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ON ONE OPTIMIZATION ALGORITHM 
OF SIMULATED ANNEALING WITH NOISE 

Elvyra SENKIENE 

Institute of Mathematics and Informatics 
Akademijos 4, 2600 Vilnius, Lithuania 

Abstract. In this paper we are concerned with global optimization, which can be 
defined as the problem of finding points on a bounded subset of R'" , in which some real­
valued function J(r) assumes its optimal value. We consider here a global optimization 
algorithm. We present a stochastic approach, which is based on the simulated annealing 
algorithm. The optimization function J(r) here is discrete and with noise. 
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1. Introduction. We consider one simulated annealing algorithm to search 

for the global extremum of the function in the discrete optimization problem. 

Simulated annealing is a stochastic method of finding a global extremum with 

an asymptotic convergence guarantee in probability. A global minimization 

problem can be formulated as a pair S, I, where S = [A, B]m C Rm is a 

bounded set on Rm and I( x): S -+ R is an m-dimensional real-valued function, 

i.e., x = (xl, ... ,xm) E S = [A,Br C Rm, A = (Al, ... ,Am), B = 
(Bl, ... , Bm), where Ai ~ xi ~ Bi and xi, Ai, Bi, i = 1, m, take integer 

values. The problem now is to find a point Xmin E S, such that I(Xmin) be 

globally minimal on S. 
Let us denote the set N(xj) C S as a set of neighbors of Xj = (xJ, ... , xj), 

(Xj rt. N(xj)) and N(xj) C S as a set of neighbors of xj, k = 1, m, (xj rt. 
N(xj)). 

The search for the global minimum of I(x) can be performed in such a 

manner: the n-th step of the algorithm is as follows: 

(1) 

where ei , i = 1, m, are integers taking values with some probabilities: 
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1) ~i, 1, m, are random numbers taking integer values in the set 

{-I, 0, I}; p{{i = 0, i = 1, m} = 0, and the probability for any other 

combination ~i, i = 1, m, to appear is equal to 1/(3m - 1); 

2Hi E Si = {Ai-x~_I,Ai+l-x~_I, ... ,Bi-x~_d-{O}, i= I,m, 
with the same probability Pi = 1/(Bi - Ai), i.e. N(xn-d = S\{xn}; 

1 . 
3) p{e = -I} = p{e = I} = -, ~I = 0, i = 1,2, ... , k - 1, k + 

1, ... , m, i.e. we describe the transition2 to the next (neighboring) point along 

the coordinate k; 

4) e E Sk = {Ak - X~_I' Ak + 1 - X~_I'"'' Bk - x~_d - {O} with 

the probability Pk = 1/(Bk - Ak), ~i = 0, i = 1,2, ... , k - 1, k + 1, ... , m, 

i.e., we describe the transition to any point of the set S = [A, B]m with the 

same probability, i.e., all the points of set S are the neighbors along the given 

coordinate k (see Dzemyda et al., 1990). 

The probability of transition to the point Xn is defined by the formula: 

{
I, as f(xn) < f(Xn-I), 

P{xn} = exp {_!Crn)-T!n(r n- d } , f() '- f( ) as Xn 9 Xn-I, 
(2) 

and as Xn E N(xn-d in the cases 1) and 2); and Xn such that x~ E N(x~_d 
in the cases 3) and 4). P{xn} = 0, as Xn ~ N(xn-d and x~ ~ N(x~_d. 

Equality (2) means that P{xn} = 1 for f(xn) < !(Xn-I); in the other 

case, as f(xn) ~ f(xn-d, a random number '1 E [0,1] is generated, and as 

{ f(xn) - f(Xn-l)} ak' { '1 < exp - Tn ' we tea new pomt Xn; as '1 ~ exp -

f(xn) - f(xn-t}} we stay at the point x 
Tn' n-I' 

Note that x~ = Ai, as X~_I = Bi, ~i = 1; and x~ = Bi, as X~_I = Ai, 
~i = -1. Tn = cjln[ln(1 + no + n)], n = 1,2, ... , is the number of a step, c 
is a positive constant, no is a constant from [1,00). 

Algorithm (1), (2) is a special case of algorithms, described by Metropolis 

et al. (1953) and Mitra et. al. (1986). 

Theorem 1. If Tn ~ Tn-I, lim Tn = 0, where Tn = cjln[ln(l+no+n)], 
n .... oo 

and c ~ r· L, then the simulated annealing algorithm (1), (2) converges in 

probability to the global minimum of f(x), i.e., lim P{lxn - ql < g} = 1, 
n .... oo 

where q is in the set of all the points which are the global minima of f( x). 
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Here in the cases 1) and 2) of algorithm (1), (2) 

r = min max [t (xr - XJ)2] 1/2 , 
x,E(S\Sm) xjES k=l 

Sm = {Xi E S I f(Xj) ~ f(x;), 'r/Xj E N(Xi)}, 

L = max max If(x;) - f(Xj )1; 
x,ES xjEN(x,) 

and in the cases 3) and 4) 

r = . min max [t (xr _ Xj)2] 1/2 , 
x,E(S\Sm) xjES k=l 

Sm = {Xi E S I f(Xj) ~ f(Xi), 'r/Xj : xj E N(xr)}, 

L = max max I/(Xi) - f(Xj)l· 
x,ES Xj:xJEN(xn 

The proof of Theorem 1 is presented by Senkiene (1994). 
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2. Theoretical knowledge. Simulated annealing algorithm (1), (2) is defined 

as a Markov chain {xn}, n = 1,2, ... , with the probability of transition (2). 
Usually a simulated annealing algorithm is defined as a Markov chain {xn} 
with the probability of transition: 

P{Xn+1 = Xj I Xn = x;} 

{
qjj asf(Xj)-/(Xi) <0, 

= i~'exp{_f(Xj)-f(Xi)}, asf(xj)-f(Xi)~O, (3) 
qj Tn 

where Xi, Xj E S, i :f= j, Xj E N(Xi), % is a probability of generating a 
qi 

point Xj E N(Xi) from the point Xi E S (~ L: ~: = 1) (see Mitra et 
XjEN(x,) 

ai., 1986; Gelfand and Mitter, 1989). 

In some physical problems the difference of energy I(xj) - f(Xi) can 

be calculated only with noise 'fJn (see Gelfand and Mitter, 1989). Then the 
simulated annealing algorithm is defined as a Markov chain with the following 

transition probability: 
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P{Xn+l = Xj I Xn = xd 

9ii 

={~:' {f(Xj)-f(Xi)+Tin} 
-exp T. ' 
qi n 

as f(Xj) - f(Xi) + Tin < 0, 

as f(Xj) - f(Xi) + Tin ~ 0. 
(4) 

Denote that the noise Tin is random variables of normal distribution with 

mean ° and variance u2 • Then (see Gelfand and Mitter, 1989), if Tn -l- ° and 

Un = o(Tn) as n -l- 00, in both cases the denote Markov chains of simulated 

annealing are equivalent and the theorem of convergence of simulated annealing 

algorithm in probability to the global minimum of f( x) with noise is correct 

only if this convergence to the global minimum of the function f( x) without 

noise is correct. 

3. Fundamental results. Let the optimized function f(x) can be mea­

sured with noise, i.e. the difference f(xn) - f(Xn-l), n = 1,2, ... , in (2) 

can be calculated only with noise Tin, where Tin is random variables of normal 

distribution with mean ° and variance u~. Then the presented simulated an­

nealing algorithm (1) is defined as a Markov chain {x n } , n = 1, 2, ... , wi th 

the following transition probability: 

1
1, as f(xn) - f(xn-d + Tin < 0, 

P{X} = {_f(xn) - f(xn-d + Tin} 
exp Tn ' 

as f(xn) - f(Xn-l) + Tin ~ 0, 

and as Xn E N(Xn-I)' P{xn} = 0, as Xn rf. N(Xn-I). 

(5) 

We formulate a theorem analogous to Theorem 1, where the difference of 

the function f(xn) - f(xn-I), n = 1,2, ... is measured with noise Tin, n = 
1,2, .... 

Theorem 2. If Tn ~ Tn-I, limn _ oo Tn = 0, where Tn = c/ln[ln(1 + 
no + n)], c ~ r· L and Un = o(Tn), as n -l- 00, then simulated annealing 
algorithm (1), (5) converges in probability to the global minimum of f(x) 
only if simulated annealing algorithm (1), (2) converges in probability to 

the global minimum of f(x). (Constants rand L are in the definition of 
Theorem 1). 
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The proof of Theorem 2 follows from the papers of Senkiene (1994), 

Senkiene (1996) and Gelfand and Mitter (1989). 
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APIE VIEN1\ FUNKCIJOS, STEBIMOS SU TRIUKSMU, 

OPTIMIZACIJOS ALGORITMJ\ 

Elvyra SENKIENE 

Straipsnyje nagrinejamas vienas globalines optimizacijos algoritmas funkcijos mini­
mumui surasti vadinamas "simulated annealing" algoritmu. Optimizuojama funkcija ~ia 

yra diskretine ir stebima su triuk~mu. 


