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Abstract. The following topics are important teaching operation research: games 
theory, decision theory, utility theory, queuing theory, scheduling theory, discrete opti­
mization. 

These topics are illustrated and the connection with global optimization is shown 
considering the following mathematical models: 

- competition model with fixed resource prices, Nash equilibrium, 
- competition model with free resource prices, Walras equilibrium, 
- inspector's problem, multi-stage game model, 
- "Star War" problem, differential game model, 
- "Portfolio" problem, resource investment model, 
- exchange rate prediction, Auto-Regression-Moving-Average (ARMA) model, 
- optimal scheduling, Bayesian heuristic model, 
- "Bride's" problem, sequential statistical decisions model. 

The first seven models are solved using a set of algorithms of continuous global 
and stochastic optimization. The global optimization software GM (see [19]) is used. The 
underlying theory of this software and algorithms of solution are described in [19, 17]. 
The last model is an example of stochastic dynamic programming. 

For better understanding, all the models are formulated in simplest terms as "class­
room" examples. However, each of these models can be regarded as simple representations 
of important families of real-life problems. Therefore the models and solution algorithms 
may be of interest for application experts, too. 

The paper is split into two parts. In the part one [18] the first five models are de­
scribed. In this part the rest three models and accompanyiing software are considered. 

Key words: operations research, Bayesian, heuristic, optimization, global. 

1. Exchange rate forecasting, time series model 

1.1. Introduction. Modeling economic and financial time series using the 

autoregressive moving average (ARMA) method was described in [6, 3, 5, 4, 13, 

20]. In estimating the parameters of the ARMA models, three approaches have 



496 1 Mockus 

Deen used: Maximum Likelihood (ML) [22], approximate ML [14, 7, 9, 10], and 
two-step procedures [8, 11]. In all the cases local optimization techniques were 
used. In this case, the optimization results depend on the initial values, what 
implies that one cannot be sure if a global maximum is found. 

The global optimization is very difficult in almost all the cases!. The reason 
is a high complexity of multi-modal optimization problems in general. It is well 
known [12] that optimization of real functions cannot be done in polynomial­
time, unless P = N p2. In practice, this means that we need an algorithm of 
exponential time to obtain the e-exact solution. The number of operations in 
exponential algorithms grows exponentially with the accuracy of solution and 
dimensions of the optimization problem. 

A common approximate approach in estimating the parameters of ARMA 
models is Least Squares (LS). We minimize the log-sum of square residuals in­
stead of maximizing log-likelihood (see [20, 19]). 

Subsection 1.2 deals with the ARMA models and estimation methods. Sub­
section 1.3.6 compares the average prediction results of ARMA and the Random 
Walk (RW) models. Subsections 1.5 and 1.4 investigate a bilinear, and an artifi­
cial neural networks models correspondingly. Subsection 1.6 regards "multi-day" 
predictions using semi-Monte Carlo simulation techniques. Subsection 1.7 illus­
trates the multi-modality. 

1.2. Auto-regression moving-average models (ARMA) 

1.2.1. Definitions. We define an ARMA model as 

p q 

Wt = L aiWt-i + L biet-i + et· 
i=l i=l 

We assume that 

Zt-i = 0, Wt-i = 0, et-i = 0, if t ~ i. 

(1) 

(2) 

1.2.2. Definition of residuals. One of the advantages of residual minimiza­
tion is that one may see directly how the objective depends on unknown parame-

IBy 'difficult' we mean the time measure of computational complexity, that is, the minimum 
length of time would be needed for a standard universal computer to perform a task. 

2The notation P = N P means the existence a polynomial-time algorithm P for solving N P­
complete problems. That is merely a theoretical possibility. 
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ters. Using equalities (1) we define residuals by recurrent expressions: 

el = Wl 

e2 = W2 - alWI - b1el 

Next the sum 
T 

f(x) = log fm(x), fm(x) = .L>~ (4) 
t=l 

is minimized. 
The logarithm is used to decrease the objective variation by improving the 

scales. 

1.3. Minimization of residuals of ARMA models. We consider an algo­
rithm for optimization of parameters of the ARMA model. This model is simple 
and may be regarded as a good first approximation. Denote by Yt the value of Y at 
the moment t. Denote by a = (al, ... , aq ) a vector of Auto-Regression (AR) pa­
rameters, and by b = (bl, ... , bq ) a vector of Moving-Average (MA) parameters. 

The residual 

or 

Here 

and 

p q 

Yt- LaiYt-i=et- Lbjet-j, t=l, ... ,T. 
i=l j=l 

p q 

et = Yt - L aiYt-i + L bjet_j 
i=l j=l 

p 

et = Bt + LaiAt(i). 
i=l 

q 

Bt = Yt + L bjBt- j- 1 

j=l 

q 

At(i) = -Yt-i-l + L bjAt-j-l. 
j=l 

where t - i > 0 and t - j > O. 

(5) 

(6) 

(7) 

(8) 

(9) 
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1.3.1. Optimization of AR parameters. Denote 

T 

S(a, b) = :Ee2, 
t=l 

where a = (at. ... , ap ) and b = (bl," ., bq ). 

From expressions (10) and (7) the minimum condition is 

T 
8S(a,b) _ 2" A (.) - 0 
----,~..:... - L..J et t J - , 

8aj t=l 
j = 1, ... ,p 

or 
p 

L:A(i,j)ai = -B(j), j = 1, ... ,p, 
i=l 

where 
T 

A(i,j) = I: At(i)At{j) 
t=l 

and 
T 

B(j) = :EAt(j)Bt. 
t=l 

(10) 

(11) 

(12) 

(13) 

(14) 

The minimum of expression (10) at fixed parameters b is defined by a system 

of linear equations: 
(15) 

Here matrix A = (A(i,j), i,j = 1, .. . p) and vector B = (B(j), j = 1, .. . p), 
where elements A(i,j) are from (13), components B(j) are from (14), and A-l 
is an inverse matrix A. This way one define the vector a(b) = (ai(b), i = 
1, ... ,p) that minimize sum (10) at fixed parameters b. 

1.3.2. Optimization of MA parameters The sum of squared residuals (10) 
is a nonlinear non-convex function of MA parameters b. Thus we have to consider 
the global optimization algorithms. Denote 

f(x) = 10gS(a(x),x), (16) 

where x = band S(a, b) is from (10) at optimal parameter a = a(b). Denote 

bO = xO = argminf(x). 
:z: 

(17) 
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1.3.3. Advantages and disadvantages of Squared Residuals Minimiza­
tion (SRM). An advantage of the SRM approach is that objective (4) is explic­
.itly expressed as a function of variables a, b. It is important in the investigation 
of multi-modality problems while looking for an efficient method of global opti­
mization. Model (10) is flexible. For example, one may conveniently consider the 
sum of ARMA model with some other models. In any case, a simple model (10) 

is a good test problem while developing some global optimization techniques that 
may be used for likelihood maximization, too. 

1.3.4. Predicting ''next-day'' rate. We minimize the expected "next-day" 
squared deviation ct+l using the data available at the moment t 

° . E 2 Yt+l = arg mm Ct+l' 
Yt+l 

(18) 

Here 

EC~+l = E(Bt+l + tAt+l(i)ai(bO») 2, (19) 

where the optimal parameter bO was obtained using the data available at the day 
t. Variance (19) is minimal, if 

p 

yr+l = Bt+l + LAt+l(i)ai(bO), (20) 
i=l 

because the expectation of Yt+l is Bt+l + L:f=l At+l(i)ai(bO) under the as­
sumptions. 

1.3.5. "Continuous" model. If we wish to keep the "continuity" of sample 
functions as time unit tends to zero, we have to consider a special case when al = 
1. In such a case, one ought to change expressions (5)-(20), correspondingly. The 
popular Random Walk (RW) model: 

Yt+l = Yt + ct, (21) 

may be regarded as a special case of the "continuous" model when q = O. 

1.3.6. Evaluation of ARMA prediction errors. We compare the "next­

day" ARMA prediction results and a popular Random Walk (RW) model, where 
the conditional expectation of Yt+l = Yt. Table 1 shows the difference between 
the mean square deviations of ARMA and RW models using DMI$ and $1,£ 
exchange rates and AT&T and Intel Co. stocks closing rates for the period of 
T = 460 days. Let us denote by To = T/4 = 115 the number of days, used 
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Table 1. The average prediction results of ARMA and RW models 

Data ARMA RW ARMA-RW 

$1£ 2.299928e-02 2.26237ge-02 3.754923e-04 
DMI$ 3.912910e-02 3.968943e-02 -5.603285e-04 
AT&T 1.677580e+02 1.644688e+02 3.289204e+OO 

Intel Co 4.063805e+02 4. 1 33900e+02 -7.009471e+OO 

for the "initial" parameter estimation employing global optimization methods. 
This number seems sufficient for the initial estimation. The "initial" estimates 
are updated later on by local methods. ARMA and RW denote the mean square 
deviations of ARMA and RW "next-day" predictions. The difference is denoted 
asARMA-RW. 

Table 1 shows the average over 345 "next-day" predictions. The table 
demonstrates that the ARMA model predicts the DMI$ exchange rate and the 
Intel Co. closing rate better than RW. For the $1£ exchange rate and the AT &T 
closing rate the opposite is true. The difference is slight but not so insignificant 
since the average of 345 "next-day" predictions is shown. 

There are formal significance tests to answer to this type of questions. How­
ever, the results depend on the estimate distribution which is not well-defined 
in multi-modal cases. The reason is the discontinuity of multi-modal estimates 
since even slight data changes my cause jumps of estimates. 

The results of traditional significance tests depend on the observation num­
bers, too. For instance, it is shown (see [16]) that any positive difference will 
become "significant", if the observation number is sufficiently large. Therefore, 
let us merely define the average prediction errors (see Table 1) and declare that 
the number of observations is 345. 

Table 2 shows optimal parameters a(b) = (ao(b), ... ,ag(b)) and b = 
(bo, b1) of the ARMA model used for the first 10 of 345 "next-day" predictions of 
the DMI$ exchange rate. The values of the objective function f( x), x = (bo, bt) 
are denoted by v. 

1.4. Artificial Neural Networks Models (ANN). If we are interested 
mainly in the non-linearities, then we may apply many other non-linear mod­
els, including the ones that are non-linear regarding the data, too. In this book 
we will discuss two of them. In this subs~tion the ANN model will be con­
sidered. In the next section, we shall introduce a bilinear term into the ARMA 
model. 
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Table 2. The optimal parameters a and b of ARMA model for 10 
predictions 

a= 1.6261e+00 -1.5934e+00 9.650e-Ol O.OOOe+OO -1.99ge+00 
O.OOOOe+OO -1.9986e+00 O.OOOOe+OO O.OOOOe+OO O.OOOOe+OO 

b= 6.2827e-Ol -9.7024e-Ol v= -4.9132e+oo 

a= 1.6126e+00 -1.5691e+OO 9.5426e-Ol O.OOOOe+OO -1.9991e+00 
O.OOOOe+OO -1.9986e+oo 6.084Oe-05 6.2966e-05 -7.8000e-03 

b= 6.1477e-Ol -9.5945e-Ol v= -4.9053e+00 
a= 1.6085e+OO -1.5632e+00 9.5250e-Ol O.OOOOe+OO -1.9991e+00 

O.OOOOe+OO -1.9986e+OO 7.6840e-05 7.1677e-05 -4.0000e-03 
b= 6.1063e-Ol -9.5766e-Ol v= -4.9041e+00 

a= 1.6197e+00 -1.5866e+00 9.6464e-0l O.OOOOe+OO -1.9991e+00 
O.OOOOe+OO -1.9986e+00 4.8488e-04 4.2047e-04 -2.0200e-02 

b= 6.21 86e-0l -9.698ge-Ol v= -4.8595e+OO 

a= 1.6284e+00 -1.6028e+OO 9.7224e-Ol O.oooOe+OO -1.9991e+00 
O.OOOOe+OO -1.9986e+00 5.9513e-04 4.9755e-04 -1.05OOe-02 

b= 6.3051e-Ol -9.7745e-Ol v= -4.8502e+OO 

a= 1.6322e+00 -1.607ge+OO 9.7354e-Ol O.OOOOe+oo -1.9991e+00 
O.OOOOe+oo -1.9986e+oo 6.5913e-04 5.5094e-04 -8.0000e-03 

b= 6.3427e-Ol -9.7880e-Ol v= -4.8437e+oo 
a= 1.6388e+00 -1.6254e+OO 9.8438e-Ol O.OOOOe+OO -1.9991e+00 

0.0000e+00 -1.9986e+00 8.2813e-04 7.l553e-04 1.3000e-02 
b= 6.4082e-0l -9.8975e-0l v= -4.8243e+oo 

a= 1.6348e+OO -1.6177e+00 9.8062e-Ol O.OOOOe+oo -1.9991e+00 
O.OOOOe+oo -1.9986e+00 8.5517e-04 7.4322e-04 -5.2000e-03 

b= 6.3693e-Ol -9.8600e-Ol v= -4.8212e+00 
a= 1.6351e+00 -1.6236e+00 9.861ge-Ol O.OOOOe+oo -1.9991e+00 

O.OOOOe+OO -1.9986e+00 1.0597e-03 8.8185e-04 -1.4300e-02 
b= 6.3722e-Ol -9.9145e-Ol v= -4.804ge+OO 

a= 1.6382e+00 -1.6311e+00 9.9063e-Ol O.OOOOe+oo -1.9991e+00 
O.OOOOe+oo -1.9986e+00 1.131ge-03 9.0880e-04 -8.5000e-03 

b= 6.4026e-Ol -9.9593e-Ol v= -4.8020e+OO 

We apply ANN by involving the non-linear activation function <P into the 
standard Auto-Regression (AR(l» model 

(22) 
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The idea lurking behind ANN-AR(l) model is that the activation function 4J 
roughly represents the activation of a real neuron. We minimize the sum 

T 

fm{x) = Le~, (23) 
t=l 

where the objective f m (x) depends on 1 unknown parameters represented as a 

l-dimensional vector x = (Xk' k = 1, . .. ,1) = (ai, i = 1, ... , l). 
From expression (22) it is clear that the residuals et are nonlinear functions 

of parameters at if the activation function 4J is nonlinear3. This means that the 
minimum conditions 

8fm(x) = 0, i = 1, ... ,p 
8ai 

is a system of nonlinear equations that may have a multiple solution. 

(24) 

An interesting activation function is derrived using the Gaussian distribution 

function 
f3 jWt(l) = 

4J(Wt(l)) = rru. e- a dw. 
v 24Ja -00 

(25) 

Here Wt(l) = I:~=1 aiWt-i and c is a scale parameter. 
Obviously, using ANN one meets the multi-modality problem as it was in a 

case of ARMA model (see non-linear equations (10)). The multi-modality prob­
lems of ANN models are discussed in [19]. 

1.5. Bilinear models. It is well known that for the adequate description of 
some phenomena additional non-linear terms of the time series could be of use. 
A simple example is to add a bilinear term (see [21, 15]). Here are bilinear time 
series extending the ARMA model: 

p q s r 

Wt = L aiWt-i + L biet-i + L L CijZt-iCt-j + Ct· (26) 
i=l i=l i=l j=l 

For an illustrative example of the bilinear time series see [19]. 

1.6. Examples of semi-Monte Carlo simulation A simple way of visual 
"validation" of a model is by Monte-Carlo simulation. The objective of simula­
tion is to compare the real data with the simulated results of the statistical model. 

3 Assuming the linear activation function <p the ANN model is reduced to the standard Auto­
Regression model. 
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An obvious way to do that is by using some type of "Semi-Monte Carlo" 
simulation technique defined in short as "Simulated Forecasting" (SF). 

Using SF we fix the estimated values of unknown parameters J.Lo, J.L, 0' com­
mon for both the model 1 (see Fig. 1) and the model 2 (see Fig. 2). We also fix 
the "individual" parameters a, b, d for each of two ARFIMA models4• 

The residuals Ct (see expression (3» are determined up to the simulation 
starting moment t( s) using the observed data. The rest of residuals Ct, t ~ t( s) 
are generated by a Gaussian distribution with zero mean and variance 0'2. We 
repeat the simulation 10 times for each ARMA model separately. The results are 
presented in Fig. 1 and 2. 

The lines denoted as "real" show the real data (the rial/$ exchange rate trans­
formed by the variable-structure model (see [19]). The "mean" lines show the 
average results of SF prediction of Yt + J.Lo. The "min" and "max" lines denote 
the lower and the upper values of simulation. Therefore, these lines are referred 
to as "SF-confidence intervals", meaning that if the model is true, one may expect 
those "intervals" to cover the real data with some "SF-confidence level" a(SF). 
It is very difficult to define a(SF) exactly. Assuming that "interval deviations" 
may be regarded as independent and uniformly distributed random variables, we 
obtain a(SF) = 1 - k. Here k is the number of Monte-Carlo repetitions. In our 
case, k = 10, thus a(SF) = 0.9 

Unfortunately, this assumption "over-simplifies" the statistical model. 
Therefore, one may regard "SF-confidence levels" a(SF) merely as a Monte­
Carlo approximation. 

1.7. Examples of squared residuals minimization 

1.7.1. Multi-modality examples. We consider $/£ and DMI$ daily ex­
change rates and AT &T and Intel Corporation stocks closing rates as examples 
(see Fig. 3, 4, 5, 6). Estimating unknown ARMA parameters we minimize a log­
sum of squared residuals defined by expression (4). 

The Fig. 7 and 8 show how log-sum (4) depends on the parameters bo and 
b1 , considering the $/£ exchange rate. 

The Fig. 9 shows the relation on b1 considering the DMI$ exchange rate. 
The Fig. 10 shows the relation on bo regarding the AT &T stocks closing rate. 
The Fig. 11 and 12 show the relation on bo and b1 obtained from the Intel 

Corporation closing rate. 
Parameters a are estimated by expression (12). 

4The ARFIMA model is an extension of ARMA modelincluding an additional parameter d, see 
[19]. 
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Results of semi-Monte Carlo Simulation of the transformed rial/$ 
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Fig. 2. Results of semi-Monte Carlo simulation of the transformed riall$ 
monthly exchange rate (1977-1988), the model 2, 
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Fig. 3. $/£daily exchange rate (starting from September 13, 1993). 
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Fig. 4. DMI$ daily exchange rate (starting from September 13, 1993). 
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Fig. 5. AT&T stocks closing rate (starting from August 30, 1993). 
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Fig. 6. Intel Co. stocks closing rate (starting from August 30, 1993). 
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Fig. 7. Log-sum (4) as a function of the parameter bo E [-1.167,1] re­
garding the $1£ exchange rate. 
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Fig. 8. Log-sum (4) as a function of the parameter bI E [-1.0, -0.167] 
regarding the $1£ exchange rate. 
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Fig. 9. Log-sum (4) as a function of the parameter b1 E [-0.05,0.] re­
garding the DM/$ exchange rate. 
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Fig.lO. Log-sum (4) as a function ofthe parameter bo E [-1.,1.] regard­
ing the AT &T stocks closing rate. 
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Fig. 11. Log-sum (4) as a function ofthe parameter bo E [-1.,1.] regard­
ing the Intel Co stocks closing rate. 
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Fig. 12. Log-sum (4) as a function of the parameter bl E [-1.07,0.03] 
regarding the Intel Co stocks closing rate. 



510 J. Mockus 

Table 3. The initial points obtained in optimizing ARFIMA models by 

global algorithms 

Data bo bI min log f(x) 

$1£ -1.195 -0.169 1.51675 

DMI$ -1.019 0.0120 1.60065 

Rial/$ (1) 0.15 0.45 0.9395 

Riall$ (2) 0.51 -0.45 0.9350 

AT&T -1.017 0.0118 9.83208 

Intel Co 0.9975 0.0055 7.35681 

The figures indicate the multi-modality of log-sum (4) as a function of pa­

rameters bo, b1 in all the three cases5• 

1.7.2. "Initial" points. The "initial" points bg, by (see Table 3) for drawing 
all these relations were defined using a sequence of two global methods referred 
to as BAYES 1 and EXKOR (see [17]). BAYES 1 denotes a search in accordance 

with a multi-dimensional Bayesian model [19]. The best result of BAYESl is a 
starting point for an one-dimensional coordinate search EXKOR using an one­
dimensional Wiener model, see [19]. In both the cases 1000 iterations are used. 

The number of auto-regression (AR) parameters is p = 10, the number of 
moving-average (MA) parameters is q = 2. The reason is that increasing these 
numbers we did not succeed to improve the objective function (4) significantly. 

Table 3 shows the estimated parameters for $/£, and DM/$ daily exchange 
rates, and for closing rates of AT &T and Intel Co stocks. Table 3 also shows these 
parameters for rial/$ monthly exchange rates for two periods: period (1) is before 
the Iranian revolution, and period (2) is after it. 

1.8. Discussion of results. Let us to compare this result with that of tra­
ditional approaches to testing for long memory processes (see, for example, 
[3, 5, 4]). The traditional methods are based on the assumption of continuity: 
small changes in data do not cause jumps in parameter estimates. This assump­
tion is valid in a linear regression. However, in a non-linear regression, as is the 
case here, the multi-modality cannot be ignored because a sum of non-convex 
functions (4) could be multi-modal. 

5That means a multi-modality of sum (4), too. 
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In multi-modal cases, a small change in data may result in a jump of the 
optimal parameter value. Investigating various figures we find that slight data 
changes cause jumps in parameters bo and bi . 

The present research clearly shows that the traditional uni-modality assump­
tion used in the linear regression models, is not sustainable for the data sets 
used in this study and which show evidence of non-linearity. Ignoring the multi­
modality of (4) one cannot obtain reliable estimates of parameters b. 

The objective of this work is merely to show a multi-modality of the prob­
lem. Therefore to save the computing time the global optimization was carried 
out approximately using not many of iterations. The results of global optimiza­
tion were used as a starting point for local optimization. Thus we guarantee the 
final results at least as good as that of local optimization. 

The high-accuracy global optimization is very expensive. As usual, the com­
puting time is an exponential function of accuracy in the global optimization. 
Therefore, what happens after the high-accuracy global optimization of the ob­
jective function, is not yet clear. However, it seems clear that the investigation of 
multi-modality should be the first step in estimating parameters of non-linear re­
gression models, including the ARFIMA ones6. Balancing computing expenses 
and accuracy of estimation is the important problem of future investigation in the 
fields of exchange rate prediction and global optimization. 

1.9. Structural stabilization 

1.9.1. Stabilization of structures of time series. The objective of the tra­
ditional time series models considered in the previous sections was to minimize 
the deviation from the available data. One may call these as the best fit mod­
els. The models that fit best to the past data will predict the future data well 
if no changes happen in the system. Otherwise, the best fit to the past data 
can be irrelevant or even harmful. Thus a model of stable structure is needed 
which is not sensitive to the system changes and thus may predict the uncer­
tain future better eliminating the nuisence parts from the structure of the model. 
We shall consider the structural stabilization of the time series models R that 
minimizes the prediction errors in the changing environment. The available data 
W = (Wt, t = 1, ... , T) is divided into two parts Wo = (Wt, t = 1, ... , To) 
and Wi = (Wt t = To + 1, ... , T). The goodness of fit is described by continuous 
variables C, for example, in the ARMA model (see expression (1)) C = (ai, i = 
1, ... ,p, bj , j = 1, ... , q). The model structure is determined by the Boolean 
variables S meaning that a structural variable is equal to unit if a correspond­
ing component of time series model is included and is equal to zero, otherwise, 

6Meaning that the sum (4) oCthe ARMA model is a non-linear function oCthe parameters b. 
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for example, in the ARMA model S = (sf, i = 1, ... ,p, s~, j = 1, ... , q), 
sf = 1, if the parameter ai is included in the ARMA model and sf = 0 if noe. 
Denote by Rt(S, C, W) the predicted value of a model R with fixed parameters 

S, C using the data (Wl,"" Wt-l) C W. The difference between the prediction 
and the actual data Wt is denoted by €t(S, C, W) = Wt - Rt(S, C, W). Denote 
by Co(S) the fitting parameters which minimize the sum of squared deviations 

.6.o(S) using the first data set Wo at fixed structure parameters S. 

To 
Co(S) = argmJn I>-~(S, C, W), 

t=1 
(27) 

To 
.6.o(S) = mJn :~:::>~(S, C, W). (28) 

t=1 

We stabilize the structure S by minimizing the sum of squared deviations .6.0 (S) 
using the different data set Wl 

SI = argmin s 

T 

I: £;(S, Co(S), W) 
t=To+l 

T 

.6.1(SI)=mJn I: €~(S,Co(S),W). 
t=To+l 

(29) 

(30) 

This way a trade-off is reached between the fitting and the structural parameters. 
The fitting parameters Co(S) provide the best fit to the first data set Wo of some 
fixed structure S. One stabilizes the structure S by minimizing the prediction 
errors for the second set of data Wl while using the fitting parameters Co (S) 
obtained from the first set of data Wo. This way the stabilized structure S = SI 
of R is obtained eliminating the unstable8 parameters and parts of the time series. 

The usefulness of the stabilization follows from the observation that any 
optimal estimate of time series parameters using the data W uniting two difrerent 
parts Wo and W 1 is optimal for both parts only if all the parameters remain 
the same. Othervise one may obtain a better estimate eliminating the changing 
parameters from the model. For example in the case of changing parameters of 
the ARMA model the best prediction may be obtained by elimination of all the 
parameters except al = 1 (see the first and the third row in Table 1). 

7Note that describing a real data one needs diverse structures including a number of different 
models, not just one specific model as in this illustrative example. 

8The parameters are regarded as unstable if they are different for different data sets. 
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The stable structure models will be illustrated using the time series consid­
ered in this paper. The general idea of structural stability may be directly applied 
to other time series models, too. 

Let us consider a very simple illustration assuming that p = 2, q = 
0, Wt-l = 1., Wt-2 = 1., a~ = af = 1, ag = 1.5, a~ = 0.5. In this case 
the right prediction is Wt = 1 + 0.5 = 1.5. The prediction using just the first data 
set Wo is Wt = 1 + 1.5 = 2.5 and the prediction omitting the first term a2 = 0 is 
Wt = 1. One may see that in this special case the first term al is not stable in the 
sense that its elimination improves the prediction (the prediction Wt = 1 is closer 
to the "right" prediction Wt = 1.5 as compared with the prediction Wt = 2.5 
obtained using the first data set). 

In the next subsection the stable structure models will be illustrated using 
most of the time series considered in this book. The general idea of structural 
stability may be directly applied to other time series models, too. 

1.9.2. Example 
1.9.2.1. Taylor-Fourier-ARMA-ANN Model. Choosing the stable struc­

ture one should consider diverse structures including different models. In this 
example the deterministic part of the structure includes m terms of the Taylor se­
ries and n terms of the Fourier series. The stochastic part involves the traditional 
ARMA(p, q) model (see expression (1» and a version of artificial neural network 
model ANN-AR(r) (see expression(22». In such a case 

m n 

Rt(S, C, W) = Lsfgi t i- 1 + Ls~(O)hi(O)sin(s~(l)hi(l) 
i=l i=l 

(31) 

where Wt(p(v)) = Z=f~) Siai(V)Wt-i. Here C is the array ofm + 3n + p+ q+ 
p(v) + 3 continuous variables, namely 

C = (gl,"" gm, hi (0), hi (0), ... ,hn(O), hi (1), ... ,hn(1), hi (2), ... , 

hn(2), ab . .. ,ap , b1, ... , bq , al (v), ... ,ap(lI) (v), (3, p" a), (32) 

and S is the array of m + 3n + p + q + p( v) + 3 Boolean variables 

S = (si, ... , s~, s~(o), . .. ,s~(o), s~(1), . .. ,s~(l), S~(2), ... ,s~(2), 
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(33) 

One optimizes the continuous fitting variables C using the data set Wo and apply­
ing the Direct Bayesian Approach described in[ 17]9. Optimization of the Boolean 
structural variables S is carried out using the different data set W l and applying 
the Bayesian Heuristic Approach and the permutation heuristics described in [19] 
and in the next section of this paper. 

At present there are no theoretical results defining the best structures. There­
fore it is reasonable to start from the simplest continuous model where all the 
Boolean variables are zero except fixed si = 1 considering corresponding per­
mutations later on. In this case the natural heuristic is the difference between the 
permuted state and the initial one lO. 

1.9.2.2. Simple model. The described model has a great number of con­
tinuous and Boolean parameters and is difficult for optimization. Therefore we 
define a simplified version of the model (31) as an illustrative example. 

Rt(S, C, W) = sigl + s~g2 t + s~(o) h 1(O) sin(s~(I) hl(l) 
p q 

+ S~(2) hI (2) t) + L s~aiWt-i + L S~biCt-i. (34) 
i=1 i=1 

Here C is the array of 2 + 3 + P + q continuous variables, namely 

and S is the array of M = 2 + 3 + p + q Boolean variables 

S - ( 9 9 h(O) h(l) h(2) a a b b) 
- SI,···,S2,SI ,SI ,SI ,SI,···,Sp,SI,···,Sq. 

1.9.2.3. Simple model including lag. The presence of nearly periodic com­
ponent is detected in more economical way by introducing the Jag variable into 
the time series model. We illustrate this by the simplified model (34). 

Rt(S, C, W) = sigl + S~g2 t + s~(o) hI (0) sin (s~(I) hI (1) + s~(2) hI (2) t) 
p q 

+ L s~aiWt-i(k+1) + L S~biCt-i(k+l)' (35) 
i=1 i=1 

9The "linear" variables at, ... ,ap are optimized solving a system of linear equations similar 
to the system (11) for each fixed values of parameters g, h, b, a(II). 

IOWith the minus sign, because we minimize. 
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where the lag parameter k = 0, ... , l - 1, l ~ To/p, p;;;: q. Here C is the array 
of 2 + 3 + P + q continuous variables, namely 

and S is the array of M = 2+3+p+q Boolean variables and one integer variable 
k = 0, ... , I - 1. One may see that the lag is introduced only into AR and MA 
parts of the model and k = 0 means no lag. Without the lag variable the numbers 
of p, q should be greater than the period to detect the periodic components of 
time series. The model is improved by introducing several lag parameters k = 
(kl' ... , kl) 

Rt(S, C, W) = sfg1 + s~g2 t + S~(O)hl(0)sin(s~(1)hl(1) + s~(2)h1(2) t) 
~ p q 

+ L L SfaiW t-i(ko+1) + L S~bi€t-iko, (36) 
ko=1 i=l i=1 

where the lag parameters ko = 1, ... , kl' kl ~ To/p, p;;;: q. Here C is the array 
of 2 + 3 + P + q continuous variables, namely 

and S is the array of M = 2+3+p+q Boolean variables and kl integer variables 
ko = 0, ... , kl - 1. 

1.9.2.4. Algorithm. We consider the simple case of only one lag parameter 
k and we start from the "trivial" model where all the structural variables are zero 
except the sf = 1. The model is called as trivial because the predicted value is 
equal to the average. Later on two types of permutations are used. In the "muta­
tion" type the cyclic addition is carried out to all the discrete variables and the 
"heuristic" hi = vn(i) - vn(O) is defined, where vn(i) is the objective of ith 
permutation at nth iteration, and vn(O) is the objective of the initial state at the 
nth iteration. The "cross-over" type means dividing at the random point and in­
terchanging two best 0, 1 sequences including all the structural variables Sand 
representing the integer lag variable in the Boolean form. Thus one defines the 
"baby" structures in addition to the "mutant" structures defined by cyclic addition 
of individual variables. We are keeping in memory the best structure obtained as 
the result of all the previous K permutations. The objective this structure is de­
noted by fK(X). Here x represents parameters of some randomized procedures 
used to chose the initial states for the next iteration. This means that the initial 
state for the next iteration will not necessarily be the best structure, because by 



516 1. Mockus 

choosing only the best structures one may stuck into some local optimum. The 

Bayesian Heuristic Approach [19] is used choosing the initial state for each iter­
ation and defining the optimal randomization procedures. 

The optimization of continuous variables C at fixed values is carried out 
using the global methods [17] for all the continuous variables except the MA 
variables a which are obtained by solving the linear equations at fixed values of 
remaining variables, like in the equations (11). 

2. Optimal scheduling, Bayesian huristic model 

2.1. Knapsack problem. A convenient way to explain the BHA is"by ap­
plying it to a simple NP-complete problem. A good examplell is a knapsack 
problem. The knapsack problem is to maximize the total value of a collection of 
objects when the total weight 9 of those objects is limited. We denote the value 
of the object i by Ci and the weight by gi. 

n 

maxLciYi, 
y i=1 

n 

LgiYi ~ g, Yi E {O, I}. 
i=1 

Here the objective depends on n Boolean variables Xi. 

(37) 

(38) 

2.1.1. Exact algorithms. The simplest exact algorithm is exhaustive search 
of all the decisions. The decision m means that object m is selected. The ex­
haustive search needs T = C 2n time. Here the constant C does not de­
pend on the problem. The search efficiency of exact algorithms is improved by 
Branch&Bound (B&B) techniques where the time-constant Cw ~ C depends on 
the specific problem w. 

2.2. Approximate algorithms. The simplest approximate algorithm IS 

Monte-Carlo where the decision m is taken with probability 

r(m) = l/m. (39) 

This algorithm converges to the exact solution with probability 1 if the number 
of repetitions K -t 00. However the convergence is very slow. 

11 This example is good just for illustration how BHA works but not for showing the advantages 
of this approach. The BHA works more efficiently in scheduling problems, for example in flow-sop 
and batch scheduling problems, see the following sections. 
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2.2.1. Heuristic algorithms. Define the heuristics h( m) as the specific 
value of object m 

(40) 

This is a well known and widely used "greedy" heuristics. The greedy heuristics 
prefer the feasible12 object with highest heuristic h(m). The greedy heuristic 
algorithm is very fast. However it may stuck in some non-optimal decision. 

2.2.2. Randomized heuristic algorithms. A simple way to force the 
heuristic algorithm out of such non-optimal decisions is by taking decision m 
with probability 

(41) 

This algorithm is better than greedy one, because it converges with probability 
one if K is large. It is better than Monte-Carlo, too, since it includes an expert 
knowledge by making the decision probabilities dependent on heuristics. 

An open question is why consider only the linear randomization (41) ig­
noring non-linear ones. Expressions (42) and (43) define an example of a set of 
randomization functions 

(42) 

and 

( ) _ {I, if h(m) = maxi h(i), 
Too m - . 

0, otherwise, 
(43) 

Here l = 0 denotes Monte-Carlo component, l = 1 and l = 2 defines linear 
and quadratic components of randomization. The index 00 denotes the greedy 
heuristics with no randomization. 

One may define the best randomization function empirically by considering 
each randomization function separately and estimating the quality of a random­
ization function by the best decision obtained applying this function K times. 
That is a traditional way. 

We may solve the same problem in a more general set-up by considering a 
"mixture" of different randomization functions. The mixture means using a ran­
domization function Tl with some probability x(l). Denote the probability distri­
bution as x = (x(l), l = 0,1, .... , L, 00). Denote by fK(X) the best decisions 

12 Satisfying inequality (38), 
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obtained using K times a mixture x. This way we extend the set of possible de­

cisions x from the discrete set x(l) E {a, I}, l = 1, ... , L, 00 to a continuous 
one. That is important because the best results we often obtain using a mixture of 
functions but not the single one. 

The difficulty is that fK(X) is stochastic and, usually, multi-modal function. 
A natural way to consider such problems is by regarding a functions fK(X) as 
a sample of a stochastic function (defined by some a priori distribution) and ob­
taining the next observation by minimizing the expected deviation from the exact 

solution. This technique is called Bayesian Heuristic Approach (BHA). 

2.3. Flow-shop problem. The flow-shop problem is a simple example of 
large and important family of scheduling problems. We denote by J and S the 

set of jobs and machines. Denote by 7j,s the duration of operation (j, s), where 
j E J denotes a job and s E S denotes a machine. 

Suppose that the sequence of machines s is fixed foreachjob j. One machine 
can do only one job at a time. Several machines cannot do the same job at the 
same moment. The decision di(j) E Di means the start of ajob j E Ji at stage 
i. We define the set of feasible decisions Di as the set Ji of jobs available at the 
stage i conforming to the flow-shop rules. 

The objective function is the make-span v. Denote by Tj(d) the time when 
we complete job j (including the gaps between operations) using the decision 
sequence d. Then the make-span for d is 

(44) 

2.4. Algorithm 

2.4.1. Permutation schedule. We can see that the number of feasible deci­
sions for the flow-shop can be very large. The number can be reduced by consid­
ering only smaller subset of schedules, the so-called permutation schedules. 

The permutation schedule is a schedule with the same job order on all ma­
chines. Such a schedule can be defined by fixing job indices 1,2, ... ,no We assume 
the first operation to be on the first machine, the second on the second, and so on. 

The schedule is transformed by a single permutation of job indices. It is generally 
assumed that permutation schedules approach the optimal decision sufficiently 
closely and are easier to implement (see [1]). 

Denote 
ISI 

7j = 2: 7j,s, 

8=1 
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Table 4. The results of Bayesian methods using Longer-Job heuristics (45) 

R = lOO, K = I, J = 10, S = 10, and 0 = 10 

Randomization fB dB Xo Xl X2 

Delta 6.183 0.133 0.283 0.451 0.266 

TayJor 3 6.173 0.083 0.304 0.276 0.420 

CPLEX 12.234 0.00 

where I SI stands for the number of machines. We define Tj as the length of the 
jobj. 

2.4.2. Heuristics. Define the Longer-Job heuristics 

Here 

Ai = minTj, 
jEJ; 

Ai = maxTj, a> O. 
jEJi 

(45) 

(46) 

The priority rule (45) prefer a longer job. We optimize a stochastic function 
fK{X) defining the minimal make-span (see (44» found as a result of K rep­

etitions. 

2.4.3. Results. Table 4 illustrates the results of the Bayesian method in hun­
dreds of time units after 100 iterations using the Longer-Job heuristic (45) and 
different randomization procedures. Assume that J = S = 0 = 10, where 
J, S, 0 are the number of jobs, machines, and operations, respectively. Lengths 
and sequences of operations are generated as random numbers uniformly dis­
tributed from 0 to 99. The expectations and standard deviations are estimated 

by repeating optimization of a randomly generated problem 40 times. In Table 
4 the symbol f B denotes a mean, and dB denotes a standard deviation of make­
span. The "Delta" denotes randomization including terms l = 0,1,2,00 (see 
expressions (42) and (43», the "Taylor 3" denotes randomization (42) where the 
number of terms is L = 3, and "CPLEX" denotes the results of the well known 

general discrete optimization software after 2000 iterations (one CPLEX itera­
tion is comparable to a Bayesian observation). The bad results of CPLEX show 
that the standard MILP technique is not efficient in solving this specific problem 
of discrete optimization. It is not yet clear how much one improve the results 
using specifically tailored B&B. 
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3. Brides problem, sequential statistical decisions model 

3.1. Introduction. The Brides problem is a good example of sequential 
statistical decisions, see [23,24]. The dynamic programming is a conventional 
technique optimizing the sequential decisions, see [24]. The usual way applying 
dynamic programming is to develop specific algorithms for a given family of 
problems. 

The Bride's problem is to maximize the average utility of marriage by the 
optimal choice of groom. Denote the actual goodness of the groom i = 1, ... ,N 
by Wi. Denote by Si the brides impression about the groom i. Denote an a pri­
ori probability density of goodness Wi as p(Wi). Denote a probability density of 
impression Si as P8(Silwi)' Assume that goodness of different grooms are inde­
pendent and identically distributed as well as corresponding impressions. This 
means that an a priori goodness is 

(47) 

and an impression Si given the goodness Wi is 

(48) 

Assume the Gaussian distributions 

(49) 

and 

(50) 

Applying the Bayesian formula [2] we define an a posteriori probability density 
of goodness W given the impression S 

( I ) - p(slw)p(w) 
pws- (). 

Ps s 

Here 

P8(S) = [: p(slw)p(w)dw. 

Denote by di the brides decision regarding the groom i 

di = { 1, if bride marry the groom i, 
0, otherwise, 

(51) 

(52) 

(53) 
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Suppose that 

(54) 

3.2. Bellman's equations. Denote by UN(S) the expected utility function 
if the impression of the last groom 13 is S 

UN(S) = I: wp(wls)dw (55) 

Denote by UN -1 the expected utility if the impression of the (N - 1 )th groom is 
S and the bride is making the optimal decision d = dN-l(S) E DN-l 

Here 

UN-l(S) = max (dUN(S) + (1 - d)UN), 
d 

dN- 1(S) = argmax (dUN(S) + (1 - d)UN) 0 

d 

UN = I: UN(S)Ps(s)ds, 

and DN-l is a set feasible decisions 

D _{Oand1, if 9N-l=0, 
N-l - 0, 10f 1 9N-l = 0 

Here 9 N -1 is a marriage index 

N-2 

9N-l = 1 - L di o 

i=l 

(56) 

(57) 

(58) 

(59) 

(60) 

Following the same pattern we define the expected utility if the impression of 
the (N - n)th groom is s and the bride is making the optimal decision d = 

dN-n(s) E DN-n 

UN-n(S) = max (dUN(S) + (1- d)UN-n+l), (61) 
d 

dN-n(S) = argmax (dUN(S) + (1 - d)UN-n+1) , (62) 
d 

where 

(63) 

13By the "last groom" we mean the groom which the bride marry. 
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Solving these recurrent equations one defines the sequence of optimal deci­
sion functions dN-n(S) and the expected utilities UN-n(S) for all possible im­
pressions S E (-00, 00) for any number n = 1, ... , N - 1. We cannot do that in 
continuous case. Therefore we use discrete approximation 

3.3. Discrete approximation. Replacing the integrals by sums we obtain 

from expression (56) 

K 

UN(S) = 1/KLwkP(Wkls), 
k=1 

from expression (58) 

K 

UN = 1/KL UN(Sk)Ps(Sk), 
k=1 

and from expression (63) 

K 

UN-n+1 = 1/KLUN-n+1(Sk)Ps(Sk). 
k=1 

(64) 

(65) 

(66) 

Here Wk E [-M, M], W1 = -M, WK = M and Sk E [-M,MJ, S1 = 
-M, sK=M. 

Solving the recurrent equations by discrete approximation one defines the 
sequences of optimal decision functions dN-n(Sk) and the expected utilities 
UN-n(Sk for all possible impressions Sk E [-M, M) for all the numbers 
n = 1, ... , N - 1. We can do that by defining a set of arrays determining how 
the optimal decisions d and the corresponding expected utilities U depends on the 
possible impressions Sk, k = 1, ... , K. This way we avoid the repeated calcu­
lations at the expense of keepinglarge arrays. The number of K is determined by 
the accuracy needed. 

3.4. Including the waiting losses The waiting losses are important in many 
real-life sequential decision problems. Denote by c the loss of waiting for next 
groom. Subtracting this parameter from the Bellman equation (56) defining the 
optimal decisions of (N - 1)th groom if the impression is s, one obtains 

UN-1(S) = max (dUN(S) + (1- d)(UN - c)), (67) 
d 

dN-1(S) = argmax (dUN(S) + (1 - d)(UN - c)). (68) 
d 
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In a similar way one defines the expected utility if the impression of the (N - n )th 

groom is S and the bride is making the optimal decision dN-n(S) E DN-n 

UN-n(S) = max (dUN(S) + (1 - d)(UN-n+l - ne)), (69) 
d 

dN-n(S) = argmax(duN(S) + (1 - d)(UN-n+1 - ne)). (70) 
d 

The other expressions remains the same. The last expression shows that increas­
ing the waiting losses e we can ma~e the bride's problem less sensitivel4 to a 
number N which is unknown, as usual. 

3.5. Non-linear case. The expression (55) was defined assuming the linear 

Bride's utility function. It was supposed that the Bride's utility is equal to the 
goodness of groom u( w) = w. If not then expression (55) should be replaced by 
the following integral 

UN(S) = I: u(w)p(wls)dw. (71) 
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Destant operacijQ tyrimCl svarbu susipliZinti su losimQ, naudingumo, eiliQ, tvarkarasciQ 
bei nuosekliQ sprendimQ teorijomis. Staripsnyje sios teorijos iliustruojamos bei pa­
rodomas jQ rysys su globaliniu optimizavimu, nagrinejant astuonis pavyzdzius. Visi 
pavyzdziai formuluojami lengvai suvokiamais ~vairiQ specialybiQ studentams terminais, 
taciau kiekvienas is jQ atstovauja svarbioms uzdaviniQ seimoms. Todel aprasomi modeliai 
bei jQ optimizavimo algoritmai gali biiti ~domiis ir patyrusiems atitinkamQ sriciQ eksper­
tams. 


