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Abstract. Second order properties of nearly nonstationary ARMA processes are 
investigated in the cases when the autoregressive polynomial equation has (i) a real root 
close to 1; (ii) a real root close to -1; (iii) a pair of complex roots close to the unit circle. 

The effect of the closeness to the unit circle of the ARMA poles on its covariance and 
spectral density functions is considered. The obtained results demonstrate three specific 
ways of degeneracy of these functions, as the roots tend to I in modulus. As a conse
quence three different estimates of the ARMA parameters located in the neighbourhood 
of the border of the stationarity region for ARMA process are derived and their asymptotic 
distributions are examined. 
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covariance and spectral density functions. 

1. Introduction. The focus of attention in time series analysis has recently 

been shifted from a short memory process {Xt, t E Z}, such as represented 
by traditional ARMA (p, q) models to a long memory process such as fractional 
ARIMA (p, d, q), (-0.5 < d < 0.5) or nearly nonstationary ARMA process. 
There is an evidence that such process occur frequently in hydrology, economics, 
high precision measurements. The theory of autoregressive (AR) time series with 
some zeroes of the AR polynomial on or close to the unit circle has been started 

as early as 1958 when White derived the limiting distribution of an estimated 

parameter (it for AR(I) in both cases: al -I 1 and al = 1 but then the unit 
root problem was neglected for many years. The interest renewed in 1976 when 

Fuller (1976) and Dickey and Fuller (1979, 1981) developed statistical tests for 
detecting the presence of a unit root in the AR(I) and general AR(p) case. 

In general case it is difficult to distinguish between a nonstationary process 

such as ARIMA(p, 1, q) and an ARMA(p + 1, q) process, whose autoregressive 

polynomials has zeroes close to the unit circle from a sample of finite length. 
If an estimated covariance function is a slowly decaying function, the numeri
cal computation of parameter's estimates can be quite critical for some meth
ods of estimation. For example, if we apply the Yule-Walker equations to fit an 
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ARMA(p, q) model with poles close to the unit circle, the estimated covariance 
matrix Rp is nearly singular and a fitted model can bear little resemblance to the 
true model. 

There are now relatively complete theories (Yap and Reinsel, 1995; Chan, 
1990) for dealing with the inference for nearly nonstationary ARMA models and 
nonstationary autoregressive integrated moving average model. But the effect of 
closeness to the unit circle of any ARMA pole on the second order characteristics 
of an ARMA process has not been studied quantitatively, which is the main focal 
point of the present paper. 

Definitions and some assumptions on which are based this investigation are 
given in the Section of preliminaries. The expressions of the covariance and spec
tral density functions of a nearly non stationary process are derived in the Sec
tion 3. Nearly nonstationary process having a pair of complex roots close to the 
unit circle is considered in detail in the Section 4 of this paper. 

2. Preliminaries. Consider {Xt} a process of discrete time t E Z, de
scribed by a finite order ARMA(p, q) model: 

o:(B)Xt = {3(B)et, t E Z, (1) 

where B stands for the backward shift operator defined as BXt = X t - 1, and 
{et, t E Z} is a sequence of independent identically distributed random variables 
with zero mean Eet = 0 and variance Ee~ = 0';. 

The polynomials are defined as 

o:(z) = 1 - alZ - ... - apzP, 

{3(z) = 1 + b1z + ... + bqzq, 

such that they have no common zeroes and o:(z) f 0 for Izl ~ 1. 

(2) 

(3) 

The class of ARMA models represents stationary series. A generalization of 
this class, which incorporates a wide range of nonstationary series is provided by 
the ARIMA(p, d, q) processes, i.e., processes which, after differencing d times, 
reduce to ARMA(p, q) stationary processes. In other words, the polynomial 0:( z) 
of ARIMA(p, d, q) process has d-fold roots equal to 1. 

Let RX(T) = E{XtXt+T}' T = ±1, ±2, ... is the autocovariancefunction 
of the stationary sequence {Xt} decaying sufficiently fast so that the spectral 
density function 

1 00 

hx(w) = 27l' l: RX(T)e- iwT , -7l' ~ w ~ 7l', (4) 
T=-(X) 



Nearly nonstationary ARMA processes: second order properties 479 

exists. It is well known that the spectral densities hx(w) and he(w) of two se
quences {Xt } and {et} related by the equation (1) are expressed as 

(5) 

assuming that a(e-iw ) does not vanish in the range (-11",11"). Moreover, if any 
two stationary processes {Xt } and {yt} are related by the equation 

X t = CP(B)yt, (6) 

where cp( z) is a transfer function of the linear filter represented by the polynomial 
of finite or infinite order, then their spectral density functions h x ( w) and h y ( w ) 
as well as their autocovariance functions Rx(r) and Ry(r) are related by the 
equations 

hx(w) = Icp(e- iw )1 2hy(w), -11" ~ w ~ 11", 

Rx(r) = CP(B)(CP(B-1)Ry(r)). 

(7) 

(8) 

L t -c·+iw· -c·-iw· . 1 3 5 [P/2j h . fth e Zj = e 3 3, Zj+l = e 3 3, J = , , , ... , , are t e patrs 0 e 
complex conjugate zeroes of the polynomial zPa(z-l) = zP -alzp - 1- .. . -ap , 

otherwise called ARMA(p, q) poles, satisfying the condition: IZjl < 1 for all j. 
We are going to consider a situation when some Zj are approaching to the unit 
circle. Notice that zeroes of a(z) polynomial are z;l located outside the unit 
circle. 

ASSUMPTION 1. For n = 1,2, ... , N, where N is a large number, let 

Z - _e-C2 / n 
2n - , 

Z3n -_ e-cs/n+iwQ, -cs/n-iwo Z4n = e , (9) 

while the others Zj are independent of n. Here Wo is some constant, 0 ~ Wo ~ 11". 

For each j = 1,2,3 consider 

(10) 

the value of which can be used to measure the effect of the closeness of a(z) 
zeroes to the unit circle on the spectral density and the covariance functions of 
process {Xd. 
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ASSUMPTION 2. The polynomial a(z) has either zl';' either z2"n1 or a pair 

of zi,; , zi,; as its zeroes, the other zeroes of a( z) being independent of n. 

This leads to the polynomial an(z) instead of a(z) with parameters 

aIn , a2n, ... , apn instead of at, a2, ... , ap. The f3(z) is not changed. Conse
quently we have to investigate the sequences of process {Xtn } defined by 

an(B)Xtn = f3(B)ct, t E Z, n = 1,2, ... , N, (11) 

which are stationary for each fixed n but as n increases, the model (11) tends to 
ARIMA(P-1, 1, Q) or ARIMA(P- 2, 2, q) models, representing non-stationary 
process. Many authors call such process nearly nonstationary or near-integrated 

process (including also the unit roots Zj = 1 and a mild explosive case IZjl ~ 
1 + c). 

Our aim is to analyse and explain the progressive deterioration of the covari
ance and spectral density functions of a stationary process in connection with the 
vanishing values DIn, D2n, D3n (as n increases), each one having very specific ef
fect on the second order characteristics of {X t}. Therefore we have to investigate 
separately three cases; 

a~l) (B) = (1 - ZlnB)a* (B), 

a};)(B) = (1 - z2nB)a*(B), 

a~3)(B) = (1 - z3nB)(1 - z4nB)a**(B), 

(12) 

where a* (z) and a** (z) are the polynomials of (p - 1) and (p - 2) order respec
tively with zeroes comfortably outside the unit circle. Now the expression (5) can 
be rewritten as 

where h y (w) denotes the spectral density function of a well stationary ARMA(p 
- 1, q) process {yt}. The analogous expression for hx(w; Z3n, Z4n) is easily 
derived with {yt} being an ARMA(p - 2, q) process. Notice that for fixed nand 
IZjnl < 1 specified by (9) the function 11 - Zjne-iWl2 > 0 can be treated as a 
spectral density function of the nearly non-stationary AR(!) process defined by 
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XOn = 0, 

X tn - ajnXt-l,n = Y, t = 1,2, ... , n 

ajn = (_l)j+1 e-cj/n, j = 1,2, 

where n is number of observed values Xl, X2 ••• , X n . 

(14) 

3. The covariance and spectral density functions of a nearly nonstation
ary process. The behaviour of the covariance and spectral density functions of a 
nearly nonstationary process will be considered here, when some of ARMA(p, q) 
poles Zjn are tending to the unit circle. 

Returning back to the equation (11) in the case j = 1,2 we have 

(1 - ZjnB)a*(B)Xtn = f3(B)et, t E Z (15) 

1 f3(B) 1 
X tn = (1 _ zjnB) a*(B) et = (1 _ zjnB) Yt, (16) 

and for j = 3 

X tn = ( )! 2 2 Yt. 1 - z3n + Z4n B + Z3n! B 

1 
(17) 

For any fixed n, nE (1,2, ... , N), the processes {Xtn } and {Yt} are both 
stationary having the well defined covariance functions Rx(r) and Ry(r), what 
ensure the condition !Zjn! < 1. Having in mind the expressions (9), (10) we wish 
to express the functions Rx(r; Zjn), hx(w; Zjn) by means of the corresponding 
functions of process {Yt} and 8jn (j = 1,2,3) measuring the closeness to the 
unit circle. 

Lemma 1. Under assumptions 1 and 2for fixed n E (1, 2, ... , N), the spec
tral density function hx(w; 8jn ) of process {Xtn }, satisfying (16) or (17) has the 
following expressions: 

hy(w) 
hx(w;8jn ) = ()'( ) ( )2' 1 + 2 -1 J 1 - 8jn cos w + 1 - 8jn 

j = 1,2 - 1f ~ W ~ 1f, (18) 

hy(w) 
hx (w;83n ) = -2--------~--<...--------

Lll [1- 2(1- 83n) cos [w + (-1)kwo] + (1 - 83n )2] 
-1f ~ w ~ 1f. (19) 

The proof of Lemma 1 follows immediately from (13) with (9) and (10). 
Notice that (18) is special case of (19) when k = 1 and Wo = -1f. 
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Lemma 2. Under the assumptions 1 and 2 for fixed n E (1,2, ... , N) the 
covariancefunction Rx(r;6jn ) of process {Xtn }, satisfying the equation (16) 
or (17) accordingly to j = 1,2 or j = 3, is expressed in terms of the covariance 
function Ry (r) of a stationary ARMA process {Yi} by formulas: 

00 Ikl 
~ ajn 

Rx(rj 8jn ) = ~ 1 _ a~ Ry(r - k), 
k=-oo .1n 

where ajn = (-I)j+1(1 - 8jn), j = 1,2, 

where 

00 

Rx(rj 83n) = L 'YknRy(r - k), 
k=-oo 

'Ykn = (1 + e-2cs/n) (1 - 2e-2cs/w cos 2wo + e-4cs/ n) sin 1/Jn ' 

1 + e-2cs/ n 
tg1/Jn = 1 _ e-2cs/ n tgwo, e-cs/ n = 1 - 83n • 

(20) 

(21) 

Proof We shall sketch the essential points to prove the validity of (20) for 

Rx(wj 81n )' In the case of 82n or83n the proof is analogous. Notice thataln > 0 
but a2n < 0 and the same expression (20) of Rx(r; 8jn ) describes different 
behaviour of the covariance function. 

Applying the formula (8) to (16) we have 

00 00 

= L(aln)U B-u La1nRy(r - k) 
u=o k=O 

o 00 

= L a¥nB - u L a1nRy(r - k) 
u=-oo k=O 
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= 
00 

1 2 "a~~RY(T - k). 
I-a L...J 

In k=-oo 

(22) 

The same result could be derived from the Fourier transform properties and 
the expression (13). The right hand side of (22) is a convolution of two covariance 
functions: Ry (T) and covariance function of AR( 1) process. Following the same 

arguments, the expression (21) is derived because 'Ykn actually is a covariance 
function of AR(2) process with complex conjugate characteristic roots Z3n and 

Z4n and AR coefficients a 1 n = - (Z3n + Z4n), a2n = Z3n· Z4n. 
The correlation function PAR(k) of such AR(2) process has the expression 

(Priestley, 1981) 

(k) _ k/2 sin(kwo + 'l/Jn) 
PAR - a2n . • 1. ' sm'f'n 

(23) 

and its variance is expressed as 

= (1 - e-2c3 /n) [1 - 2e-2c3/n cos 2W3 + e-4c3 /n j. (24) 

Then from (18), (19) and (23), (24) in addition to the well known fact that a 

product of two spectral densities in time domain corresponds to the convolution 
of corresponding covariance functions, leads to (21). 

Theorem 1. Under assumptions 1 and 2, when n increases, Djn --7 0, j = 
1,2,3 and the spectral density functions hx(w; Djn) (18), (19) tend to the fol

lowing functions 

1 
hx(w; DIn) --7 • 2 W hy(w), -1T ~ W ~ 1T; 

4sm "2" 
(25) 

1 
4 2why(w), -1T~W~1T; 

cos "2" 
(26) 

1 
hx(w; D3n) --7 --..,..------;c-:::-hy(w), -1T ~ W ~ 1T; 

4(cosw - coswO)2 
(27) 

while the process {Xtn } itself as Djn --7 0, n --7 00 is described by difference 

equations: 

a*(B).b..oXt = f3(B)ct, 

a*(B).b..'JrXt = f3(B)ct, 

(28) 

(29) 
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(30) 

where we denote by !::J. the limiting operator of (1 - zjnB) as IZjnl -* 1. The 
sub index of!::J. indicates the location of AR unit pole in complex plane with the 
corresponding frequency equal to 0, or7r, ±wo. 

Proof The relationships (25)-(27) follow immediately from (8), (19) as 

Djn -* O. The coefficients 'Ykn in the expression (21) tend to coswok when n 
increases and D3n -* O. 

REMARK 1. The functions at the right hand side of (25), (26), (27) do not 
exist at the points w = 0, w = ±7r, W = Wo correspondingly but are well 
defined for others wE [-7r,7r]. 

REMARK 2. The usual notation of the integrated ARMA process or ARIMA 
(p, d, q) in the general case of k zeros of orders db d2 , • .• ,dk should be written 

as 

0!(B)!::J.dl,d2 , ..• ,dk X t = fJ(B)ct 
Wl,W2,···,Wk ' 

(31) 

dl + d2 + ... + dk = d 

4. Inference for nearly nonstationary ARMA processes. In the previous 
section we have seen that Djn measuring the closeness of AR zeros to the unit cir
cle, plays an important role in the behaviour of the second order characteristics 
of an ARMA process. However, in observed time series we are frequently uncer
tain whether the process has a root equal to the unit or it is close to the unit. The 
discriminatory power of tests for the presence of a unit root is rather low against 
such alternatives. We need to estimate Djn by calculating 8jn from observed val

ues Xl, X2, ... ,Xn of ARMA process, covering the possibility of Djn = 0 and 
to develop an asymptotic theory for g(n) (8jn - Djn) distribution. Luckily there 
is an abundance of similar results (Van der Meer et al., 1993; Yap and Reinsel, 
1995) for nearly nonstationary AR(1) processes with possibility to extend them 
for a more general class of processes. 

4.1. Real root case. Let us consider the case DIn when one real root of 
O!n(z) = 0 tends to 1. Consider {Xtn , t E Z} for each n ~ 1, a process given by 

XOn = 0, 

X tn = alnXt-1,n + yt, t = 1,2, ... , n, 
aln = e-Cl / n , 

(32) 

(33) 
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where aln is an unknown parameter related to DIn = 1 - e-C1 / n , {Yi} is a 
stationary ARMA(p-l ,q) process without roots close to the unit circle. The least
squares estimator of the parameter DIn, based on observations Xln , X2n, ... , Xnn 

is given by 

n n 

S1n = 1 - d 1n = 1 - I: Xkn· Xk+l,n/ I: XL1,n. (34) 
k=l k=l 

The value dln conveys vital information regarding the dependence structure 
of the process {X t}; at the same time being an estimate of the partial correlation 
at lagl, the value dln extracts information about closeness to I of the "worst" 
characteristic root of AR polynomial. 

Let W(t), t E [0, IJ, denote the standard Wiener process and D denote the 
-+ 

convergence in distribution, p - convergence in probability. It is known (PhiIips, 
-+ 

1987) that under quite weak conditions on {Xt }, including all Gaussian pro-
cesses and many other finite order ARMA models with very general conditions 
on the underlying error term {et}, it is true 

n(&ln - aln ) ~ 11 Zq (t) dW(t) + ~(1 - a~/(2)/ 11 Z;l dt ~ F(ZcJ, 

(35) 
where Zq (t), t E [0, lJis an Ornstein-Uhlenbeckprocess defined as the solution 
of the stochastic differential equation 

(36) 

When Cl = ° and {Yi} is independently and identically distributed with EYi = 
0, E"Yt,2 = a, the statement (35) reduce to known asymptotic result for AR(1) 
with a unit root (White, 1958; Fuller, 1976) because then ZCl (t) = W(t) and 
a 2 = a~ in the formulae (35). 

When Cl ¥= 0, Theorem 1 (Phillips, 1987) delivers the noncentral asymptotic 
theory for (itn, useful in studying the asymptotic power of tests for a unit root 
under the sequence of local alternatives given by a = ecl/n ~ 1 + cl/no When 
Cl < ° we have a local alternative that {Xt } is stationary; when Cl > 0, the local 
alternative is an explosive process {Xt }. 

Suppose aln is estimated by least-squares estimate given by (34) and the 
following associated statistics is calculated 

(37) 
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Then from Phillips (1987) we can reformulate the result for 8n . 

Theorem 2. If {Xtn , t E Z} is a nearly nonstationary times series gener
ated by (32), (33), then as n -+ 00 

A D 
(a) n(8jn - 8jn) -+ F(ZC1)' 

(b) 8jn !:O, s~ !:O"~ = 211"hy(0), 

where the functional F(ZC1) is given in (35). 

(38) 

(39) 

4.2. Complex roots case. It is proved in Ahtola and Tiao (1987b) that the 

estimates of a1 and a2 of more general model like (17) have exactly the same 
asymptotic distribution as the least squares estimates of AR(2). Therefore we 
shall formulate the results for a simple model 

where Xo = X- 1 = 0; a1n = 2e-cs / n cos wo, a2n = _e-2cs / n , t = 
1,2, ... , n and for simplicity here and further C3 == c. 

First of all notice that from (40) we can write 

t 

X t = L'l/Jj-1ct-j+1, (41) 
j=1 

where'l/Jo = 1, 'l/J1 = 2e-c/ n cos Wo and for j ~ 2, 'l/Jj = a1n'l/Jj-1 + a2n'l/Jj-2. 

Using expressions of a1n and a2n through complex conjugate roots Z3n, Z4n after 
some elementary algebra we derive 

e-ck/ n sin(k + l)wo 
'l/Jk = . , k = 0, 1,2, .... 

smwo 
(42) 

Denoting x = (Xl, X2, ... , Xn-1)', e = (cl, C2, ... , en)' and (n -1) x n matrix 

wehave 

T= ( ~1 
'l/Jn-3 

'l/Jn-2 

o 
1 

'l/Jn-4 

'l/Jn-3 

x=Te. 

o 
o ~ ~l 

o 0 
1 0 

(43) 

(44) 
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We shall first show that for model (40) it is true 

(

1 n 1 n ) - LXtCt 2 LX~-l 
x n t=l n t=l + (Op(l)) (45) 

1 n 1 n 2 op(l) , 
~ L Xt-2Ct n2 L x t _ 1 

t=l t=l 

where 
d _ aln COS Wo 

n - 1 - a2n = ch c/n' 

Proof The least squares estimators (ihn, (hn) are given by 

( A) ( f: Xt-1Xt) ~ln = H-1 t~l , 

2n E Xt-2Xt 
t=l 

where H = t (X~_l Xt-l' Xt-2) , 

t=l Xt-l' Xt-2 Xt-l 
(46) 

Noting that Xt = alnXt-l + a2nXt-2 + Ct. we have from (42) that 

(47) 

Now we show that 

( f: X~_l f: Xt_1 X t_2) 
t=l t=l 

n n 
E Xt-1 Xt-2 E XL2 
t=l t=l 

1 - a2n + 0 op(l) aln ) 

1 (Op(l) Op(l)) ' 
(48) 
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Multiplying both sides of Xt = alnXt-l + a2nXt-2 + et by Xt-l we have that 

L XtXt-l = a;n LX~-1 + a2n L Xt-1Xt-2 + Letxt-t. 

( txLl) -1 [L Xt-l(Xt - a2nXt-2)] = aln 
t=1 

+ (tX~-I) -1 L etXt-l. 
t=1 

So that 
L: Xt-1Xt-2 _ aln (1) 
,,2 - +01" 
LJxt- 1 1 -a2n 

(49) 

and (48) is proved. Evidently, B-1 = (L:~=1 X~_I) H-1 and inserting this into 
(47) we have proved the result (45) or the same as: 

(50) 

(51) 

Quadratic fonns from these expressions on the base of (42)-(44) can be rep
resented as 

n 

LXt-let = e' Ae, 
t=1 
n 

LXt-2et = e'Ce, 
t=1 

n 

~X~_1 = eT'·Te, 
t=1 

(52) 
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where the matrix T is given by (43) and the n x n matrices A and C are 

0 1 '1/Jl '1/Jn-3 '1/Jn-2 
1 0 '1/Jn-2 '1/Jn-4 '1/Jn-3 

1 
A=-

'1/Jn-4 '1/Jn-5 '1/Jn-6 2 1 '1/Jl 
'1/Jn-3 '1/Jn-4 '1/Jn-5 0 1 

'1/Jn-2 '1/Jn-3 '1/Jn-4 1 0 

0 0 1 '1/Jl '1/Jn-4 '1/Jn-3 
0 0 0 1 '1/Jn-5 '1/Jn-4 

1 
C=-

'1/Jn-5 '1/Jn-6 2 '1/Jn-7 0 0 1 
(53) 

'1/Jn-4 '1/Jn-5 '1/Jn-6 0 0 0 

'1/Jn-3 '1/Jn-4 '1/Jn-5 0 1 0 

Then (50) and (51) are rewritten as 

·1 .!.e'(A-dnC)e 
n(aln - aln ) = (1 _ d~) n -!JeIT'Te + op(l), (54) 

1 .!.e'(C - dnA)e 
n(a2n - a2n) = (1 _ d~) n -!Je'T'Te + op(I). (55) 

In case c = 0, dn == d = cos Wo, the matrices A and C are symmetric skew 
circulant matrices and their eigenvalues and eigenvectors are obtained explicitly 
(Ahtola and Tiao, 1987a) when complex roots are exactly on the unit circle the 
asymptotic distributions of statistics (54), (55) are derived. When c =I- 0, matrices 
A and C are no more circulant but all their diagonals are constant, each having a 
different damping factor e-ck/ n , k = 1,2,3, ... , n and the limiting distribution 
of statistics (54), (55) unavailable. 

Different approach (Van der Meer et al., 1993) to handle nearly unstable 
models leads to parameter limit distributions: 

where 
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rtw = 101 (Y1(t) dW1(t) + Y2(t) dW2(t», 

ryW = 101 (Y1 (t) dW2(t) - Y2(t) dW1 (t», 

W1(t), W2(t) , t E [0,1] are independent real values standard Wiener process 
and the process (Y1(t), Y2(t», t E [0, lJis the continuous time real valuedAR(I) 
process given by 

d Y1 (t) = cY1 (t) dt + d W1 (t), 

dY2(t) = cY2(t) dt + dW2(t), 

with initial values Y1(0) = Y2(0) = O. 

4.3. Double roots equal to -1. The case where the limit unstable model 
has double roots equal to -I, can be handled similarly, obtaining the limit distri
bution: 

( 0 -n) (a.1n - a1n) D 8-1 (101 Y(t) dW(t) ) (57) 
-n2 n2 a.2n - a2n - I; Y(t) dW(t) , 

where (Y(t) , Y(t», t E [0, IJ is the continuous time real valued AR(2) process 
given by 

and 

dY(t) = (2C3Y(t) + c~Y(t») dt + dW(t), 

dY(t) = Y(t) dt, 

Y(O) = Y(O), 

(58) 

(59) 

(60) 

(61) 

5. Comments. We have seen that asymptotic distributions of parameters 
n(a.1n - a1n), n(a.2n - a2n) are heavily dependent on the parameters Cb C2, C3 
which also determine the values of Djn, j = 1,2,3, introduced by (10) as a 
measure of closeness to the unstable model. 

From the other side Djn are in one-to-one correspondence with the coeffi
cients aln , a2n, so the asymptotic distributions of statistics (Sjn - Djn), j = 
1,2,3 can be easily derived. 
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Fig. 1. The spectral density function of AR(1) as function of frequency 

-1r ~ W ~ 1r and parameter -1 < aln < 1. 

The main idea to find a measure of closeness to the unstable model and to 
investigate their influence to the second order properties leads to investigation 
of contribution made by the parameters Cl, C2, C3. into the covariance function 
Rx(r) and the spectral density function hx(w) of a nearly unstable process. 
Then we have the expressions. 

hy(w) 
hx(w; Cj) = c' 2c-' j = 1,2, (62) , 

1 + 2( -l)je-:;t cos w + e-::;:-

hy(w) 
hx(w; C3) = 2 [ , (63) 

n 1 - 2e-~ cos[w + (-l)kwol + 2e-~] 
k=l 

-1r ~ W ~ 1r. 

1 00 [ c']lkl Rx(r;cj) = _.::.t. L (_l)J+le-:;t- Ry(r - k), (64) 
1 - e n k=-oo 

j = 1,2, 

and the contribution of the parameters Cl, C2, C3 is evident. The picture in Fig. 1. 
shows the dependence of the spectral density function hx (w; Cj) of AR(I) pro-

cessonparametersaln, -1 < aln < 1, aln = (-l)je-~, j = 1,2. For the 
spectral density function hx (w, C3) of AR(2) process we had to fix one of the 
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Fig. 2. The spectral density function of AR(2), (comlex root case) as a 
function of wand a2n - 7r ~ W ~ 7r, 0 < a2n < 1. The parameter 
aln is fixed aln = O. 

parameters aln , a2n in order to have three dimension picture, Fig. 2. So the spec
tral density hx(wj C3) has two clearly expressed peaks at the frequencies -wo 
and wo. Concerning the covariance function Rx (Tj Cj), (64), its degeneration is 

:5. mostly due to the factor 1 - e- n tending to zero as n increases. 
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BEVEIK NESTACIONARUS ARMA PROCESAI: 
ANTROSIOS EILES SAVYBES 

Nerute KLIGIENE 
IStirti beveik nestacionariqjll ARMA proceSll antrosios eiles momentai atvejais, kai 

AR Iygties charakteringosios saknys: (a) arteja prie I; (b) arteja prie -1; (c) dvi komp
leksines jungtines saknys arteja prie vienetinio apskritimo. Tirtas kovariacinill ir spek
trinio tankio funkcijll elgesys ir nustatytas is esmes skirtingas jll issigimimo pobiidis, 
sl\lygojantis ARMA parametrq skirtingus pasiskirstymus (a), (b), (c) atvejais. 


