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Abstract. The problem of parameter clustering on the basis of their correlation ma­
trix is considered. The convergence in probability of parameter clustering based on the 
simulated annealing is investigated theoretically. 
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1. Introduction. Any set of similar objects may be often characterized 
by common parameters (variables). The term "object" may cover, e.g., people, 
equipment, or produce of manufacturing. Any parameter may take some values. 
A combination of values of all parameters characterizes a concrete object from 
the whole set. The values obtained by any parameter depend on the values of 
other parameters, i.e., the parameters are correlated. The correlation matrix of 
parameters may be calculated during the analysis of objects composing the set. 
There exist groups (clusters) of parameters characterizing different properties of 
the object. The problem is to find these groups. 

One of the major objectives of various data analysis methods is to discover 
relations among the parameters. The methods analysed here are oriented to the 
analysis of correlation matrices and, in particular, to the clustering of parameters 
on the basis of correlations. 

Examples of real correlation matrices: 
1. The matrix of 8 physical parameters measured on 305 schoolgirls [1], [2] 
2. The matrix of 11 parameters characterizing the development of agricul­

ture in two Canadian provinces [5]. 
3. The matrix of 33 parameters of a tractor driver [13]. 
4. The matrix of 24 psychological tests on 145 pupils of the 7th and 8th 

forms in Chicago [1]. 
5. The matrix of 11 frequencies influencing human mentality [13], [26]. 

Parameter clustering found a wide application in the optimization of multi­
extremal and continuous functions, too (see [3, 4, 30]). 
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The problem is to partition the parameters Xl, ... , Xn into a fixed number p 

of non intersecting and homogeneous, in a certain sense, groups AI, ... ,Ap by 
the correlation matrix R =.= {r XiXj' i, j = I, n} characterizing the connections 
among the parameters (rXiXj is the correlation coefficient of parameters Xi and 
X j). The covariance matrix may be used instead of the matrix R. However, the 
parameters with a greater variance will be more significant in the analysis. There 

is no a priori information regarding the number and size of groups. 
Here we deal with the parameter clustering [5]-[12], [31] based on the anal­

ysis of correlations and maximizing the partitioning quality 

p 

h= L L r;ih' 
L=1 xiEAL 

where FL is the factor with a unit variance, corresponding to the group AL; r XiFI, 

is the correlation coefficient of the parameter Xi and the factor FL . The factors 
FL, L = !,p, are selected so that to maximize the sums 

L r;iFL' L = l,p. 
xiEAL 

2. The problem of combinatorial optimization. The problem of parame­
ter clustering is a combinatorial optimization problem. Combinatorial optimiza­

tion problems, although largely overlooked in the early development of opti­
mization techniques, are rather common in the operational research and manage­

ment science applications. In just these domains there arose different problems 
in location, transport, scheduling, network design, timetabling, partitioning, path 
planning, assignment, cutting, and elsewhere (see, e.g., [29], [32]), with com­
mon characteristics of beeing NP-complete, that is, hard (or rather impossible at 

present) to solve in a reasonable time for problems in real dimensions. Recent de­

velopments like, e.g., those in communication technology, management of world 
scale enterprises or artificial intelligence techniques introduce new combinatorial 
problems and often new scales, far exceeding the dimensions considered before. 

The problem of parameter clustering can be formulated as a combinatorial 
optimization problem. Let Xl, ... , xn be variables taking discrete values from 
1 top, K = {X = (Xl, ... ,xn): Xi E {I, ... ,p}, i = l,n}. Let us introduce 
a function f(XI, ... , xn) that is related with the functional I1 in such a manner: 
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It means that any point from K corresponds to the fixed parameter partition, and 
any partition of parameters corresponds to some point in K. 

The problem of parameter clustering is proposed (see [11], [12], [19]) to be 
formulated as follows: 

subject to 

maxf(X) 
x 

x = (xl, ... , xn) E K, 

3i: Xi = 1, ... ,3i: Xi =p. 

(1) 

(2) 

(3) 

3. Simulated annealing. The deterministic algorithms [5]-[12], [31] often 
find only the local maximum of h. All the algorithms start from some initial 
partition selected by some algorithm or by a certain knowledge of the problem. 
They are based on the analysis of parameters in consecutive order and on the 

search for a group of transferring the individual parameter with a view to increase 
the h value. They use different strategies to determine when the parameter must 
be transferred from its group to another. The algorithms stop when the transfer 
of any parameter by the chosen strategy does not increase the value of h. The 
deterministic algorithms practically realise a single coordinate maximization of 
f(X): consequently, the values of individual variables from {Xl, ... , xn} run 
from 1 to p (the values of other variables are fixed) and there is searched for the 
increase of the value of objective function. 

In [11], [12], [19], the problem (1)-(3) was attempted to be solved using 

special methods for combinatorial optimization, i.e., using simulated annealing. 
In this case the variety of strategies for the parameter clustering was extended. 
The strategies of maximization of h which is less sensitive on the local solutions, 
i.e., which allows to search for the global maximum of h, is proposed in [11], 
[12], [19]. ' 

Since [15] much work has been done on simulated annealing for discrete 
variables and it has been used in a wide range of contexts. A brief description 
of different modifications to the discrete simulated annealing algorithm can be 
found in [16]. Simulated annealing was used in solving partitioning problems, 

too [17], namely, partitioning of networks. A new applications of the simulated 
annealing may be found in [18] (a global discrete optimization), [19] (param­
eter clustering), [20] (assortment problems with cutting policies), [21] (power 
network design), [22] (total tardiness problem), [23] (dial-a-ride problems), [24] 
(shape detection), [25] (location of petrol stations). 
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The results below concern the convergence of the clustering algorithms pro­
posed and investigated experimentally in [11], [12], [19]. 

Let us consider the simulated annealing strategy in search of the global max­
imum of the combinatorial problem 

max f(X), 
XEScRn 

where X = (Xl, ... ,xn), S = {X: Xi E {Ai, ... ,Bi}, i = l,n}, Xi, Ai 
. and Bi, i = 1, n, take integer values, Ai:::;; Xi :::;; Bi. 

Ai = 1, Bi = p, i = 1, n, in the case of problem (1)-(3). 
The performance of optimization algorithms based on simulated annealing 

can be generalized as follows. Let m-I step be performed. The current point 
is Xm - 1 = (X;'_l' ... ' X~_l). The problem is to find the next current point 
Xm = (X;', ... , X~). It may be one of the neighbours of X m - 1. X m - 1 can 
remain as the current point after m steps, too. The selection of Xm is divided 
into two stages. Xm is chosen from the neighbours of Xm - 1 in the first stage. 
Then Xm and Xm-~ are compared in the second stage. Xm - 1 can become Xm 
with some probability. The algorithms in [11], [12], [19] correspond this general 
scheme. 

Let us denote: 

N(Xj) is the set of neighbours of Xj = (Xl,···, Xl), 
Sn = {Xi E S I f(Xj ) ~ f(Xi) '.:IXj E N(Xi)}. 

/I 

The search for the global maximum of f(· ) can be performed in such a 
manner: the rri-th step of the algorithm is as follows: 

X:,. = X:"_l + ei , m = 1,2, ... , i = 1, n, (4) 

where ei , i = 1, n, are integers taking values with some probabilities: 
a) ~i, i = 1, n, are random numbers taking integer values in the set 

{-I,O,I};p{ei = 0, i = l,n} = O,andtheprobabilityforanyothercom­
bination of ei , i = 1, n, to appear is equal to 1/ (3 n - 1); 

b)~i E Si = {Ai-X:"_l,Ai+l-X:"_l, ... ,Bi-X~_d\{o}, i = l,n, 
with the same probability Pi = 1/(Bi - Ai), i.e., N(Xm- 1) = S\ {Xm-d, 
where N(Xm- 1) is the set of neighbours of Xm - 1. 

Taking into account a specific character of the functional, characterizing the 
partitioning quality of parameters, the authors in [11], [12], [19] suggest restrict­
ing the set of neighbours of the current point. Thus, two additional special cases 
of ~i selection for (4) are used in [11], [12], [19]: 
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c) p{~k = -I} = PUk = I} = 1/2, 
~i = 0, i = 1,2, ... , k - 1, k + 1, ... , n, k = 1,2, ... , n, 

d) ek E Sk = {Ak - X~_1,Ak + 1 - X~_1"" ,Bk - X~_tl\{O} 
with the same probabilities: 

Pk = I/(Bk - Ak), ~i = 0, 
i = 1,2, ... ,k - 1, k + 1, ... ,n, k = 1,2, ... , n. 

Case c) is a restriction of case a), and case d) is that of b). The peculiarity 
of these two cases is that only the k-th coordinate of Xm and X m- 1 differs, and 
different values of k correspond to the consequent steps. The relation of m and k 
may be defined in a more sophisticated way (see [12], [19] for examples of such 
a relation). 

The probability of transition to the point Xm is defined by the formula: 

i.e., P{Xm} = 1 as !(Xm) > !(Xm-1); in the other case a random number 
TJ E [0,1] is generated: the point Xm will be initial for a new step «m + 1)-st) 
of the algorithm and in formula (4) it will replace Xm -1 if 

TJ < exp{[!(Xm ) - !(Xm-d]ITm}, 
and the point Xm - 1 remains as the initial one for a new step, otherwise. 

Tm = e/In(I + mo + m), (6) 
or 

Tm = e/In[In(1 + mo + m)], (7) 

m = 1, 2, ... is the number of a step, e is a positive constant, 1lio is some constant 
from [1,00). 

The proof of convergence of the algorithm in probability to the global max-
imum of ! (. ) is based on the results presented in [14]. 

Theorem 1. If 
1. Tm ~ T~-1, 
2. Hm Tm = 0, where Tm = e/In(I + mo + m), 

m ..... oo 
3. e ~ rL, where 

L = max max 1!(Xi ) - !(Xj)l, 
XiES XjEN(Xi) 

( 
n 2) 1/2 

r = max max. E (Xf - xj) , 
X;ES\S" XjES k=1 



470 G. Dzemyda and E. Senkiene 

then the annealing algorithm (4)-(6) converges in probability to the global max­
imumoff(X), i.e., Hrn P{IXm -ql < c} = I, where q is in the set of all the 

m ..... oo 
points that are global maxima of f(X). 

The proof of Theorem 1 follows from [14]. 
The transition probability P{Xm} with an unknown parameter c (see (5)­

(7» may be modified into the form with an unknown parameter 8 E (0, 1]. If we 
use some initial probability P{XI } = 8 as m = 1 and ifTm has the form (6), 
then the constant c can be expressed: 

c = [f(Xd - f(Xo)] 1n(2 + mo)/ln8, (8) 

where Xo and Xl are such that f(X1) < f(Xo). Then (5) will have such a form 
(for m = 2,3, ... ): 

P{Xm} = 

{
I, as f(Xm) > f(Xm- 1) 

= [/(Xm)-/(Xm_l») ~ 

(1 + mo + m) tJ(xd j(xo)] In(2+ .... 0), as f(Xm) ~ f(Xm- 1) 
(9) 

If T m has the form (7), then the transition probability may be transformed as 
follows: 

P{Xm } = 

{
I, as f(Xm) > f(Xm- 1 ) 

= I/(Xm)-f(Xm_l») In6 (10) 
[In(1 + mo + m)] !f(Xl) f(Xo)] In(ln(2+ mo )J, as f(Xm) ~ f(Xm- 1 ) 

·PROPOSITION 1. If 
1. Tm = c/1n[ln(1 + mo + m)J, 
2. c ~ rL, 

then 

Proof 

f: exp { - TL~l } ~ f: exp { - r; In [In(kr + mo)]} 
k=ko k=ko 

00 :r.l. 00 r.J. 
= E [In(kr + mo)r c = E [In {r(k + mo/r)} r c 

k=ko k=ko 
00 r.J. 

= E [lnr + In(k + mo/r)r c = 00. 
k=ko 

(11) 
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The proposition is proved. 

Theorem 2. If 

1. Tm::;; Tm-l, 

2. lirn Tm = 0, 
m-+oo 

where Tm = c/ln (In(1 + mo + m)], 
3. c~rL, 

471 

(12) 

(13) 

(14) 

then the annealing algorithm (4), (S), (7) converges in probability to the global 
maximum of f(X), i.e., lirn P{iXm - qi < c} = 1, where q is in the set of all 

m-+oo 
the points that are global maxima of f(X). 

If conditions (11)-(14) are satisfied, then theorems, analogous to 4.1, S.l, 
and S.2 in [14], may be formulated and proved for our case, i.e., algorithm (4), 

(S), (7) converges to the global maximum. 
The following theorem, analogous to Hajek's theorem [27], [28], and propo­

sitions deal with the convergence of the annealing algorithm, too. 

Theorem 3. Let 

1. lirn Tm = 0, 
m-+oo 

2. Tm::;; Tm- 1 , m = 1,2, .... 
The annealing algorithm (4), (S) converges in probability to the global maximum 
of f(X) if and only if 

(IS) 

where 
- D = rnax {d(Xi)' Xi f/. Smax, Xi is the local maximum}; 

Xi ES\Smax 

- Smax is the set of all the points that are global maxima of f(X); 
- d(Xi ) is some function which value depends on Xi, and d(Xi ) = 00 if 

Xi E Smax (for more details see [27], [28]). 

PROPOSITION 2. Let 

1. Tm = c/ln(1 + mo + m), m = 1,2, ... , 
2. c be some positive constant, 

3. 1::;; mo < 00. 

The annealing algorithm (4), (S) converges in probability to the global maximum 
of f(X) if and only if c ~ D. 
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Proof. From c ~ D we obtain 

exp { - -€.} = exp { _ D In(1+cmo+m ) } 

~ exp{ -In{l+mo+m)} =1/{I+mo+m). 

00 

By L: 1/{1 + mo + m) = 00 we obtain (15) of Theorem 3. 
m=l 
The proposition is proved. 

PROPOSITION 3. Let 
1. Tm = c/ln [In{1 + mo + m)], m = 1,2, ... , 
2. c be some positive constant, 
3. 1 ~ mo < 00. 

The annealing algorithm (4), (5) converges in probability to the global maximum 
of f{X) if and only if c ~ D. 

Proof. From c ~ D we obtain 

exp { - -€.} = exp { _ D In[ln(l~mo+m)J } 

~ exp { -In[ln{1 + mo + m)]} = 1/{1 + mo + m). 

00 

By L: 1/(1 + mo + m) = 00 we obtain (15) of Theorem 3. 
m=l 

The proposition is proved. 

4. Conclusions. In this paper, the convergence in probability of algorithms 
of parameter clustering proposed in [11], [12], [19] has been investigated. How­
ever, the results of this paper do not give the answer about the rate of convergence. 
The rate depends on the value of parameter c (or 8) and the form of T m. The op­
timal value of 8 is determined in [19] experimentally, only. The influence of the 
form of T m on the rate of convergence is investigated in [19] experimentally, too. 

REFERENCES 

1. Hannan, H.H. (1976). Modem Factor Analysis, 3 rd ed. University of Chicago Press, 
Chicago. 

2. SAS User's Guide: Statistic, 1982 ed. (1982). SAS Institute Inc, Cary. 
3. Dzemyda, G. (1997). Knowledge Discovery Seeking a Higher Optimization Effi­

ciency. Research Report Presented for Habilitation. Mokslo Aidai, Vilnius. ISBN 
9986-479-28-2. 

4. Dzemyda, G. (1987). LP-search with extremal problem structure analysis. In N.K. 
Sinha and L.A. Telksnys (Eds.), Proceedings o/the 2nd IFAC Symposium, IFAC Pro­
ceedings Series, 1987, Number 2. Pergamon Press. pp. 499-502. 



Convergence of the parameter clustering 473 

5. Braverman, E.M., and I.B. Muchnik (1983). The Structural Methods for Empirical 
Data Processing. Nauka, Moscow (in Russian). 

6. Dzemyda, G. (1990). Grouping on the sphere. In A. Zilinskas (Bd.), Teorija Opti­
maljnych Reshenij, Vo1.14. Inst. Math. Cybem., Vilnius. pp. 22-40 (in Russian). 

7. Braverman, E.M. (1970). Methods of extremal grouping of parameters and the prob­
lem of apportionment of essential factors. Avtomatika i Telemechanika, 1, 123-132 
(in Russian). 

8. Dzemyda, G. (1987). On the extremal parameter grouping. In A. Zilinskas (Bd.), 
Teorija Optimaljnych Reshenij, Vol. 12. Inst. Math. Cybem., Vilnius. pp. 28-42 (in 
Russian). 

9. Dzemyda, G. (1988). The algorithms of extremal parameter grouping. In A. Sydow, 
S.G: Tzafestas and R Vichnevetsky (Bds.), Mathematical Research, Band 46, 
Systems Analysis and Simulation 1988, Vol. 1, Theory and Foundations, Proceedings 
of the International Symposium Held in Berlin (GDR). Akademie-Verlag, Berlin. 
pp. 133-136. 

10. Dzemyda, G., and 1. Valeviciene (1988). The extremal parameter grouping in cluster 
analysis. In A. Zilinskas (Bd.), Teorija Optimaljnych Reshenij, Vol. 13. Inst. Math. 
Cybem., Vilnius. pp. 36-53 (in Russian). 

11. Dzemyda, G., and E. Senkiene (1992). Simulated annealing for parameter grouping. 
In Trans. of the Eleventh Prague Conf. on Information Theory, Statistical Decision 
Functions, Random Processes. Academia, Pr,ague. pp. 373-383. 

12. Dzemyda, G., E. Senkiene and 1. Valeviciene (1990). On the problem of parameter 
grouping. In H.-M. Voigt, H. Miihlenbein and H.-P. Schwefel (Bds.), Evolution and 
Optimization' 89. Selected Papers on Evolution Theory, Combinatorial Optimization, 
and Related Topics. Akademie-Verlag, Berlin. pp. 216-224. 

13. Lumelsky, V.Y. (1970). Grouping of parameters on the basis of communication 
matrix. Avtomatika i Telemechanika, I, 133-143 (in Russian). 

14. Mitra, D., F. Romeo and A. Sangiovanni-Vincentelli (1986). Convergence and 
finite-time behavior of simulated annealing. Adv.Appl.Prob., 18(3), 747-771. 

15. Kirkpatrick, S., C.D. Gelatt and M.P. Vecchi (1983). Optimization by simulated 
annealing. Science, 220(4598), 671-680. 

16. Eglese, R.W. (1990). Simulated annealing: a tool for operational research. European 
Journal of Operational Research, 46, 271-281. 

17. Trzebiatowski, G.w. (1985). Thermodynamic simulation procedure for partitioning 
problems. In H.-M. Voigt (Bd.), Informatis: Injormatlonen-Reporte, Vol. 1, No. 12. 
Institut fUr Informatik und Rechentechnik, Berlin. pp. 86-96. 

18. Ingber, L. (1996). Adaptive simulated annealing (ASA): lessons learned. Control and 
Cybernetics, 25(1), RV.V. Vidal and Z. Nahorski (Bds.), Special Issue on: Simulated 
Annealing Applied to Combinatorial Optimization, 33-54. 

19. Dzemyda, G. (1996). Clustering of parameters on the basis of correlations via 
simulated annealing. Control and Cybernetics, 25 (1), R.v.v. Vidal and Z. Na­
horski (Eds.), Special Issue on: Simulated Annealing Applied to Combinatorial 
Optimization, 55-74. 



474 G. Dzemyda and E. Senkiene 

20. Borges, P.C., and 1.S. Ferreira (1996). Assortment problems with cutting policies. 
Control and Cybernetics, 25(1), R.V.V. Vidal and Z. Nahorski (Eds.), Special Issue 
on: Simulated Annealing Applied to Combinatorial Optimization, 75-95. 

21. Ravn, H.P., 1.M. Rygaard and B. Wibbels (1996). Power network design. Control and 
Cybernetics, 25(1), R.V.V. Vidal and Z. Nahorski (Eds.), Special Issue on: Simulated 
Annealing Applied to Combinatorial Optimization, 97-120. 

22. Antony, S.R., and C. Koulamas (1996). Simulated annealing applied to the total tar­
diness problem. Control and Cybernetics, 25(1), R.V.V. Vidal and Z. Nahorski (Eds.), 
Special Issue on: Simulated Annealing Applied to Combinatorial Optimization, 
121-130. 

23. Hart, S.M. (1996). The modelling and solution of a class of dial-a-ride problems 
using simulated annealing. Control and Cybernetics, 25(1), R.V.v. Vidal and Z. 
Nahorski (Eds.), Special Issue on: Simulated Annealing Applied to Combinatorial 
Optimization, 131-157. 

24. Di lanni, M., R.Diekmann, R.LUling, 1.Schulze and S.Tschoke (1996). Simulated 
annealing and genetic algorithms for shape detection. Control and Cybernetics, 
25(1), RV.V.Vidal and Z.Nahorski (Eds.), Special Issue on: Simulated Annealing 
Applied to Combinatorial Optimization, 159-175. 

25. Czyzak, P., and A. Jaszkiewicz (1996). A multi objective metaheuristic approach 
to the location of petrol stations by the capital budgetting model. Control and 
Cybernetics, 25(1), R.V.V. Vidal and Z. Nahorski (Eds.), Special Issue on: Simulated 
Annealing Applied to Combinatorial Optimization, 177-187. 

26. Nebilicin, V.D. (1966). The Main Properties of Human Mentality. Prosvesczenije, 
Moscow (in Russian). 

27. Hajek, B. (1988). Cooling schedules for optimal annealing. Mathematics of 
Operations Research, 113, 311-329. 

28. Van Laarhoven, P.J.M. (1988). Theoretical and Computational Aspects of Simulated 
Annealing. Amsterdam. 

29. Pirlot, M., and RV.V. Vidal (1996). Simulated annealing: a tutorial. Control and 
Cybernetics, 25 (l), RV.V.Vidal and Z. Nahorski (Eds.), Special Issue on: Simulated 
Annealing Applied to Combinatorial Optimization, 9-31. 

30. Saltenis, V., and G.Dzemyda (1982). The structure analysis of extremal problems 
using some approximation of characteristics. In A. Zilinskas (Ed.), Teorija Opti­
maljnych Reshenij, Vol. 8. Inst. Math. Cybem., Vilnius. pp. 124-138 (in Russian). 

31. Dzemyda, G. (1997). Clustering of parameters on the basis of correlations: A 
comparative review of deterministic approaches. Informatica, 8(1),83-118. 

32. Vidal, R. V. V. (Ed.) (1993). Applied Simulated Annealing. Springer Verlag. 

Received October 1997 



Convergence of the parameter clustering 475 

G. Dzemyda received his Ph.D. and Habil. Dr. degrees from the Kaunas 
Polytechnic Institute, Kaunas, Lithuania, in 1984 and 1997, respectively. He is a 
senior researcher at the Optimization Department of the Institute of Mathematics, 
and an Associate Professor at the Vilnius Pedagogical University. His research 
interests include knowledge discovery seeking a better optimization efficiency 
and interaction of optimization and data analysis. 

E. Senkiene graduated from Vilnius University, Lithuania, in 1966. She re­
ceived a Ph.D. degree of mathematical sciences from Vilnius University, Vilnius, 
Lithuania, in 1974. She is a senior researcher at the Department of Optimiza­
tion, Institute of Mathematics and Informatics, Vilnius, Lithuania. Her research 
interests include stochastic processes and optimization problems. 



476 G. Dzemyda and E. Senkiene 

PARAMETRl] GRUPAVIMO, NAUDOJANT 
MODELIUOJAM1\ ATKAITINIMJ\, KONVERGAVIMAS 

Gintautas DZEMYDA, Elvyra SENKIE~ 
Straipsnyje nagrinejamas parametrq grupavimo rerniantis jq koreliacine matrica 

uzdavinys. Apzvelgtos parametrq grupavimo taikymo sritys ir galimos sio uzdavinio 
sprendimo strategijos. Teoriskai istirtas modeliuojamu atkaitinimu grindZiamll grupavimo 
strategijll konvergavimas. 


