ° for all j = 0, ... , n + 1. 

Now, partition /3 = (/31' /32) where /31 is the first component of /3, and /32 rep­
resents the remaining components. Then, noting (3.2b) and that /31 > 0, this last 

inequality yields (/3t llj)I/31 ~ ~ k for all j = 0, ... , n + 1. Using (4.3a) to 
substitute for IIj, this becomes 

( k - 1- )t (k -k) 7r - (32 (31 9j + z + ~ ~ Cj for all j = 0, ... ,n + 1. (4.4) 

Noting (4.1), we now have a revised improved dual feasible solution (7rk +1, 
7r~+1) given by 

Setting zk+1 = 7r~+1 == zk + ~ k, we now define IIj+1, j = 0, ... , n + 1, and 
X(zk+1) as in (4.3), and repeat. Note that 

[ 
(732//31) ~gj - ~ k I 

1I~+1 = 1I~ + 
3 3 . 

° 
(4.6) 
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for j = 0, ... , n + 1. Hence, the polytope X(zk) is slid along the negative z-axis 
by the amount ~ k, and is also deformed by adjusting the first components of all 
the points vj, j = 0, ... , n + 1, so that all vertices of the new polytope X (zk+ 1 ) 

have nonnegative z-axis components. In particular, since C7/vj(k))//31 == ~ k 
from (3.2b), we have (4.4) holding as an equality for j == j(k) (see the inequality 
that leads to (4.4)), and so from (4.3a) and (4.6), the first component of v;(t) 
is zero. The following section proves convergence of the algorithm under this 
modification. 

REMARK 3. Note that Algorithm PSA as stated in Section 2 also pro­
duces a sequence of dual feasible solutions. At iteration k = 1, we have 
(7rk , 7r~) = (0, ... ,0, Cmin) as a feasible solution to (4.1). Then, for any itera­
tion k ~ 1, having determined the separating hyperplane (3.2a) with /31 > 0, we 

have /3t (vj - vj(k)) ~ ° for all j = 0, ... , n + 1. Using (1.3) and (3.2b), we 
obtain as in (4.4) that . 

for all j = 0, ... , n + 1, and so, 

is a revised dual feasible solution with an improved objective value of zk + ~ k . 
However, the modification proposed above based on a reduced cost represen­
tation of LP helps enhance the computational performance of the algorithm by 
favorably positioning the polytope with respect to the nonnegative z-axis. 

5. Overall algorithm and its convergence. The overall Polytope Sliding, 
Hyperplane Rotation, and Deformation Algorithm (PSDA) may be summarized 
as follows. 

Algorithm PSDA 

Initialization. Put k = 1, zk = Cmin, 7rk = (0, ... , 0), 7r~ - Cmin, 

vj = [Cj ~jCmin] for j = O, ... ,n + 1, >.~ = l/(Q + 1), >.j = ° for 

j = 1, ... , n, >'~+1 = Q/(Q + 1), and 

n+1 

xk = I>;>.j = [-Cmin, _bt/(Q + l),O]t. 
j=O 
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Note that xk E X(zk) == conv {vi: j = 0, ... , n + I}. Pick tennination 

tolerances e > ° and 8 > 0, and a constant ° < J.L ~ 1. Proceed to Step 1. 
Step 1 (Subroutine CPR): Invoke a closest point routine CPR of Section 2, 

and let it produce a solution 

n+l 

xk+l == pT == L vj >.;+1 E X(zk). (5.1) 
j=O 

Ifxt+1 ~ 0, go to Step 4(b). If II x k+1112 ~ e, go to Step 4(a). Otherwise, 
CPR also produces a vj(k) == Vj(T) such that (2.1) and (2.2) hold true. In this 
case, proceed to Step 2. 

Step 2 (Rotation of the separating hyperplane): Invoke Algorithm HRA of 
Section 4. If J1 = 0 or J2 = 0 at any step of this procedure, go to Step 4(b). 
Otherwise, let this algorithm produce a vector li such that li 1 = X f+1 , and lit (x-

k k" -k -t k -
Vj(k») ~ ° for all x E X(z ). Accordmgly,asm (3.2b), find.6. = ((3 vj (k»)/(31 

as a pennissible increase in the lower bound zk. If .6. k < 8, go to Step 4(a). 

Otherwise, proceed to Step 3. 
Step 3 (Polytope defonnation and sliding): Put zk+l = zk + .6.k. If zk+l > 

Cmax , go to Step 4(b). Otherwise, compute (ll'k+1, 1l'~+1) as in (4.5), compute 

vJ+1 for j = 0, ... ,n + 1 as in (4.6), and using (4.6) and (4.1), let 

(5.2) 

where li == (lidli2) and Xk+l == ('xf+1, x;+1). Increment k by one and return 
to Step 1. 

Step 4(a) (Near-optimality): Tenninate the algorithm with a (near)-optimal 
solution>. * = >. k • (In case .6. k < 8 at Step 2, this tennination is due to insufficient 
progress. Also we can switchover to the simplex method as in Section 2 at this 
step.) 

Step 4(b) (Infeasibility): Tenninate with the indication that LP is infeasible. 

Theorem 2 (Overall convergence result). Suppose that Algorithm 
PSDA is run for some ° < J.L ~ 1, but with c = 0 and 8 = O. Then either 

(i) CPR will generate a sequence {pt} in X(Zk) for some k such that 
x k+ 1 = pT = ° for some finite t = T or such that {pt} ~ 0, or 
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(ii) the Algorithm PSDA will terminate finitely at Step 4(b) with an infeasi­
bility indication, or 

(iii) an infinite sequence {xk} will be generated, k ~ 2, such that {xk} -4 

O. lfx k = pT = 0 finitely in case (i), then the convex combination vector>" k+1 
corresponding to pT solves LP. Otherwise, in the first and the third cases, the 
limit point of any convergent subsequence of the convex combination weights 
generated, corresponding to {pt} in case (i) and to {xk+1} in case (iii), solves 
LP. 

Proof In the event case (i) occurs, let X be the convex combination weight 
vector corresponding to pT if pT = 0 for some finite T, or let X be the limit of a 
convergent subsequence of the convex combination weights corresponding to the 
sequence {pt} generated by CPR. In either case, we have 

n+l 
- - "" k-e>.. = 1, >.. ~ 0, and L...JVj>"j = O. 

j=O 

From (4.3), this yields 

GX = 0, and 0 = eX - (rrk)tGX - zk = eX - zk. 

Hence, we have 

GX=O, eX = 1, X ~ 0, - k and e>.. = z , 

where zk is a lower bound for LP. Therefore, X solves LP. The event leading 
to termination at case (ii) implies that the dual (4.1) is unbounded or that LP 
is infeasible. This includes the event when zk > Cmax for any k, by noting the 
objective function of LP, and that the constraints include e>.. = 1 and >.. ~ O. 

Now, if cases (i) or (ii) do not occur, then as in case (iii), the Algorithm PSDA 
will generate an infinite sequence {xk}, k ~ 2, where xk E X(zk-l) and x~ > 
o for all k ~ 2. Noting (5.1), let {>..k}K' indexed by the set K, be a convergent 
subsequence of the corresponding convex combination weights generated, and 
suppose that {>..k}K -4 X. Hence, eX = 1 and X ~ O. 

Now, from (2.1), (2.3) and (3.2b), we have 

"fit k (-k+1)t k 
Zk+I = zk + ~ k = zk + vj(k) ~ zk + x _k+~j(k) 

fiI Xl 

(5.3) 
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Hence, {zk} is a monotone increasing sequence bounded above by Cmax (see 
Step 3), and so {zk} ~ Z ~ cmax • Moreover, this further implies from (5.3) that 

{xf+1} ~ o and that {llxk+1 11 2/xf+1} ~ O,andso{xk} ~ O. From (4.3) 
and (5.1), this in turn implies that {xn == {G.xk} ~ 0, and so, G'X = O. 

Furthermore, from (4.3) and (5.1), since {xf} ~ 0, we have 

(5.4) 

DefineJ = {j E {0, ... ,n+1}: 'Xj > O}. By dual feasibility of (7fk-l, 

7f~-1 == zk-l) in (4.1), we know that (Cj - (7fk-l)tgj - zk-l) ~ 0 for all 

j = 0, ... , n + 1 and for all k ~ 2. Hence, from (5.4), this implies that as 

k ~ 00, k E K, we have 

Now, since l:jEJ 'Xj = 1, 'Xj = 0 for j ~ J, and G'X = 0, we have 

L'Xj (Cj - (7fk-l)tgj - zk-l) = (e'X - zk-l) for all k. (5.6) 

JEJ 

Taking limits in (5.6) as k ~ 00, k E K, we have from (5.5) that e'X = z. 
Since G'X = 0, e'X = 1, e'X = z, where z is a lower bound for LP, it follows that 
'X solves LP, and this completes the proof. 

COROLLARY 1. Algorithm PSDA is finitely convergent for any E: > 0 and 

8> o. 

6. Computational experience. We conclude this paper by providing some 
preliminary computational results for the proposed Algorithm PSDA. The test 
problems, denoted by (m, n) where m is the number of constraints and n is the 
number of variables, were generated in the form (Ll) following the approach in 
Rosen and Suzuki (1965) and Sherali and Myers (1988). These problems there­
fore have known primal and dual optimal solutions. The components of the opti­
mal solution y* were generated uniformly on [0, 10], while controlling the num­
ber of nonzeros to be less than m in order to inject degeneracy. The components 
of the optimal dual solution w* were generated uniformly on [-10,10], and the 
coefficients of the m x n matrix A were generated uniformly on the interval 
[-10,10] having density 0.1. Accordingly, we then set b = Ay*, and wc gen­
erated the objective function coefficients by letting Cj = w*taj if y] > 0, and 
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Cj = w*taj + (if yj = 0, where ( was generated unifonnly on [0, 10]. The value 
of Q employed in (1.2a) was taken as twice the sum of all the primal variables at 
optimality. 

Note that the subroutine CPR is the most expensive step of Algorithm PSDA. 
We found that the number of iterations of the algorithm tends to be small as in in­
terior point methods, provided that the closest point subproblems are solved fairly 
accurately (f-L ~ 0.8). We attempted the algorithm of Sherali and Choi (1993), 
Wolfe (1975), and a specialization of the first-order reduced gradient method, 
noting that this closest point problem minimizes a quadratic function over a sim­
plex. Of these, the algorithm of Sherali and Choi (1993) worked best, and was 
adopted in the preliminary results reported below. However, a second-order con­
jugate gradient or quasi-Newton reduced gradient type of approach might serve 
to enhance the perfonnance of Algorithm PSDA. 

Tables 1 and 2 present some computational results for Algorithm PSDA, us­
ing two different values of f-L, namely, 0.75 and 0.80 (denoted by PSDA (0.75) 
and PSDA (0.80), respectively). Also, for comparison, we provide computational 
results obtained using the Revised Simplex method, implemented with an effi­
ciency on par with Algorithm PSDA. The algorithms were coded in FORTRAN 
VS2 and run on an IBM 3090-300E computer. For each problem, we specify its 
size (m, n) and the optimal value z* obtained by the simplex method when ter­
minated with reduced costs greater than or equal to -0.01. In all runs, we use 
c = 0.01 and 8 = 0.5. The test problems of Table 2 have more zeros at the op­
timal solution than the problems of Table 1, implying the possibility of a higher 
degree of degeneracy. Indeed, this is borne out by comparing the number of it­
erations taken by the Simplex method for the problems in the two tables. On the 
other hand, note that the proposed algorithm is relatively unaffected by degener­
acy. Also, the relative advantage of PSDA improves with an increase in problem 
size (m and n), and also with an increase in n for any given value of m. 

To summarize, we have presented in this paper a polytope sliding and de­
fonnation algorithm based on a convex hull representation interpretation of Kar­
markar's fonn of writing any given linear program. We have also shown how a 
sequence of dual feasible solutions of increasing objective value can be recovered 
in the process. This may prompt the application of the proposed method to the 
dual linear program, instead of the primal. Refinements of the algorithm based on 

a rotation of the separating hyperplane, along with a defonnation using the dual 
solution have been proposed and implemented. The principal advantage of the 
algorithm is that it is easy to implement, requires a minimal amount of storage, 
and is not prone to accumulated round-off error problems, thereby requiring no 
sophisticated numerical safeguards. For the test problems run, it usually produces 
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Table 1. Computational experience on low-moderately degenerate prob-

lems problems 

Problem Algorithm Iters (K) LB (ZK) CPU Time ·OPT(%) 

(m,n) (secs.) 

z· 

(40,120) SIMPLEX 238 2.64 

-1.50 PSDA(0.75) 24 -1.64 3.53 91.39 

PSDA (0.80) 23 -1.52 6.49 98.34 

(40,300) SIMPLEX 291 6.37 

4.26 PSDA (0.75) 25 4.17 4.77 98.02 

PSDA (0.80) 23 4.22 5.50 99.44 

(50,150) SIMPLEX 238 4.30 

-6.53 PSDA (0.75) 29 -6.59 9.80 99.17 

PSDA (0.80) 27 -6.56 11.42 99.51 

(50,500) SIMPLEX 432 17.96 

4.36 PSDA(0.75) 28 4.27 9.89 98.00 

PSDA(0.80) 21 4.32 10.66 99.00 

(75,250) SIMPLEX 598 23.65 

13.25 PSDA(0.75) 36 13.08 23.70 98.73 

PSDA(0.80) 33 13.17 29.71 99.38 

(75,500) SIMPLEX 538 36.18 

3.81 PSDA (0.75) 31 3.72 21.54 97.58 
PSDA (0.80) 28 3.72 22.07 97.62 

(lOO, 600) SIMPLEX 1108 112.53 
3.15 PSDA (0.75) 39 3.10 49.80 98.25 

PSDA (0.80) 36 3.12 56.53 98.99 

(lOO, 600) SIMPLEX 930 97.15 
-2.40 PSDA(0.75) 41 -2.47 79.75 97.03 

PSDA (0.80) 37 -2.53 87.52 94.70 

·OPT(%)= [1 - (Z·I;.~B)] x 100(%) 
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Table 2. Computational experience on more degenerate problems 

Problem Algorithm Iters (K) LB (zK) CPU TIme *OPT(%) 

(m,n) (secs.) 

z* 

(40,120) SIMPLEX 209 2.40 

-2.80 PSDA (0.75) 25 -2.93 7.75 95.55 

PSDA (0.80) 23 -2.91 9.03 96.40 

(40,300) SIMPLEX 290 6.45 

-8.30 PSDA (0.75) 30 -8.41 6.76 98.64 

PSDA (0.80) 28 -8.34 7.56 99.57 

(50,150) SIMPLEX 499 8.06 

-16.33 PSDA (0.75) 33 -16.50 15.84 98.98 

PSDA (0.80) 30 -16.40 21.31 99.58 

(50,500) SIMPLEX 417 17.80 

-8.58 PSDA (0.75) 27 -8.64 13.15 99.37 

PSDA(0.80) 25 -8.59 17.59 99.89 

(75,250) SIMPLEX 701 27.12 

14.67 PSDA (0.75) 38 14.53 44.39 99.01 

PSDA (0.80) 34 14.59 55.61 99.42 

(75,500) SIMPLEX 966 60.62 

33.95 PSDA (0.75) 31 33.91 26.52 99.86 

PSDA (0.80) 28 33.88 26.12 99.77 

(lOO, 600) SIMPLEX 1562 153.60 

4.56 PSDA(0.75) 42 4.43 73.99 97.14 

PSDA (0.80) 38 4.42 82.70 97.08 

(lOO, 600) SIMPLEX 1274 127.38 

-2.12 PSDA (0.75) 42 -2.22 69.25 95.30 

PSDA (0.80) 38 -2.15 87.80 98.56 

*OPT(%)= [1 - (z·I;.~B)] x 100(%) 
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a quick, acceptable near optimal solution (95-99%) within a limit of 18-45 itera­
tions (depending on m and n). Further enhancements are possible by using a more 
efficient closest point subroutine. As another point of research interest, one can 
investigate an appropriate switchover point when using this procedure to provide 
an advanced-start solution for the simplex algorithm. These issues and additional 
tests on various structured problems are recommended for future research. 
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ISORINIO TASKO SLANKAUS IR DEFORMUOJAMO 
POLITOPO ALGORITMAS TIESINIO PROGRAMAVIMO 

UZDAVINIAMS SP~STI 

Hanif D. SHERALI, Gyunghyun CHOI, Suvrajeet SEN 
Siame straipsnyje mes vystome tiesinio programavimo algoritm~ naujai interpre­

tuodami Karmarkaro pateikt~ sio uZdavinio traktavim~. Tarn nagrinejame politop~, ku­
rio atzvilgiu pradinis taskas yra iSorinis taskas. Siekdami optimalaus sprendinio nusta­
tome minimalll poslink\, kuriuo reikia paslinkti politop~ vienmates poslinkio asies kryp­
timi taip, kad pradinis taskas priklausytll tarn politopui. Tarn, naudodami artimiausio 
tasko procediir~, pravedame hiperplokstumas tarp pradinio tasko ir politopo. AIgoritmas 
pagereja \vedus dualill sprendiniq generavim~. Sie sprendiniai leidzia deformuoti poli­
top~ taip, kad jo padetis biitq patogi pradinio tasko ir poslinkio asies atzvilgiu. Bendra 
algoritmo schema yra lengvai realizuojama, reikalauja maZai atminties. Ji greitai duoda 
kokybiskus sprendinio \vercius. Yra galimybe pereiti \ simplekso ar vidinio tasko metod~, 
naudojant jau gaut~ sprendin\ kaip pradim. Pateikiarni preliminarus skaiciavimq rezultatai. 


