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Abstract. Traditional population dynamics models, explaining separate aspects of 
observed ecological phenomena, are well understood mathematically, but their extension 
to a wider class of phenomena is difficult. Artificial life models represent another 
extreme, capable of simulating almost every biological phenomenon, but not accessible 
to mathematical analysis. A population model having a scope between the two extremes 
- but flexible, extensible, and within reach of mathematical analysis - is introduced in 
this paper. The model is based on piece-wise linear dynamical models of individual 
organisms. Parameter ranges in which the model meets natural ecological requirements 
is explored through analysis and simulations. 
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1. Introduction. Ecological systems can be so varied and complex so that 
it is not surprising that there is no single general theory for the behavior of 

such systems. What is perhaps surprising is that there is no fully satisfactory 
theory for even simple ecological systems, for example, a population consist­

ing of several kinds of organisms living in a compact space or time varying 
environment. 

The simplest (and oldest) theories attempt to describe ecological systems 

in terms of a small number of aggregate variables, such as the total number 

of individuals or the biomass of the population. The time development of 
these variables is then described by a set of ordinary differential or difference 
equations. An example of this approach for a single species is provided by the 
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logistic equation: 

dN = bN(t) (1 _ N(t)) 
dt ]{ , (1) 

where N(t) - the total number of organisms, b, J{ - model parameters, the 

equation being introduced to clarify the notion of system carrying capacity. 

Another example, for a system consisting of two species, is provided by the 

Lotka-Volterra equations 

{ 
d~~l = Nl(t) (C10 + cllNl(t) + C12N2(t)) , 

d~~2 = N2(t) (C20 + C21Nl(t) + C22N2(t)) , 
(2) 

where Nl(t), N2(t) - the number of organisms for the two species; C10, Cll, 

C12, C20, C21, C22 - model parameters, and provides a simple model which may 
show oscillatory behavior (see Murray, 1994; Hofbauer and Sigmund, 1990). 

More complex population models introduce distributions over age, space, 

and sometimes other variables. An age distribution may be used to more fully 

reflect the influence of death and reproduction processes in the population, while 

organism dispersal may be represented by introducing a spatial distribution. 

Distributed cases often are modeled by partial differential equations, of which 

the Fisher equation is a typical example: 

aN(t, x) = b. N( ) (1 _ N(t, X)) Da2 N(t, x) 
at t, x f{ + ax2' (3) 

where N(t, x)- population density at time t and space position x; b, f{ -

model growth parameters, D - diffusion coefficient. 

One additional property of traditional models can be explicitly mentione4: 

they usually attempt to explain only one ecological phenomenon at a time. For 

this reason the traditional models cannot be readily extended beyond the specific 

ecological phenomena they were designed to describe. 
The limited scope of the traditional, analytic popUlation models creates a 

need for ecological models which are more flexible and possibly more realis­

tic. To some extent this need is met by purely computational models, often 

called "artificial life" models. Artificial life models can describe complicated 

biological, ecological and evolutionary phenomena, without regard for ana­

lytical tractability, and have been used to model such processes as reactions 
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of enzymes, the coexistence of several species, species evolution (see Banzhaf, 

1995; Bedau, 1995; Langton, 1989; Lindgren and Nordahl, 1994; Yager, 1994). 

The models are usually rule-based and expressed in the form of computer pro­

grams. If true values for the required parameters and inputs are available then 

such programs indeed can provide output which matches observed results well. 

However the programs are not accessible to mathematical analysis and trans­

formations, so that they are really no easier to understand than the experimental 

data themselves. 

In this paper we will introduce a population model, constructed to be more 

general and more extensible than the traditional mathematical models, but yet 

more amenable to analysis than the computer program based artificial life mod­

els. Analytical methods will be applied to define parameter ranges, where the 
proposed model satisfies important ecological requiremenl'l. In the next section 
we describe the model itself, and in the following sections we present some 

preliminary explorations of the properties of this model. 

2. Model description. The population model is constructed by combin­

ing models of individual organisms within an encompassing environment with 
which each organism interacts. Each organism is considered to be an open sys­

tem, and is modeled as a dynamical system. The environment is also modeled 
as a dynamical system through which the organisms can influence each other. 

As organisms in this version of the model reproduce by division into two 

equal parts, we will refer to them, for picturesqueness, as cells. A cell is 
described as a dynamic object whose state development is governed by piece­

wise linear equations of motion and whose total parameter, state, and input 

specification is given by a list which determines the cell properties: 

l(t) = {:v(t),A,B,H,LD,LN,U(t)} , (4) 

where :v = (;; ) - cell state vector with x 9 - genotypic state, x f - phenotypic 

state; A = (agg agf ), B = (0), H = (hg ), LD, LN - cell dynamics 
afg aff b hf 

parameters, u(t) > 0- environmental input 

Specification of cell properties: 

1. Growth 
dz dt = Az(t) + Bu(t) + H (5) 

valid, when LD/2 ~ xg(t) < LD, xJ(t) > LN· 
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2. Division 

z(t + e) = z(t)/2, e ....... 0 (6) 

valid, when Xg(t) = LD • 

3. Death 

z(t + e) = 0, e ....... 0 (7) 

valid, when x J{t) = LN' 
The segmentation of the cell state space implied by this cell model, with 

possible cell trajectories, is illustrated in Fig. 1. The cell growth region is a 

rectangular patch, bounded by lines in state space at Xg = LD/2, Xg = LD 

and XI = LN' The division and death regions Xg = L D , XI = LN are 
degenerate patches, since in this model these processes occur at the growth 

patch boundaries. 

Growth region 

Division 
~-""""'poinl 

L!! .. _ .... _. __ ._ .. _. ___ .................. ~ ____ ~ 

i 
I 

o ! 
LJ2! X, 

Fig. 1. Regions of the cell state space with possible trajectories in the 

growth region. 

By specification (6), cell life is defined to begin on the line Xg = LD /2. 

A cell is allowed to divide on reaching Xg = LD , or to die upon reaching 

X I = LN' It is not possible for a cell to leave the growth region through 
Xg = LD/2, this constraint being achieved by selecting appropriate parameter 

values for the A, B, H, LD , LN combinations. 
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It is worth noting that the genotypic dynamics in the cell model is indepen­

dent of environmental input u(t). This causes the steady points of the linear 

growth equation (5) to lie on a straight line in state space. 

A linear dynamics for cell growth is convenient for preserving .analyzability 

of the model. In this paper the cell model with one linear growth patch, as 

described by (4), and an extension of (4), including two linear patches in the 

growth region, will be examined. 

A population was modeled as a set of cells, developing as a result of in­

dividual cell growth, duplication, and extinction processes in the simulated 

environment: 

(8) 

where N (t) - number of cells in popUlation, Ii (t), i = 1, ... , N( t) - individual 

cells, as defined by (4), E(t) - environment, which will be defined below. 

Specification of population properties: 

I. Cell duplication 

{ 
li(t) -+ {li(t + c),IN(t)+l(t + c)}, (9) 

N(t + c) = N(t) + 1, c -+ 0 

valid, when x~(t) = LD in Ii, i E {I, 2, ... , N(t)}. 
2. Cell extinction 

{
Ii (t) -+ 0, . 

N(t + c) = N(t) - 1, c -+ 0 
(10) 

valid, when x~(t) = LN in Ii, j E {I, 2, ... ,N(t)}. 
The environment was modeled by a global dynamics and by the distribution 

of overall resources to individual cells, with total cell number in the population 

as the only input: 

E(t) = {U(t), N(t), u1(t), u2(t), ... , uN(t)(t)} , (11) 

where U (t) > 0 - overall environmental resource flux, N (t) - the total number 

of cells in the population (8), ui(t) - amount of resources allocated to the cell 

Ii (t) from (8). 
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The environment is characterized in the form 

ui(t) = Fi (U(t), N(t)) , i = 1,2, ... , N(t), (12) 

where F may be deterministic or stochastic. ui(t) should satisfy the balance 

equations indicated below, as appropriate for the deterministic and stochastic 

cases: 
1. Deterministic case 

N(t) 

L ui(t) = U(t); (13) 
i=l 

2. Stochastic case 

(14) 

where E - expectation. 
We have used an equal division of environmental resources for (12) in the 

deterministic case: 

. U(t) 
u'(t) = N(t)' i = 1,2, ... , N(t), (15) 

and ui(t) from uniform distribution with average (15) for the stochastic case. 

The global environmental resources were kept steady U (t) == U. Resources 
were redistributed to cells after every division or death event. Further in this 
paper we will investigate the resultant popUlations, with different parameter 

values, for one and two linear growth patch cases. We will analyze whether 
these populations satisfy natural ecological requirements in some parameter 

range. 

3. Objectives for the model analysis. In the preceding sections we have 

defined the form of the model. The following model analysis will be applied for 

tuning the set of parameters {A, B, H, LD , LN } so as to satisfy the biological 

requirements for individual cells, the ecological requirements for the whole 
population, and to meet the model constraints. 

Some biological properties of a cell, such as the need for environmental 

resources if growth is to occur, eventual reproduction by division, and death 
are already incorporated in the very form of the model. More specifically, the 

requirement that a cell both be able to divide and die with input u(t) > 0 will 
be satisfied by parameter tuning. 
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The main ecological requirements to be achieved by parameter tuning con­

cern population stability: 1) the population size should be limited by environ­

mental resources in any environment; 2) the population should persist in some 

environment. 

A model constraint, to be met by parameter tuning, prevents a cell from 

leaving the growth region through the boundary Xg = LD /2. This could be 

ascribed to biological requirements, if the genotypic state were interpreted as 

reflecting the process of duplication of genetic material of a cell. 

4. Analysis of the diagonal matrix A case 

4.1. Mathematical specification. "The diagonal growth matrix 

A = (af/ a ~ f) case is the simplest one to analyze. In this case the steady 

state points of a cell fallon the line Xg = -hg/agg , which is parallel to the 
cell division line. The duration of a generation is independent of the cell input 

u(t). Cell motion in the phenotypic direction is independent of the genotypic 
state and vice versa. All cells in a population are synchronized in the genotypic 
direction. 

Solutions for the cell growth equations (5) in diagonal case, if u(t) == Us. 

are exponentials in time: 

Monotonicity of the solutions facilitates meeting the model constraint which 

requires an increasing genotypic state in the growth region. The required di­
rection is achieved by placing the steady point line to the right of the growth 

region in the stable case (agg < 0; hg > -LDagg ) and placing it to the left of 

the growth region in the unstable case (a gg > 0; hg > -LDagg /2). b > 0 is 

needed in both cases to keep phenotypic solutions higher with a bigger input u •. 

As the genotypic state is dependent neither on the phenotypic state nor on 

the environment, the impact of the genotypic equation reduces to providing a 

clock, measuring duration of a generation tg: 

__ 1_1 (2(agg LD + hg)) tg - n . 
agg aggLD + 2hg 

(17) 
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tg can be given any desired value, by selecting appropriate parameters agg 

and hg, whatever the genotypic dynamics, stable or unstable. Given tg, the 

solution of equations (5) inside the growth patch reduces to a one-dimensional 

problem, with only two qualitatively different cases: stable (aff < 0) and 

unstable (aff > 0) phenotypic dynamics. 

4.2. Requirements for cell division and death. We want to discover if a 

subspace in parameter space {A, B, H, L N, L D} exists where a cell is able to 

both divide and die with an environmental input Us > O. We will investigate 
the limit between division and death ranges in us' If the limit turns out to be 

positive, then both cases should be possible. 

Various initial conditions for the phenotypic state x j (0) Ell, 00 [ and differ­
ent death scenarios are possible for a cell in the model. We must pick one initial 
condition and one death scenario to define the single limit in us. Let us take 

the greatest phenotypic state, predicting death of the cell. This is x j = 2L N, 

if reached at the end of generation (t = tg): such cell will die after division. It 
is reasonable to take the same initial condition, Xj(O) = 2LN, as we want the 
condition not to force the outcome. We will investigate 

(18) 

as the limit between the phenotypic solutions driving a cell towards division, 
and those driving the cell towards death. 

In the monotonic case the derivative at the beginning point of the solution 

will represent its end point being lower or higher. Analyzing the derivative 

(19) 

condition (18) can be changed to: 

(20) 

Equations (19), (20) give an equation for the limit between division and death 

ranges in u., which will be denoted by U L, 

(21) 
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with the solution: 
1 

UL=-;;(-aJJ2LN-h/). (22) 

It is evident from (22), that by selecting an appropriate h / we can place U L 

at any desired point, including U L > 0, whatever alf and LN' Both stable and 

unstable phenotypic dynamics cases, with appropriate h /' fulfill the requirement 
for division and death of a single cell. 

4.3. Requirement for limitation of population size. If a cell parameter set 

{A, B, H, L D , LN } is tuned so that both division and death are possible with 
a positive Us, we can expect to create a popUlation limited by environmental 

resources. Let us analyze the limiting requirement in the case of equal division 
of overall environmental resources (15). In this case population tends towards 

a single phenotypic state. 

As generation length tg is constant, we can derive an expression for the 
phenotypic state of a cell at the end of generation: 

1 
x/(tg) = eaJJt_x/(O) + - (eaJJtg - 1) (h/ + b· us). (23) 

aJJ 
Similarly, we can derive a difference equation for the transition of the whole 

concentrated population for each generation. In the case of such concentration 
the state of a single cell, together with the number of cells, represents the state 

of the whole popUlation. We will incorporate the cell number as a divisor of 
overall resources, when evaluating the input of the observed cell. 

Let us take the initial popUlation consisting of a single cell, given overall 

environmental resources U. Let us define constants: 
1 

C1 = e aJJtg , C2 = - (eaJftg - 1) 
aJJ 

(24) 

to simplify notation. Then generation transition difference equation will be: 

(25) 

where 11 - number of a generation. 
Eq. 25 incorporates the fact that phenotypic state is divided by two and 

number of cells doubles at the end of each generation. Solution for (25), taken 

with x/CO) = x/o is: 

x/en) = (C1)n X/O + C2 t (C1)n-i (h/ + b· U· (1/2)i-1). (26) 
2 2 i=l 2 . 
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Stability of solution (26) implies limitation of population size, and is deter­

mined by the constant Cd2. In the stable single cell dynamics case, we have 

Cd2 EjO, 1/2[. Consequently, solution (26) is stable and the population is 

limited. In the unstable single cell dynamics case we have Cd2 Ej1/2,00[, 

and consequently solution (26) can be both stable when C1 < 2, and unstable 

when C1 > 2. The population can be limited or unlimited, correspondingly. 

The factor which makes the population limited, though single cell dynamics is 

unstable, is division by two of the cell state at the end of each generation. 

Computer experiments have shown that in the stable cell dynamics case the 

maximum number of cells in the population is not sensitive to initial conditions. 
In the unstable case with C1 < 2, though the maximum number of cells is 

limited, the population is sensitive to initial conditions. Great sensitivity of 

the population size to initial conditions could be true in the case of several 
interacting populations, yet for an isolated population it does not appear to 
be biologically meaningful. Consequently we assert that the population model 

based on stable cells would be more realistic than the one based on unstable 
cells with C1 < 2, though the requirement on limitation by environmental 
resources is fulfilled in both cases. 

4.4. Requirement for population persistence. Equal division of resources 
gives a concentrated popUlation, which dies out after the resource limit is 
reached. If we want to keep the model population persistent, we must pre­

vent it from becoming concentrated. Concentration of cells in the model may 
be disturbed in two ways: by unequal distribution of resources to individual 

cells or by unequal cell division. We will investigate the case of unequal dis­

tribution of resources and analyze how the cell parameters influence the degree 
of dispersal. 

For analysis of dispersal at least two cells are required. Let us take the 
generation transition equations for two cells: 

X](ig) = eaJJtgx]o + _1_ (eaJJtg - 1) (h j + b. u;), 
aff 

xJ(tg ) = eaJJtgxJo + -!- (eaJJtg - 1) (hj + b· u;), 
ff 

where xJo, xJo - initial conditions for the two cells. 

(27) 
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By subtraction of (27) equations, we obtain an expression for the distance 

between the cells at the end of a generation: 

where t1xf = xJ - x}, t1xfo = xJo - x}o' t1u s = u; - u!. 
The distance between cells at the end of a generation is expressed by the 

sum of two components, the first involving a difference in the initial conditions 

t1x fO, and the second involving a difference in environmental inputs t1 u •. 

Dependence on initial conditions is qualitatively different for stable and unstable 

cases. The weight coefficient of t1xfo is eaJJtg < 1 in a stable cell dynamics 

case and it is eaJJtg > 1 in the unstable case, which means contraction and 

expansion of the initial difference, respectively. Weight coefficient of t1u s is 

J-( ea ff t 9 - 1) > 0, whatever a ff' There is no qualitative difference between 
tt// impact of t1 Us in the stable and the unstable cases, though the weight 

coefficient is always bigger for the unstable case. 

The change of distance between two cells throughout several generations 

is rather interesting. Let us form a generation transition difference equation 

for t1xf. We will use definitions (24) and allow the environmental inputs to 

change only on the change of generations. The difference equations for t1x f 

will be: 

(29) 

with the solution: 

(30) 

Solution (30) holds until death of any of the observed cells happens. Sta­

bility of t1xf(n) is determined by C1/2, the same constant which defines the 

stability of x f (n) itself. Different cells would converge throughout generations 

when C1 < 2, and diverge when C1 > 2. As we are seeking cell dispersal, 

we prefer the divergent case here. On the other hand, if an initial difference 

between cells fades, the difference in inputs t1u s may still preserve the cells 

from concentration. 

If we did not encounter cell death, the popUlation would simply expand 

with time. As we want to hold the population steady and persistent, on the 
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average half of the cells should die every generation. We cannot model the 

process of cell divergence in population, involving death, with only two cells. 

Let us interpret the two observed cells in another way, as if they represented 

the margins of an overall cell distribution. In the next generation we will 

pick marginal cells for observation again. If we encounter death of half of 

the cells (those with the lower phenotypic states) in each generation, then the 

distance between marginal cells should be reduced four times at the end of each 

generation instead of the two times as in (29). An approximate description of 

the divergence process for marginal cells will be: 

C1 C.,b 
~xJ(n) = 4~xJ(n - 1) + 4~u$(n), (31) 

with the solution: 

( c )n C b n (C )n-i 
~xJ(n) = -f ~XJO + + tt -f ~u$(i). (32) 

Stability of the solution depends on the coefficient Ct/4. We need approx­

imately C1 > 4 to have a population with cells' phenotypic states divergent on 

initial distribution. This requirement cannot be reconciled with thdt of C1 < 2 

needed for the limitation of population size. It is impossible to have both a 

divergence of the initial distribution and a resource limited popUlation at the 

same time. 

A possible alternative way to produce a persistent popUlation is to produce 

cell divergence by having sufficient variability of the environmental inputs. 

Computer experiments showed that a persistent and resource limited popUlation 

is possible in the stable cell dynamics case, when the distribution of environ­

mental resources given to individual cells is sufficiently wide. For example, a 

uniform distribution of individual cell inputs in the range [0, 2U / N(t)] proved 

to be sufficient to preserve a popUlation for a long time. Such a distribution is 

probably much wider than the supposed fluctuations in a natural environment. 

Consequently, a population model with one linear growth patch is not entirely 

satisfactory. 

4.5. The case of two growth patches. We have shown above that a pop­

ulation consisting of cells, each described by a single growth patch, whether 

stable or unstable, does not show the sort of behavior that is desired. Com­

bining two patches promises to give better results. If we put an unstable patch 
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with C1 > 4 below, and a stable patch above some limit:e I = Ls, a population 

limited by environmental resources and having good dispersal characteristics 

can be attained. The lower unstable patch would be responsible for producing 

cell dispersal. The upper stable patch would be responsible for maintaining 
the limitation by environmental resources. For the upper patch to perform its 

function, a limit Ls ~ 2LN is required. An example of a combination of stable 

and unstable patches, with possible trajectories for two different values of input 

u" is given in Fig. 2. 

Fig. 2. Combination of stable patch above and unstable patch below, 

with trajectories for two different environmental inputs: a) u, = 
12; b) u, = 3. Parameter values for both, a) and b): agg = -1.0, 

agl = alg = 0, all = -1.1, b = 1, hg = 3.0, hi = 0.5 for 

the stable patch; agg = 1.0, agl = alg = 0, all = 10, b = 1, 

hg = 0.5, hi = -22 for the unstable patch. 

Computer experiments have showed validity of the two patch model. An 

unstable patch with C1 ~ 10 was found to provide sufficient distribution of 

qell phenotypic states for the population to persist. The difference from the 

approximate relation C 1 > 4 found above is probably due to the contraction 

arising in the upper stable patch. 
An exact analysis of the diagonal case helped to determine a successful form 

for the model, with two linear patches for cell growth dynamics being introduced 
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to satisfy both ecological and model behavior constraints. The conclusions of 

this analysis can be extended to more complicated cases, which are not so easy 

to analyze. 

5. Extensions to more complex cases 

5.1. Lower triangular matrix A case. Above we have explicitly analyzed 

the diagonal growth matrix case. Another case for which an exact analysis 

is possible, is that of a cell whose dynamics is given by the lower triangular 

matrix A = (a gg 0). In this case the genotypic state Xg is independent 
a!g aU 

of the environment. Consequently, the steady point line Xg = -hgjagg is 
parallel to the cell division line, and the duration of a generation tg is fixed. 

Genotypic solutions of x g (t) are montonic. Parameter sets defining the direction 
of increasing genotypic state are distinguished as in the diagonal case. 

On the other hand, phenotypic solutions X! (t) for the lower triangular case 
are not monotonic, which complicates the analysis. Generation transition differ­

ence equations are more involved than in the diagonal case, but they suggest the 
same conclusions. In the lower triangular case persistent and limited popula­
tions can be obtained with one stable growth patch, if environmental fluctuations 

are sufficiently large. The same characteristics of a population can be achieved 

under minor environmental fluctuations in the case of two linear patches, the 
upper being stable and the lower being unstable. Inconsistency with ecological 

reality, that generation length is independent of environmental input and that 

genotypic synchronization of cells occurs, is the same as in the diagonal case. 

5.2. The general matrix case. Analysis of the general case, with the cell 

growth matrix A = (agg ag! ), ag! :/; 0 is much more complicated than in 
a!g aU 

the diagonal or lower triangular cases. We do not consider separately the upper 

triangular case, because it is almost as hard as the general case. 

The time development of the genotypic state x g in this general case is 

dependent on the environmental input u(t). Generation length tg is no longer 

fixed. The population is no longer synchronized in genotypic direction. The 
steady point line, 

(33) 

is no longer parallel to the cell division line. We must take care that the line 
(33) does not cross the growth region, else the cell may fallon the stable 
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point inside growth region (which is not biologically realistic) or may leave the 

growth region through Xg = LD/2 in the unstable case (which is not defined in 

the model). In this general case, the genotypic solution Xg(t) is not necessarily 

monotonic, so we must take care that the cells do not to leave the growth region 

through the boundary Xg = LD /2, even when the steady point line is outside 

the growth region. Though not often seen in practice, these cases are not easy 

to distinguish analytically. 

Solutions of the growth Eq. 5 in the general case can be most compactly 

expressed in the matrix exponential notation: 

z(t) = eAt. z(O) + A- 1 (eAt - 1) (B· u. + H). (34) 

An exact analysis of population growth in the general case is complicated by 

transcendental equations, which result from (34), when we attempt to obtain the 

length of generation t g , required for analysis. One of the possible approaches 

for approximate analysis is linearization of the solution (34): 

z(t) = (I + At). z(O) + B· usi + Hi. (35) 

Considerable errors can be introduced by approximation (35), because ex­

ponential solutions are not very appropriate functions for linearization. Also 

linearization can hide nonmonotonicity of solutions, which may be significant in 

some cases. Investigation of approximate methods for the general case analysis 

is an important direction for future work. 
Though the general case analysis proved to be complicated, computer exper­

iments have shown that the conclusions obtained from the diagonal case analysis 

can be extended to the general case. A persistent and limited population in the 

case of one stable growth patch can be obtained only under considerable envi­

ronmental fluctuations. In the case of two growth patches, stable in the upper 

region and unstable in the lower region, realistic population behavior can be ob­

tained under minor environmental fluctuations. A time series of the number of 

cells in the model population with two linear growth patches is given in Fig. 3. 

Desynchronization of the population after four generations can be observed in 

the figure. 

The advantage of the proposed population model lies in the possibility to 

relate analytically to some extent the properties of populations to the charac­

teristics of individual organisms. Additionally the model can be extended for 

investigation of evolutionary phenomena. 
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Fig. 3. Time series of the number of cells in model population, with two 

linear growth patches. Parameter values: agg = -1.0, agf = 
0.3, aJg = -0.5, aJJ = -1.1, b = 1.0, hg = 3.0, hJ = 0.5 for 

the stable patch; agg = 4.0, agJ = 3.0, aJg = 0, a JJ = 40, b = 
1, hg = 0.5, hJ = -42 for the unstable patch; LD = 2, LN = 1, 

L5 = 2, U = 100. Individual cell inputs are selected from 

uniform distribution over the range [U IN - 0.01 U IN; U I N + 
O.OlUIN]. 

6. Conclusions. In the paper we have introduced a population model based 

on individual piece-wise linear cells. The model in certain cases proved to 

be accessible to exact analysis. It proved possible to define the parameter 

range where persistent and resource limited populations could be obtained. Cell 

growth dynamics parameters proved to play an important role in determining the 

characteristics of the whole population. Cells with one unstable linear growth 

patch produced inappropriate population behavior. Cells with one stable linear 

growth patch were capable of forming a population with the required charac­

teristics, if environmental fluctuations were significant. Cells with two growth 

patches, one unstable, the other stable, proved to be capable of producing a 

persistent, and bounded population in an environment with minor fluctuations 

in accord with usual ecological expectations. Experience with the model sug­

gests that it can be extended to encompass evolutionary phenomena involving 

several kinds of populations, where even very modest analytical results should 

be rewarding. 
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VIDINE LJ\STELIQ DINAMIKA PAGRISTAS 

POPULIACUOS MODELIS 

Minija TAMOSrONAITE ir 1. Rimas VAISNYS 

Tradiciniai populiacines dinamikos modeliai aiskina pavienius ekologiniq reillkiniq 
bruo~us. Sie modeliai yra gerai ibnalizuoti matemati~kai, bet jq nejmanoma lengvai 

pritaikyti naujq rei~kiniq tyrimui. Dirbtines gyvybes (artificial life) modeliai, is kitos 
puses, gali pamegd~ioti beveik visus biologinius reiskinius, deja, ~iq modeliq da~niausiai 
nejmanoma naudingai isanalizuoti. Straipsnyje pateiktas bandymas sukurti populiacijos 
modell, kuris biitq tarp dviejq kra~tutinumq - pakankamai lankstus ir kalliek anali­
zuojamas. Kuriamas modelis yra pagrjstas atskirais organizmais, kuriq kiekvienas turi 

nuosavll, dalirnis tiesin~ dinamikll. Parametrq poerdviui, kuriame modelis patenkintq 
ekologinius reikalavimus, rasti naudojami analiziniai metodai ir kompiuterinis modelia­

vimas. 


