
INFORMATICA, 1997, Vol. 8, No. 4, 559-582

AN EXTERIOR·POINT POLYTOPE SLIDING
AND DEFORMATION ALGORITHM

FOR LINEAR PROGRAMMING PROBLEMS

Hanif D. SHERALI, Gyunghyun CHOI,

Department of Industrial and Systems Engineering
Virginia Polytechnic Institute and State University, Blacksbur, Virginia 24061-0118
E-mail: hanifs@vt.edu.ghchoi@unitel.co.kr

Suvrajeet SEN

Department of Systems and Industrial Engineering, University of Arizona
Tucson, Arizona 85721
E-mail: sen@sie.arizona.edu

Abstract. In this research, we develop an algorithm for linear programming prob­
lems based on a new interpretation of Karmarkar's representation for this problem. Ac­
cordingly, we examine a suitable polytope for which the origin is an exterior point, and in
order to determine an optimal solution, we need to ascertain the minimum extent by which
this polytope needs to be slid along a one-dimensional axis so that the origin belongs to
it. To accomplish this, we employ strongly separating hyperplanes between the origin and
the polytope using a closest point routine. The algorithm is further enhanced by the gen­
eration of dual solutions which enable us to deform the polytope so that it is favorably
positioned with respect to the origin and the axis of sliding motion. The overall scheme is
easy to implement, requires a minimal amount of storage, and produces quick good qual­
ity lower bounds for the problem in its infinite convergence process. A switchover to the
simplex method or an interior point method is also possible, using the current available
solution as an advanced start. Preliminary computational results are provided along with
implementation guidelines.

Key words: linear programming, exterior point method, Karmarkar's algorithm.

1. Introduction. Consider a linear programming problem of the fonn

Minimize {cy: Ay = b, y ~ O} (1.1)

where A is an m x n matrix. The algorithm proposed below constructs a poly­

tope based on (1.1), using both the objective function and constraints. By using a

suitable sliding, rotation, and defonnation of this polytope, the algorithm deter­

mines an optimal solution to (1.1). To define this polytope, let us first transfonn

560 H.D. Sherali et al.

the given linear programming problem to an equivalent form having the repre­
sentation used by Karmarkar (1984).

Toward this end, following Tomlin (1985), let us impose an upper bound
Q on the sum of the variables in (1.1), where this constraint either artificially
bounds the polyhedron in (1.1), or is implied by it. Denoting the slack variable in
this constraint as Yn+ 1, and constructing a dummy variable Yo defined to be unity
in order to homogenize the constraints, we can write this linear program as

Minimize cy

subject to Ay - byo = 0,
n
E Yj + Yn+1 - Qyo = 0,
j=l

n
E Yj + Yn+! + Yo = (Q + 1),
j=l
Yo,··· ,Yn+1 30,

where the last two equality constraints imply that Yo == 1. Finally, using the
variable transformation Aj = Yj/(Q + 1) for j = 0,1,2, ... , n + 1, we may
equivalently write this problem as follows, where A = [a1, ... , an].

Minimize

subject to
n

LajAj - bAo = 0,
j=l

n

LAj + An+1 - QAo = 0,
j=l

n

L Aj + An+! + AO = 1,
j=l

AO,'" ,An+! 3 O.

(1.2a)

Define A = AO,' .. ,An+1)t, C = (co, Cl, . .. , Cn, Cn+1) with Co = Cn+1 == 0, let
G = [go, ... , gn+!l, where

An exterior-point polytope sliding and deformation algorithm 561

and denote by e a (row) vector of n + 2 ones. Then, we may write the linear
program (LP) in (1.2a), which is the problem we intend to solve, as follows

LP: Minimize {C>.: G>' = 0, e>' = 1, >. ~ O}. (1.2b)

Note that our choice of the notation "X' is to emphasize the convex combi­
nation interpretation afforded by (1.2b). To further develop this interpretation, let
zk be some known lower bound on the optimal objective value for LP at iteration
k of some algorithmic process, and define the vectors

k _ [Cj - zk] v· -
J 9j

Consider the polytope

for j = 0, ... , n + 1.

X(Zk) = conv{vj: j = 0, ... , n + I},

(1.3)

(1,4)

where conv{- } denotes the convex hull operation (see Fig. 1). Note that if
° E X(zk), then 0 can be represented by some convex combination of vj,
j = 0, ... ,n + 1, that is, there exists a vector>' = >.k which satisfies the system

n+l

Lvj>'j = 0, e>' = 1, >. ~ 0.
j=O

Therefore, this >. = >. k satisfies the system

C>'=Zk, G>'=O, e>'=l, >.~O.

(1.5a)

(1.5b)

Since zk is a lower bound on the optimal objective value for LP, we therefore
have that>. is an optimal solution to LP of objective value zk. On the other hand,
suppose that the origin lies exterior to X(zk). The problem then becomes one
of determining the minimum amount by which zk needs to be increased for the
origin to belong to the resulting X(zk), if at all possible. Noting from (1.3) and
(1,4) that increasing zk simply results in reducing the first component of each
vector vj Vj by that same amount, this process is equivalent to sliding the poly­
tope X(zk) for any zk along the negative first axis direction, until the origin
belongs to this polytope. Fig. 1. illustrates this process conceptually. For conve­
nience, we will hereafter refer to the first axis direction as the z-axis. Note that
the shape of the polytope X (zk) is invariant with respect to zk; only its position
with respect to the z-axis changes as zk is increased. Furthermore, observe that if

562

/
origin (0)

\

H.D. Sherali et al.

s1icting
direction •

Fig. 1. Polytope sliding algorithm.

~ 7ceB v;. j e {O ••.•• n + I}

z-uis

max. soln.

the z-axis does not pierce the polytope. then zk -+ 00 in this sliding process. and
the problem is evidently infeasible. Otherwise, if z* denotes the optimal objec­
tive value for LP, then by sliding X{zk) along the negative z-axis by the amount
(z* - zk), we will obtain X(z*) with the origin belonging to this latterpolytope.
The convex combination weights A* that represent the origin in X{z*) in terms
of its vertices would then yield an optimal solution to LP. Observe also that if we
continued this sliding process further, we would trace solutions that take on all
the objective values possible for LP, up to the maximizing solution value, beyond
which the origin would again become exterior to the polytope.

The algorithm proposed here exploits this interpretation by iteratively im­
proving the lower bound zk via a closest point routine. This routine either ver­
ifies that 0 E X(zk), whence z* = zk, or else generates a strongly separating
hyperplane between the origin and the polytope. This hyperplane permits us to
increase zk, and hence to slide the polytope by an additional amount !:J.. k (see
Figure 1), and the process continues until c-optimality is achieved (finitely), for
any chosen tolerance c > O. Furthermore, we also exhibit how a sequence of
dual feasible solutions, approaching an optimal solution, may be generated and
used algorithmically to deform the polytope at each iteration so that all its vertices
have nonnegative z-axis components. Additional enhancements are also proposed

An exterior-point polytope sliding and deformation algorithm 563

to curtail computational effort, and to increase the amount of sliding at each iter­
ation by suitably rotating the separating hyperplanes.

The proposed algorithm may be used in one of two capacities, besides as
a direct algorithm for solving linear programming problems. First, because it is
easy to implement, makes rapid initial progress, and has a minimal storage re­
quirement, it offers a useful alternative for obtaining lower bounds based on lin­
ear programming relaxations for discrete optimization problems. In this context,
the primal and dual solutions available can moreover be used to derive heuris­
tic solutions for discrete problems, and to generate strong Benders' inequalities
if necessary (see Parker and Rardin, 1987). Second, this method can be used to
provide an advanced-start solution for the simplex method or for interior point
methods. As an algorithm for linear programming, this switchover is also recom­
mended in order to accelerate the convergence of the method.

The remainder of this paper is organized as follows. Section 2 presents a
generic statement of the basic algorithm, and establishes its convergence. A tech­
nique for tightening the lower bound via a suitable rotation of the constructed
separating hyperplanes is provided in Section 3, and Section 4 discusses the gen­
eration of dual solutions along with an accompanying deformation of the poly­
tope. The overall algorithm with these modifications is stated in Section 5, and
its convergence is established. Finally, Section 6 presents some computational
results along with implementation guidelines.

2. Generic rudimentary algorithm. The basic polytope sliding procedure
introduced in Section 1 hinges on the generation of a strongly separating hyper­
plane via a closest point routine (CPR) that can determine a closest point to the
origin in the convex hull of a finite number of points relative to a given point.
Specifically, we require a closest point routine (CPR) which is capable of ac­
complishing the following. (Sherali and Choi, 1993, present and test one such
method, and compare it with some alternatives.)

Closest Point Routine (CPR)

Input: We are given IIj, j = 0, ... , n + 1 for some lower bound zk on LP,
a point xk E X(zk) == conv{lIj, j = 0, ... , n + I} along with the convex

combination weights)..k such that xk == I:j~g IIj)..J, where e)..k = 1 and)..k ~
0, and we are also given a constant ° < J.L ~ 1, and some tolerance c > 0.

Output: Case (1). If ° E X (zk), then starting with pl = xk, the method
should generate a sequence {pt} in X(zk) which either terminates finitely with
an element pT = 0, or else {pt} -+ 0. Hence, in a finite number of iterations, we
should obtain xk+l == pT for some T ~ 1 such that Ixk+ l l2 ~ c.

564 H.D. Sherali et al.

Case (2). If 0 ~ X{zk), then starting with pI = xk, an element xk+l _
pT E X{zk) should be produced for some finite T ~ 1, such that

Hence, we would then have

(2.2)

while the origin would lie strictly in the opposite half-space, i.e.,

Therefore, the hyperplane defining (2.2) would strongly separate the origin from
X{zk). In particular, note that ifit happens that xk+l is the closest point in X (zk)
to the origin, then (xk+l)t{x - xk+l) ~ 0 for all x E X{zk), and so from (2.1),

(xk+l)tllj(k) = Ilxk+1112. This motivates our choice of 0 < J.L ~ 1 in (2.1),
which controls the degree of accuracy imposed on determining the closest point
in X{zk) to the origin.

Moreover, in either Case (1) or Case (2), the CPR should also yield a
corresponding set of convex combination weights A k+1 such that xk+ 1 =
L:;~~ lIj A;+I, where eAk+l = 1 and Ak+l ~ O. Then, using any such pro­
cedure as a subroutine, we derive the following algorithm.

Polytope Sliding Algorithm (PSA)

Initialization: Put k = 1, select zk = Cmin == min { Cj: j = 0, ... , n + I}
as a starting lower bound for LP, and define lIj, j = 0, ... , n + 1, and X (zk) as
in (1.3) and (1.4), respectively. Define

A~ = l/{Q + 1), AJ = 0 for j = 1, ... , rn, and A~+1 = Q/{Q + 1),

as a starting set of convex combination weights, and accordingly, let

n+l [-Cmin 1
xk=?:lIjAj== -b/(Q+l)

)=0 . 0

be the corresponding point in X{zk). Select a termination tolerance e > 0, a
constant 0 < J.L ~ 1, and proceed to Step 1.

An exterior-point polytope sliding and deformation algorithm 565

Step 1 (CPR): Starting with xk E X(zk), invoke a closest point routine CPR
to produce a solution

n+!
xk+! == L vj A~+1 E X(zk).

j=O

If II xk+!1I2 ~ c (Case (1) or Case (2) of CPR), go to Step 3(a). Otherwise,
Ilxk+1112 > c, and as in Case (2), we obtain xk+! E X(zk) satisfying (2.1) and
(2.2).

Step 2 (Sliding operation): If the component x~+! ~ 0, go to Step 3(b).
Otherwise, compute the point (~k, 0, ... ,oy lying on the intersection of the z­
axis and the hyperplane defined in (2.2). Hence, we obtain ...

(2.3)

Consequently, the polytope (and the separating hyperplane) can be slid along the
negative z-axis by the amount ~ k, and the hyperplane will remain a separating
hyperplane between the origin and the polytope. In other words, we can raise the
lower bound to zk+l = zk + ~k and accordingly, put

and let

be the new iterate. Note that xk+1 = L:7':;~ vj+1 A~+1 E X (Zk+l). Increment k
by one and return to Step 1.

Step 3(a) (c-optimality): Consider the convex combination vector corre­
sponding to xk+!. Now we have

566 H.D. Sherali et al.

and
I(GA)rl=lx~til:::;llxk+ll1oo for r=1, ... ,m+1.

Since Ilxk+1l1oo :::; Ilxk+1 11 :::; ..rc, we have

That is, A = Ak+1 is an c-optimal solution to Problem LP. Note that with integer
data, and with c = 2-2L , where L is the number of binary bits required to store
the data, Ak+l can be rounded to a feasible solution using the method of Gacs and
Lovasz (1981). Alternatively, we can switchover to the simplex method for ex­
ample, using suitable artificial variables and the purification technique described
in Bazaraa et al. (1990), and hence polish Ak+l to an exact optimum.

Step 3(b) (Infeasibility): Since x~+1 :::; 0, Ilxk+1112 > c, and (2.1) and (2.2)
hold, we now have for any point <I> = (cP, 0, ... , O)t on the z-axis, cP ~ 0, that

(Xk+l)t(<I> - IIJ(k)) = cPx~+1 - (Xk+1)t IlJ(k) ~ -(xk+1)t IlJ(k)

:::; -JLllxk+111 2 < -JLc. (2.4)

Hence, the nonnegative z-axis is strongly separated from X(zk) by the hyper­
plane (2.2), and so we can terminate with the indication that LP is infeasible.

The above algorithm therefore produces an increasing sequence of valid
lower bounds for LP, and when it terminates at Step 3, it does so with either
an c-optimal solution or with a valid indication of infeasibility. The following
result establishes finite convergence of the algorithm, and addresses the issue of
running the algorithm with c = O.

Theorem 1 (Convergence theorem).
(a) Given c > 0 and 0 < JL ~ 1, the Polytope Sliding Algorithm (PSA)

terminates finitely in less than 1 + (Cmin - Cm in)2 / JLc iterations, where Cmax and
Cmin are, respectively, the largest and the smallest values of Cj, j = 0, ... , n + 1.

(b) Suppose the PSA is run with c = 0, for some 0 < JL :::; 1. Then either
(i) CPR will generate a sequence {pt} in X(zk) for some k such that pT = 0
for some finite t = T, or such that {pt} -+ 0, or (ii) the Algorithm PSA will
terminate finitely at Step 3(b) with an infeasibility indication, or (iii) an infinite
sequence {xk} will be generated such that {xk} ---4 O.lfpT = o occurs finitely
in Case (i), then the convex combination weights corresponding to pT solve LP.
Otherwise, in the first and third cases, the limit of any convergent subsequence

An exterior-point polytope sliding and deformation algorithm 567

o/the convex combination weights generated, corresponding to {pt} in Case (i)
and to {xk} in Case (iii), solves LP.

Proof. (a) Note that while termination has not occurred, we have II xk+111 >
c and x~+1 > O. In particular, and since {zk} is an increasing sequence with
zl = Cmin, we have

n+1 n+1

o < x~+1 = L >.j+1 (Cj - zk) = (L >.j+1Cj) - zk ~ Cmax - Cmin. (2.5a)
j=O j=O

This implies that

Cmin ~ zk < Cmax , and that 0 < x~+1 ~ Cmax - Cmin. (2.5b)

However, from Step 2 of PS A, we have using (2.1), (2.3), and (2.5b), that

(xk+1)tvk
zk+1 = zk + fj,k = zk + J(k)

-k+1
Xl

Consequently, from (2.5b) and (2.6), we deduce directly that

k 1 (k - l)j.tC (k - l)j.tc
Cmax > Z ~ Z + () = Cmin + () .

Cmax - Cmin Cmax - Cmin

If k ~ 1 + (Cmax - Cm in)2 / j.tC, this gives a contradiction, hence establishing the
required bound on the number of iterations.

(b) The assertions concerning cases (i) and (ii) are readily evident. On the
other hand, if cases (i) and (ii) do not occur, then an infinite sequence {xk} is
generated such that x~+1 > 0 for all k. Hence, we have (2.5) holding, and as in
(2.6), we obtain

Since {zk} is bounded above by Cmax from (2.5b) and is strictly increasing, this
means that {zk} converges to some Z, and moreover, we must have {II xk+ 111} -­
o and also {fj,k} __ O. But IIxk +111 ~ Ilxk +111 + fj,k. Hence, {lIxk ll} __ 0, and
so {xk} __ o. Since an optimal solution to LP corresponds to a set of convex
combination weights that represent the origin in terms of the vertices of X(z)

568 H.D. Sherali et al.

for some lower bound z, whence z must be the optimal value, this completes the

proof.

Several remarks which offer in sights into the operation and interpretation of
the above algorithm are given below.

REMARK 1. The algorithm can be initialized using any known feasible solu­
tion to (1.1), if so desired. The starting solution suggested at the initialization step
of the procedure is adequate in practice because of the rapid initial improvements
made by the algorithm. Moreover, the algorithm is oblivious to any degeneracy
related issues or to the rank deficiency of A in (1.1).

REMARK 2. There is an interesting interpretation for Algorithm PSA in
light of Newton's algorithm (see Bazaraa et al., 1993). Noting (1.3), let us de­
fine

2

~ [c. -z] f(>",z) = L...J J. >"j
j=O g3

(2.7a)

and consider the function

'l/J(z) = Minimum{f(>.., z): e>.. = 1, >.. ~ o}.
A

(2.7b)

Note that 'l/J(z) is the distance of the closest point in X (z) to the origin, and we
wish to find the smallest z for which 'l/J(z) = O. Now, given zk, suppose that CPR
finds Xk+l as the actual closest point in X(zk) to the origin, where x1+1 > O.
Hence, because of the uniqueness of the closest point, for any optimal solution
>..k+l to (2.7b), we have

uniquely. Moreover, if 'l/J(.) is differentiable at z = zk, then its derivative can be
obtained as

'l/J'(Zk) = _2(C>..k+l - zk) = - 2x1+1 .

Therefore, the first-order approximation to 'l/J(.) at z = zk is given by

and this is zero when

An exterior-point polytope sliding and deformation algorithm 569

where we have used (2.1) at the last step. However, note that this Newton step is
half the actual stepsize we take in (2.3), and hence, this method accounts for the
curvature of 'lj;(.) as well, and goes beyond a Newton based scheme for finding a
(smallest) root for 'lj; (.).

3. Rotation of the separating hyperplane. Recall that in the Polytope
Sliding Algorithm PSA, the closest point routine either generates an element in
X (zk) which is sufficiently close to the origin, or else, unless infeasibility is rec­
ognized at this step, it constructs a separating hyperplane (2.2) which permits
the revision of tlk given by (2.3) in the lower bound. We can possibly further en­
hance the improvement in the lower bound beyond that given by (2.3) by suitably
rotating the separating hyperplane before conducting the sliding operation, while
maintaining it as a strongly separating hyperplane.

Specifically, noting (2.1), (2.2), and (2.3), consider the separation problem
(SP) given below, where x~+1 ~ O.

SP: Maximize (3tv;(k) (3.1a)

subject to (3t(v; - V;(k)) ~ 0 for j = 0, ... , n + 1, (3.1b)

{3 - x-k +1 1 - 1 . (3.1c)

Note that {3 = xk+l is a feasible solution to SP with objective value

(xk+1)tv;(k) ~ pllxk+1112 > pe from (2.1). Hence, if {3* solves SP, then from

(3.1b) the hyperplane (3*t(x - v;(k)) = 0 will strongly separate the origin from

X(zk). Moreover, from (3.1a), (3.1b), and (2.3), this hyperplane will permit a
maximum improvement in the lower bound from among all such separating hy­
perplanes which support X(zk) at v;(k)' Of course, (4.1) is itself a linear pro­
gramming problem, and naturally, we do not require this to be solved optimally.
Instead, we propose a Gauss-Seidel type of coordinate ascent heuristic which
starts with the solution {3 = xk+1 and finds a feasible solution (3 = fJ with at
least as good an objective value. Hence, in this case, we have

~t(X-V;(k))~O forall XEX(zk), (3.2a)

and from (3.1a), (3.1c), and (2.3), we can revise the lower bound by

(3.2b)

570 H.D. Sherali et al.

To present this method, substitute (3 = xk+1 + 8 in SP in order to equivalently

write this problem as

M .. {ot k ot(k k) ./ (-k+l)t(k k) aXlmlze Vj(k): vj(k) - Vj :::::: x Vj - vj(k)

for j = 0, ... , n + 1, 01 == 0, 02, ... , Om+2 unrestricted}. (3.3)

We present below a heuristic for approximately solving Problem (3.3), and
hence determining a suitable rotation of the separating hyperplane.

Byperplane Rotation Algorithm (BRA)

Initialization: Put 0 = 0 and let Sj, j = 0, ... , n + 1 be the corresponding
nonnegative slack variable values for the inequalities in (3.3). Put row index i =
2, and proceed to Step 1.

Step 1: If (vj(k»)i < 0, then go to Step 2a to possibly decrease Oi. Similarly,

if (vj(k»)i > 0, then go to Step 2b to possibly increase Oi. Otherwise, go to Step 3.
Step 2a (Decrease Oi): Define

If J1 is empty, then go to Step 4. Otherwise, put

Accordingly, revise the slack values Sj to Sj -8i (vj(k) -vj)i for j = 0, ... , n+l.
Go to Step 3.

Step 2b (Increase Oi): Define

J2 = {j E {O, ... , n + I}: (vj(k) - vj)i > O} .

If J2 is empty, go to Step 4. Otherwise put

1: •• { Sj . J.}
Ui = mlmmum (k _ k).: J E 2 .

Vj(k) Vj t

(3Ab)

Accordingly, revise the slack values Sj to Sj -8i(vJ(k) -Vj)i for j = 0, ... , n+ 1.
Go to Step 3.

An exterior-point polytope sliding and deformation algorithm 571

Step 3: If i = (m + 2), stop with 73 = xk+1 + 8. Otherwise, increment i by
one and return to Step l.

Step 4: The problem (3.3) is unbounded, and so the lower bound can be
increased indefinitely. Hence, terminate with the indication that the original linear
program LP is infeasible.

Observe that the procedure HRA holds the first component of the normal to
the separating hyperplane (2.2) fixed, and examines changing one component of

this normal at a time in attempting to improve the objective value in (3.1), while
maintaining the separation property, and hence augmenting the permissible in­
crease in the lower bound zk. For example, referring to the conceptual illustration

in Fig. 1, note that (vj(k) h < o. Hence, at Step 2a of the procedure HRA, hold­
ing the first component of the normal to the separating hyperplane fixed, we can
decrease the second component. Doing this to the maximum extent permissible
rotates the separating hyperplane clockwise while being hinged at vj(k)' until it
supports the polytope along the face containing the minimizing solution. Hence,

for this example, the rotation enables us to increase the lower bound right up to
the optimal value for LP.

4. Obtaining dual solutions and polytope deformation. The Polytope
Sliding Algorithm PSA also inherently generates a sequence of dual feasible so­
lutions of increasing dual objective function values, as we show below. Moreover,
the dual solutions can be used to modify the algorithm based on a "reduced cost"
representation of the linear program LP, so that all the vertices of the polytope un­
der consideration have nonnegative z-axis components. This modification results
in deforming the polytope in addition to sliding it along the negative z-axis.

To present this development, consider the dual (DLP) to LP of (1.2b), as

stated below.

DLP: Maximize {7I"0: 7I"tgj + 71"0 ~ Cj for j = 0, ... , n + I} . (4.1)

At the Initialization Step of Algorithm PSA, when k = 1, let us define
71"1 == 0 and 7I"~ = z1 == Cmin. Note that (71"1, 7I"~) is a dual feasible solution
with objective value z1 in (4.1). Now, at any iteration k ~ 1, consider the linear

program.

Minimize{(C-(7I"k)tG)A: GA=O, eA=I, A~O}. (4.2)

Note that because of the constraint GA = 0, (4.2) is precisely the same as the
linear program LP defined in (1.2b). In particular, zk is a lower bound on the

572 H.D. Sherali et al.

optimal v'alue for this problem, and we are interested in finding a solution to the

system

if one exists. Accordingly, we define

(4.3a)

for j = 0, ... , n + 1, and denote

X(Zk) = conv {lIj, j = 0, ... , n + I}. (4.3b)

Note that all the points IIj, j = 0, ... , n + 1, and hence points in X(zk), have
non negative z-axis components since we are given that (7rk, 7r~ == zk) is feasible
to the dual (4.1). Now, as before, we use the closest point routine to either find
a point xk+1 E X(zk) with Ilxk+1112 ~ c, or to generate a strong separating
hyperplane as in (3.2a), where /3 may be xk+1 itself. If/31 ~ 0, then LP is infea­

sible. Otherwise, from (3.2a), we get /3 t (lIj - IIj(k») ~ ° for all j = 0, ... , n + 1.

Now, partition /3 = (/31' /32) where /31 is the first component of /3, and /32 rep­
resents the remaining components. Then, noting (3.2b) and that /31 > 0, this last

inequality yields (/3t llj)I/31 ~ ~ k for all j = 0, ... , n + 1. Using (4.3a) to
substitute for IIj, this becomes

(k - 1-)t (k -k) 7r - (32 (31 9j + z + ~ ~ Cj for all j = 0, ... ,n + 1. (4.4)

Noting (4.1), we now have a revised improved dual feasible solution (7rk +1,
7r~+1) given by

Setting zk+1 = 7r~+1 == zk + ~ k, we now define IIj+1, j = 0, ... , n + 1, and
X(zk+1) as in (4.3), and repeat. Note that

[
(732//31) ~gj - ~ k I

1I~+1 = 1I~ +
3 3 .

°
(4.6)

An exterior-point polytope sliding and deformation algorithm 573

for j = 0, ... , n + 1. Hence, the polytope X(zk) is slid along the negative z-axis
by the amount ~ k, and is also deformed by adjusting the first components of all
the points vj, j = 0, ... , n + 1, so that all vertices of the new polytope X (zk+ 1)

have nonnegative z-axis components. In particular, since C7/vj(k))//31 == ~ k
from (3.2b), we have (4.4) holding as an equality for j == j(k) (see the inequality
that leads to (4.4)), and so from (4.3a) and (4.6), the first component of v;(t)
is zero. The following section proves convergence of the algorithm under this
modification.

REMARK 3. Note that Algorithm PSA as stated in Section 2 also pro­
duces a sequence of dual feasible solutions. At iteration k = 1, we have
(7rk , 7r~) = (0, ... ,0, Cmin) as a feasible solution to (4.1). Then, for any itera­
tion k ~ 1, having determined the separating hyperplane (3.2a) with /31 > 0, we

have /3t (vj - vj(k)) ~ ° for all j = 0, ... , n + 1. Using (1.3) and (3.2b), we
obtain as in (4.4) that .

for all j = 0, ... , n + 1, and so,

is a revised dual feasible solution with an improved objective value of zk + ~ k .
However, the modification proposed above based on a reduced cost represen­
tation of LP helps enhance the computational performance of the algorithm by
favorably positioning the polytope with respect to the nonnegative z-axis.

5. Overall algorithm and its convergence. The overall Polytope Sliding,
Hyperplane Rotation, and Deformation Algorithm (PSDA) may be summarized
as follows.

Algorithm PSDA

Initialization. Put k = 1, zk = Cmin, 7rk = (0, ... , 0), 7r~ - Cmin,

vj = [Cj ~jCmin] for j = O, ... ,n + 1, >.~ = l/(Q + 1), >.j = ° for

j = 1, ... , n, >'~+1 = Q/(Q + 1), and

n+1

xk = I>;>.j = [-Cmin, _bt/(Q + l),O]t.
j=O

574 H.D. Sherali et al.

Note that xk E X(zk) == conv {vi: j = 0, ... , n + I}. Pick tennination

tolerances e > ° and 8 > 0, and a constant ° < J.L ~ 1. Proceed to Step 1.
Step 1 (Subroutine CPR): Invoke a closest point routine CPR of Section 2,

and let it produce a solution

n+l

xk+l == pT == L vj >.;+1 E X(zk). (5.1)
j=O

Ifxt+1 ~ 0, go to Step 4(b). If II x k+1112 ~ e, go to Step 4(a). Otherwise,
CPR also produces a vj(k) == Vj(T) such that (2.1) and (2.2) hold true. In this
case, proceed to Step 2.

Step 2 (Rotation of the separating hyperplane): Invoke Algorithm HRA of
Section 4. If J1 = 0 or J2 = 0 at any step of this procedure, go to Step 4(b).
Otherwise, let this algorithm produce a vector li such that li 1 = X f+1 , and lit (x-

k k" -k -t k -
Vj(k») ~ ° for all x E X(z). Accordmgly,asm (3.2b), find.6. = ((3 vj (k»)/(31

as a pennissible increase in the lower bound zk. If .6. k < 8, go to Step 4(a).

Otherwise, proceed to Step 3.
Step 3 (Polytope defonnation and sliding): Put zk+l = zk + .6.k. If zk+l >

Cmax , go to Step 4(b). Otherwise, compute (ll'k+1, 1l'~+1) as in (4.5), compute

vJ+1 for j = 0, ... ,n + 1 as in (4.6), and using (4.6) and (4.1), let

(5.2)

where li == (lidli2) and Xk+l == ('xf+1, x;+1). Increment k by one and return
to Step 1.

Step 4(a) (Near-optimality): Tenninate the algorithm with a (near)-optimal
solution>. * = >. k • (In case .6. k < 8 at Step 2, this tennination is due to insufficient
progress. Also we can switchover to the simplex method as in Section 2 at this
step.)

Step 4(b) (Infeasibility): Tenninate with the indication that LP is infeasible.

Theorem 2 (Overall convergence result). Suppose that Algorithm
PSDA is run for some ° < J.L ~ 1, but with c = 0 and 8 = O. Then either

(i) CPR will generate a sequence {pt} in X(Zk) for some k such that
x k+ 1 = pT = ° for some finite t = T or such that {pt} ~ 0, or

An exterior-point polytope sliding and deformation algorithm 575

(ii) the Algorithm PSDA will terminate finitely at Step 4(b) with an infeasi­
bility indication, or

(iii) an infinite sequence {xk} will be generated, k ~ 2, such that {xk} -4

O. lfx k = pT = 0 finitely in case (i), then the convex combination vector>" k+1
corresponding to pT solves LP. Otherwise, in the first and the third cases, the
limit point of any convergent subsequence of the convex combination weights
generated, corresponding to {pt} in case (i) and to {xk+1} in case (iii), solves
LP.

Proof In the event case (i) occurs, let X be the convex combination weight
vector corresponding to pT if pT = 0 for some finite T, or let X be the limit of a
convergent subsequence of the convex combination weights corresponding to the
sequence {pt} generated by CPR. In either case, we have

n+l
- - "" k-e>.. = 1, >.. ~ 0, and L...JVj>"j = O.

j=O

From (4.3), this yields

GX = 0, and 0 = eX - (rrk)tGX - zk = eX - zk.

Hence, we have

GX=O, eX = 1, X ~ 0, - k and e>.. = z ,

where zk is a lower bound for LP. Therefore, X solves LP. The event leading
to termination at case (ii) implies that the dual (4.1) is unbounded or that LP
is infeasible. This includes the event when zk > Cmax for any k, by noting the
objective function of LP, and that the constraints include e>.. = 1 and >.. ~ O.

Now, if cases (i) or (ii) do not occur, then as in case (iii), the Algorithm PSDA
will generate an infinite sequence {xk}, k ~ 2, where xk E X(zk-l) and x~ >
o for all k ~ 2. Noting (5.1), let {>..k}K' indexed by the set K, be a convergent
subsequence of the corresponding convex combination weights generated, and
suppose that {>..k}K -4 X. Hence, eX = 1 and X ~ O.

Now, from (2.1), (2.3) and (3.2b), we have

"fit k (-k+1)t k
Zk+I = zk + ~ k = zk + vj(k) ~ zk + x _k+~j(k)

fiI Xl

(5.3)

576 H.D. Sherali et at.

Hence, {zk} is a monotone increasing sequence bounded above by Cmax (see
Step 3), and so {zk} ~ Z ~ cmax • Moreover, this further implies from (5.3) that

{xf+1} ~ o and that {llxk+1 11 2/xf+1} ~ O,andso{xk} ~ O. From (4.3)
and (5.1), this in turn implies that {xn == {G.xk} ~ 0, and so, G'X = O.

Furthermore, from (4.3) and (5.1), since {xf} ~ 0, we have

(5.4)

DefineJ = {j E {0, ... ,n+1}: 'Xj > O}. By dual feasibility of (7fk-l,

7f~-1 == zk-l) in (4.1), we know that (Cj - (7fk-l)tgj - zk-l) ~ 0 for all

j = 0, ... , n + 1 and for all k ~ 2. Hence, from (5.4), this implies that as

k ~ 00, k E K, we have

Now, since l:jEJ 'Xj = 1, 'Xj = 0 for j ~ J, and G'X = 0, we have

L'Xj (Cj - (7fk-l)tgj - zk-l) = (e'X - zk-l) for all k. (5.6)

JEJ

Taking limits in (5.6) as k ~ 00, k E K, we have from (5.5) that e'X = z.
Since G'X = 0, e'X = 1, e'X = z, where z is a lower bound for LP, it follows that
'X solves LP, and this completes the proof.

COROLLARY 1. Algorithm PSDA is finitely convergent for any E: > 0 and

8> o.

6. Computational experience. We conclude this paper by providing some
preliminary computational results for the proposed Algorithm PSDA. The test
problems, denoted by (m, n) where m is the number of constraints and n is the
number of variables, were generated in the form (Ll) following the approach in
Rosen and Suzuki (1965) and Sherali and Myers (1988). These problems there­
fore have known primal and dual optimal solutions. The components of the opti­
mal solution y* were generated uniformly on [0, 10], while controlling the num­
ber of nonzeros to be less than m in order to inject degeneracy. The components
of the optimal dual solution w* were generated uniformly on [-10,10], and the
coefficients of the m x n matrix A were generated uniformly on the interval
[-10,10] having density 0.1. Accordingly, we then set b = Ay*, and wc gen­
erated the objective function coefficients by letting Cj = w*taj if y] > 0, and

An exterior-point polytope sliding and deformation algorithm 577

Cj = w*taj + (if yj = 0, where (was generated unifonnly on [0, 10]. The value
of Q employed in (1.2a) was taken as twice the sum of all the primal variables at
optimality.

Note that the subroutine CPR is the most expensive step of Algorithm PSDA.
We found that the number of iterations of the algorithm tends to be small as in in­
terior point methods, provided that the closest point subproblems are solved fairly
accurately (f-L ~ 0.8). We attempted the algorithm of Sherali and Choi (1993),
Wolfe (1975), and a specialization of the first-order reduced gradient method,
noting that this closest point problem minimizes a quadratic function over a sim­
plex. Of these, the algorithm of Sherali and Choi (1993) worked best, and was
adopted in the preliminary results reported below. However, a second-order con­
jugate gradient or quasi-Newton reduced gradient type of approach might serve
to enhance the perfonnance of Algorithm PSDA.

Tables 1 and 2 present some computational results for Algorithm PSDA, us­
ing two different values of f-L, namely, 0.75 and 0.80 (denoted by PSDA (0.75)
and PSDA (0.80), respectively). Also, for comparison, we provide computational
results obtained using the Revised Simplex method, implemented with an effi­
ciency on par with Algorithm PSDA. The algorithms were coded in FORTRAN
VS2 and run on an IBM 3090-300E computer. For each problem, we specify its
size (m, n) and the optimal value z* obtained by the simplex method when ter­
minated with reduced costs greater than or equal to -0.01. In all runs, we use
c = 0.01 and 8 = 0.5. The test problems of Table 2 have more zeros at the op­
timal solution than the problems of Table 1, implying the possibility of a higher
degree of degeneracy. Indeed, this is borne out by comparing the number of it­
erations taken by the Simplex method for the problems in the two tables. On the
other hand, note that the proposed algorithm is relatively unaffected by degener­
acy. Also, the relative advantage of PSDA improves with an increase in problem
size (m and n), and also with an increase in n for any given value of m.

To summarize, we have presented in this paper a polytope sliding and de­
fonnation algorithm based on a convex hull representation interpretation of Kar­
markar's fonn of writing any given linear program. We have also shown how a
sequence of dual feasible solutions of increasing objective value can be recovered
in the process. This may prompt the application of the proposed method to the
dual linear program, instead of the primal. Refinements of the algorithm based on

a rotation of the separating hyperplane, along with a defonnation using the dual
solution have been proposed and implemented. The principal advantage of the
algorithm is that it is easy to implement, requires a minimal amount of storage,
and is not prone to accumulated round-off error problems, thereby requiring no
sophisticated numerical safeguards. For the test problems run, it usually produces

578 H.D. Sherali et al.

Table 1. Computational experience on low-moderately degenerate prob-

lems problems

Problem Algorithm Iters (K) LB (ZK) CPU Time ·OPT(%)

(m,n) (secs.)

z·

(40,120) SIMPLEX 238 2.64

-1.50 PSDA(0.75) 24 -1.64 3.53 91.39

PSDA (0.80) 23 -1.52 6.49 98.34

(40,300) SIMPLEX 291 6.37

4.26 PSDA (0.75) 25 4.17 4.77 98.02

PSDA (0.80) 23 4.22 5.50 99.44

(50,150) SIMPLEX 238 4.30

-6.53 PSDA (0.75) 29 -6.59 9.80 99.17

PSDA (0.80) 27 -6.56 11.42 99.51

(50,500) SIMPLEX 432 17.96

4.36 PSDA(0.75) 28 4.27 9.89 98.00

PSDA(0.80) 21 4.32 10.66 99.00

(75,250) SIMPLEX 598 23.65

13.25 PSDA(0.75) 36 13.08 23.70 98.73

PSDA(0.80) 33 13.17 29.71 99.38

(75,500) SIMPLEX 538 36.18

3.81 PSDA (0.75) 31 3.72 21.54 97.58
PSDA (0.80) 28 3.72 22.07 97.62

(lOO, 600) SIMPLEX 1108 112.53
3.15 PSDA (0.75) 39 3.10 49.80 98.25

PSDA (0.80) 36 3.12 56.53 98.99

(lOO, 600) SIMPLEX 930 97.15
-2.40 PSDA(0.75) 41 -2.47 79.75 97.03

PSDA (0.80) 37 -2.53 87.52 94.70

·OPT(%)= [1 - (Z·I;.~B)] x 100(%)

An exterior-point polytope sliding and deformation algorithm 579

Table 2. Computational experience on more degenerate problems

Problem Algorithm Iters (K) LB (zK) CPU TIme *OPT(%)

(m,n) (secs.)

z*

(40,120) SIMPLEX 209 2.40

-2.80 PSDA (0.75) 25 -2.93 7.75 95.55

PSDA (0.80) 23 -2.91 9.03 96.40

(40,300) SIMPLEX 290 6.45

-8.30 PSDA (0.75) 30 -8.41 6.76 98.64

PSDA (0.80) 28 -8.34 7.56 99.57

(50,150) SIMPLEX 499 8.06

-16.33 PSDA (0.75) 33 -16.50 15.84 98.98

PSDA (0.80) 30 -16.40 21.31 99.58

(50,500) SIMPLEX 417 17.80

-8.58 PSDA (0.75) 27 -8.64 13.15 99.37

PSDA(0.80) 25 -8.59 17.59 99.89

(75,250) SIMPLEX 701 27.12

14.67 PSDA (0.75) 38 14.53 44.39 99.01

PSDA (0.80) 34 14.59 55.61 99.42

(75,500) SIMPLEX 966 60.62

33.95 PSDA (0.75) 31 33.91 26.52 99.86

PSDA (0.80) 28 33.88 26.12 99.77

(lOO, 600) SIMPLEX 1562 153.60

4.56 PSDA(0.75) 42 4.43 73.99 97.14

PSDA (0.80) 38 4.42 82.70 97.08

(lOO, 600) SIMPLEX 1274 127.38

-2.12 PSDA (0.75) 42 -2.22 69.25 95.30

PSDA (0.80) 38 -2.15 87.80 98.56

*OPT(%)= [1 - (z·I;.~B)] x 100(%)

580 H.D. SMrali et al.

a quick, acceptable near optimal solution (95-99%) within a limit of 18-45 itera­
tions (depending on m and n). Further enhancements are possible by using a more
efficient closest point subroutine. As another point of research interest, one can
investigate an appropriate switchover point when using this procedure to provide
an advanced-start solution for the simplex algorithm. These issues and additional
tests on various structured problems are recommended for future research.

REFERENCES

Bazaraa, M.S., J.J .. Jarvis and H.D. Sherali (1990). Linear Programming and Network Flows, Second
edition. John Wiley and Sons, Inc., New York, NY.

Bazaraa, M.S., H.D. Sherali and C.M. Shetty (1993). Nonlinear Programming: Theory and Algo­
rithms, Second edition. John WHey and Sons, Inc., New York, NY.

Gacs, P., and L. Lovasz (1981). Khachian's algorithm for linear programming. Mathematical Pro­
gramming Study, 14,61-68.

Karmarkar, N. (1984). A new polynomial-time algorithm for linear programming. Combinatorica, 4,
373-395.

Parker, G.R., and R.L. Rardin (1988). Discrete Optimization. Academic Press, Inc., San Diego, CA
92101.

Rosen, J., and S. Suzuki (1965). Construction ofnonlinear programming test problems. Communica­
tions o/the ACM, 8.

Shera1i, H.D., and G. Choi (1993). Finding the closest pomt to the origin in the convex hull of a
discrete set of points. Computers and Operations Research, 20(4), 363-370.

Sherali, H.D., and D.L. Myers (1988). Dual formulations and subgradient optimization strategies for
linear programming relaxations of mixed-integer programs. Discrete Applied Mathematics, 20,
51-68.

Tomlin, J.A. (1985). An Experimental Approach to Karmarkar's Projective Method for Linear Pro­
gramming. Ketron, Inc., Mountain View, CA 94040.

Wolfe, P. (1976). Finding the nearest point in a polytope. Mathematical Programming, 11,128-149.

Received September 1997

An exterior-point polytope sliding and defonnation algorithm 581

H.D. Sherali obtained his Ph.D. from the Georgia Institute of Technology
in 1979. He is currently the Charles O. Gordon Professor of Industrial and Sys­
tems Engineering at Virginia Polytechnic Institute and State Universtiy. His areas
of research interests are in convex and nonconvex (discrete and continuous) op­
timization with applications to production, distribution, and engineering design
problems.

G. Choi obtained his Ph.D. from VIrginia Polytechnic Institute and State
University in 1994. He is currently Assistant Professor ofIndustrial Engineering
at Hanyang University, Seoul, Korea. His research interests are in nondifferen­
tiable (linear and nonlinear) optimization, logistics, and applications to informa­
tion systems.

S. Sen is Professor of Systems and Industrial Engineering at the Univer­
sity of Arizona. He has been with the University since 1982, the year he gradu­
ated from Virginia Tech with a Ph.D. in Operations Research. His research cov­
ers a wide spectrum of optimization theory and its applications, and his papers
have appeared in journals like JOTA, Mathematical Programming, Mathematics
of Operations Research, Management Science and Operations Research.

582 H.D. Sherali et al.

ISORINIO TASKO SLANKAUS IR DEFORMUOJAMO
POLITOPO ALGORITMAS TIESINIO PROGRAMAVIMO

UZDAVINIAMS SP~STI

Hanif D. SHERALI, Gyunghyun CHOI, Suvrajeet SEN
Siame straipsnyje mes vystome tiesinio programavimo algoritm~ naujai interpre­

tuodami Karmarkaro pateikt~ sio uZdavinio traktavim~. Tarn nagrinejame politop~, ku­
rio atzvilgiu pradinis taskas yra iSorinis taskas. Siekdami optimalaus sprendinio nusta­
tome minimalll poslink\, kuriuo reikia paslinkti politop~ vienmates poslinkio asies kryp­
timi taip, kad pradinis taskas priklausytll tarn politopui. Tarn, naudodami artimiausio
tasko procediir~, pravedame hiperplokstumas tarp pradinio tasko ir politopo. AIgoritmas
pagereja \vedus dualill sprendiniq generavim~. Sie sprendiniai leidzia deformuoti poli­
top~ taip, kad jo padetis biitq patogi pradinio tasko ir poslinkio asies atzvilgiu. Bendra
algoritmo schema yra lengvai realizuojama, reikalauja maZai atminties. Ji greitai duoda
kokybiskus sprendinio \vercius. Yra galimybe pereiti \ simplekso ar vidinio tasko metod~,
naudojant jau gaut~ sprendin\ kaip pradim. Pateikiarni preliminarus skaiciavimq rezultatai.

