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Abstract. Queueing systems with a single device are well developed (see, for exam
ple, Borovkov, 1972; 1980). But there are only several works in the theory of multiphase 
queueing systems in heavy traffic (see Iglehart, Whitt, 1970b) and no proof of laws of 
the iterated logarithm for the probabilistic characteristics of multiphase queuing systems 
in heavy traffic. The law of the iterated logarithm for the waiting time of a customer 
is proved in the first part of the paper (see Minkevi~ius, 1995). In this work, theorems 
on laws of the iterated logarithm for the other main characteristics of multiphase queu
ing systems in heavy traffic (a summary queue length of customers, a queue length of 
customers, a waiting time of a customer) are proved. 
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1. Introduction. One can apply limit theorems to the waiting time of a 
customer and queue length of customers in order to get probabilistic charac
teristics of multiphase queueing systems (MQS) under various conditions of 
heavy traffic (see Borovkov, 1972; 1980). A single-phase case, when intervals 

of times between the arrival of customers to queue are independent identically 
distributed random variables, and there is a single device, working indepen
dently of output in heavy traffic, is competently investigated in many works 

(see, for example, Borovkov, 1980; Iglehart, 1973 and etc.). Iglehart (1971a) 

carefully investigated a single-device case and obtained the law of the iterated 
logarithm (LIL) for the single device case. It is a pity, that fundamental Igle

hart's results in the queueing systems theory in heavy traffic are rarely used 
(see Iglehart, 1965-1973). 

There are only a few works in the theory of MQS in heavy traffic (see, for 
example, Iglehart, Whitt, 1970b; Minkevicius, 1991; 1995) and no proof of LIL 
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for the probabilistic characteristics of MQS in heavy traffic. LIL for a summary 

waiting time of a customer and a waiting time of a customer is proved in the 

first part of the paper (see Minkevicius, 1995). 

In this work, theorems on laws of the iterated logarithm for the other main 

characteristics of MQS in heavy traffic (a summary queue length of customers, 

a queue length of customers, a waiting time of a customer) are proved. 

The main tools for the analysis of MQS in heavy traffic are functional LIL 

for a Wiener process and a renewal process (proof can be found in Strassen, 

1964 and Iglehart, 1971a). 

We submit some definitions from the theory of metric spaces (see, for ex

ample, Billingsley, 1965, Chapter 2). 

Let C is be a metric space consisting of real continous functions in [0,1] 

with a uniform metric p(x, y) = sUPO~t~l Ix(t) - y(t)l, x, y E C. 

Also, let D be a space of all real-valued right-continuous functions in [0,1] 

having left limits and endowed with the Skorokhod topology induced by the 
metric d (under which D is complete and separable). 

Define 1) as a Borel set in D. Also define k(8) as a set of absolutely 

continous functions x E C such that x(O) = 0 and Jo1 [x(t}F dt ~ 82, where x 
is a derivative of x, which exists almost everywhere according to the Lebesque 

measure. Strassen (1964) showed that k( 8) was a compact set and for x E k( 8) 
and 0 ~ a ~ b ~ 1 

Ix(b) - x(a)1 ~ 8(b - a)1/2. 

2. Problem formulation. We investigate here a k-phase MQS (i.e., when a 

customer is served in the j-th phase of the MQS, he goes to the j + 1st phase 

of the MQS, and after the customer is served in the k-th phase of the MQS, 

then he leaves the MQS). Let us note tn as time of arrival of the n-th customer; 

S~) as the service time of the n-th customer in the j-th phase of the MQS; 

Zn = tn+l - tn. Let us introduce mutually independent renewal processes 

Xj(t) = {maxk: 2:~=1 S~j) ~ t} (such a total number of customers can be 

served in the jth phase of the MQS until time t if devices are working without 

time wasted), e(t) = {maxk: 2:;=1 Zj ~ t} (total number of customers which 

arrive to MQS until time moment t). Next, denote by Tj(t) the total number 

of customers after service departure from the jth phase of the MQS until time 

t; Q i (t) as the queue length of customers in j-th phase of the MQS at time 
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moment t; Vj(t) = L:{=l Qi(t) stands the summary queue length of customers 

until the j-phase of the MQS at time moment t, j = 1,2, ... , k and t > O. 

Suppose that the queue length of customers and a virtual waiting time of 

a customer in each phase of the MQS are unlimited, the discipline service of 

customers is "first come, first served" (FCFS). All random variables are defined 

on one common probability space (n, F, P). 
Let interarrival times (zn) to the MQS and service times (s~)) in every 

phase of the MQS for j = 1,2, ... , h be mutually independent identically 

distributed random variables. 

Let us define I1j = (Esij))-l, 110 = (Ezd-1, aj = 110-l1j, ao = 0, uJ = 
DSU)(ES1)-3 0 ~2 D (E )-3 0 -2 ~2 ~2 2 ~2 ~2 

1 1 >,0'0 = Zl Zl >, O'j = 0'0 +aj, O'j = aj +O'j_1' 

3:j(t) = e(t) - Xj(t), j = 1,2, ... , k. 

Assume the following condition to be fulfilled 110 > 111 > ... > 11k > O. 

Then 

(1) 

One of the main results of the work is a theorem on LIL for the summary 

length of customers. 

Theorem 1. If condition (1) is fulfilled, then 

p( lim Vj("!J - art = 1) = 1 
t .... oo 0" a(t) 

and 

( I· Vj(t) - art 1) 1 P 1m = - = 
t-=:OO (;. a(t) 

for j = 1,2, ... ,k and a(t) = J2tlnlnt. 

Proof. In MinkeviCius (1991) relations 

are obtained for j = 1,2, ... , k and It (x(. )) = x(t) - info~.~t :(8). 

(2) 

(3) 

(4) 
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In view of (4) we have Vj(t) = Xj(t) - info~s~t(Xj(s) - Vj_1(S» for 

j = 1,2, ... , k and vo(') == O. 

Next, using (2) and (3), we obtain Tj(t) = Tj_1(t) - Qj(t) = Xj(t) + 
info~.~t( Tj -1 (s) - Xj( s)) for j = 1,2, ... , k and To(t) = e(t). 

Thus, 

Xj(t) - Tj(t) = sup (Xj(s) - Tj_1(S)) 
o~.~t 

= sup (Xj(s) - Xi-1(S») + sup (Xj_1(V) - Tj_2(V») 
O~s~t o~v~. 

k 

~ L { sup (x;(s) - X;_1(S») } 
;=1 o~.~t 

k 

= L { sup (Xi_1(S) - x;(s») } 
;=1 o~.~t 

for j = 1, 2, ... , k. 
From (2) and (5) we get 

j j 

Vj(t) = LQ;(t) = L {Ti-1(t) - Ti(t)} 
;=1 ;=1 

= e(t) - Tj(t) = e(t) - Xj(t) + Xj(t) - Tj(t) 
k 

(5) 

~ Xj(t) + L { sup (Xi-1(S) - x;(s») }. (6) 
i=1 O",.~t 

Since for any j (j = 1,2, ... , k) 

Vj(t) = e(t) - Tj(t) ~ e(t) - Xj(t) 
k 

= Xj(t) ~ Xj(t) - L { sup (Xi-1(S) - x;(s») }, 
;=1 O",.",t 

we have from (5) following estimate 

Suppose vJ(t) = (Vj(nt) - Q:j'nt)/a(n) and xJ(t) = (e(nt) - xj(nt)
Q:j'nt)/a(n) for j = 1,2, ... ,k. 
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By virtue Corollary 2.1 in Iglehart (1971a) for any fixed j {xj, n ~ 3} there 

is a relatively compact set in (V, D), and the set of its limit points is consides 

with k(uj). Then, in view of inequality (7) the family {vj(t), n ~ 3} is also 

a relatively compact set, and the set of its limit points is consides with k(uj). 
Hence we prove 

( - v'(1) - Q:··1 ) P lim J _ J = 1 = 1 and 
t-oo (J'. a(1) 

( . Vj(t)-Q:j't ) . 
P hm _ () = -1 = 1, J = 1,2, ... , k. 

t-oo (J" a t 

(8) 

The proof is complete. 

The theorem on LIL for the queue length of customers is proved similarly 

as Theorem 1. 

Theorem 2. If condition (2) is fulfilled, then 

p( lim Qj(t) - (Q:j - Q:j-d·t = 1) = 1 
t-oo (J'j' a(t) 

and 

P(limQj(t)-(Q:j-Q:j_l)·t=-I) =1, for j=I,2, ... ,k. 
t-oo 

Proof. It follows from (7) that 

IQj(t) - (Xj(t) - Xj_l(t))1 ~ IVj(t) - Xj(t)1 + IVj-l(t) - Xj_1(t)1 

~ 2{ t sup (Xi-l(S) - Xi(S))} for j = 1,2, ... , k. (9) 
i=1 O~$~t 

Define a family of random functions as Qj(t) = (Qj (nt)-(Q:j-Q:j -1)' nt)j 
a(n) and 13j(t) = xj(nt) - Xj_1(nt) for j = 1,2, ... , k and n ~ 3. 

Further proof of Theorem 2 is analogous to the proof of Theorem 1. The 

proof is complete. 

REMARK. The results of Iglehart (1971a) in a single-device case follow 

from Theorem 2. 

Finally, we will prove the theorem on LIL for the virtual waiting time of a 

customer. 

Definitions of the random variables tn,zn,S}/),e(t),xj(t) and Xj(t) for 

j = 1, 2, ... , k are the same as in the proof of Theorem 1 and Theorem 2. 
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Le d fi ~ ESU) ~ E - DS(j) 0 - D 0 t us e ne aj = l' 0'.0 = Zb (1j = 1 > , (10 = Zl > , 
2 - (~ )-1 + - (~ )-3~3 0 2 0 (3~ ~ /~ 1 ~ qj = (1j aj (1j-1 aj-l aj > , qo = , j = aj aj-1 - lor 

j = 1,2, ... ,k. 
Assume that condition (1) is fulfilled. Therefore, 'jjj > 0 for j = 1, 2, ... , k. 
Also, let us define Wj(t) as a virtual waiting time of a customer in the j-th 

phase of the MQS at time t (time, one must wait until a customer arrives to the 

j-th phase of the MQS to be served at time t); denote Sj (t) as the time, which 

is the summary service of customers, arriving at customers, arriving at the jth 

phase of the MQS until time t for j = 1,2, ... , k and t > O. 

Note that Sj (t) = L:;~1' (t) S~j) for j = 1,2, ... , k and t > O. 
Also, let 

Yj(t) = Sj(t) - t, 

It (y(- )) = y(t) - inf y(s), 
o~.~t 

Xj_l(t) 

Yj(t) = L srj) - t, 
;=1 

Wj(t) = It (Yj(· ), 

xo(t) = e(t) for j = 1,2, ... , k and t > O. 

If Sj(O) = Wj(O) = 0, then 

Wj(t) = It(Yj(·)) for j = 1,2, ... , k and t> 0 (10) 

(see Borovkov, 1972, p. 41). 

Theorem 3. If condition (1) is fulfilled, then 

p( lim Wj(t) - gjt = 1) = 1 
t-oo qr a(t) 

and 

P(lim Wj(t) (fjt =-1) =1 for j=I,2, ... ,k. 
t:::OO qr a t 

Proof. Denote a family of random functions as 

yj(t) = (Yj(nt) - 'jjj. nt)/a(n), 

ilJ(t) = (Yj(nt)-'jjj"nt)/a(n), 

wj(t) = (wj(nt) -~. nt)/a(n), 

wj(t) = (ill.i (nt) - jjr nt) / a(n), 

(11) 
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for j = 1,2, ... ,k and n ~ 3. 

Analogously as Strassen (1964) and Iglehart (1971a) we prove the functional 

LIL for a compound renewal process: the family {Yj(t), n ~ 3} is a relatively 

compact set, and the set of its limit points is consides with k( qj) for j 
1,2, ... , k. 

However, 

IWj(t) - Wj(t)1 ~ 2 sup IYj(s) - Yj(s)1 for j = 1,2, ... , k. (12) 
O~s~t 

Therefore, making use of (12), we can get 

d(w'], ilJ) ~ p(w'], W']) + p(w'], ilJ) ~ 2p(y'], ilJ) + p(w}, ilJ) 
= 2{ sup IYj(s) - Yj(s)l/a(n)} + { sup (-Yj(s»/a(n)} (13) 

O~s~n O~s~n 

for j = 1,2, ... ,k. 

Note that {suPo~s~n(-Yj(s»/a(n)} ~ 0, and according to the ~w of 

large numbers for the compound renewal process 1imt_oo( -l/j (t» = -!3j < 0 
almost everywhere for j = 1,2, ... , k. Thus, similarly as in Iglehart (1971,a) 

we can prove that the second term in (13) also tends to zero. 

Now we prove that the first term in (13) also tends to zero. 

We get 

"';_I(S) 

p(yj, ilJ) = sup IYj(s) - yj(s)l/a(n) = sup L S~j) /a(n) 
O~.~n O~.~n I=T;_1 (I) 

~ sup {"';I:') (S}j)-Oj)}/a(n) 
O~I~n I=T;_I(I) 

+ OJ sup (Xj_l(S) - Tj_l(s»)/a(n) 
O~I~n 

+ oj" sup (Xj_1(S) - Tj-l(S»/ a(n) for j = 1,2, ... , k. (14) 
O~s~n 

&timate (5) implies that 
Ie 

o ~ sup (Xj_l(S) - Tj_1(S») ~ L { sup (Xi-1(S) - Xi(S»)} (15) 
O~I~t ;=1 O~I't 

for j = 1,2, ... ,k. 
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Using estimate (15), we prove that the second term in (14) also tends to zero. 

It follows from (5) that 

o ~ sup (Xj-1 - 7j_2(S)) ~ sup (Xj_1(S) - Xj_2(S)) 
O~$~t O~s~t 

k+1 

+ sup (Xj_2(S) - 7j_2(S)) ~ L { sup (Xj_1(S) - Xj_2(S)) } 
O~s~t j=2 O~s~t 

k 

= L { sup (Xj_1(S) - Xj(s))} for j = 1,2, ... , k. (16) 
j=l O~s~t 

Note that 

1 
sup xj(nt).....,aj<oo for j=O,1,2, ... ,k 

n O~t~l 

almost everywhere (see Borovkov, 1980, p. 100). 

We will prove that 

tends to zero almost everywhere. Then, in accordance with the proof of Theo

rem 3.3 in Iglehart (1971a) the first term in inequality (14) tends to zero almost 

everywhere. 
Note that by (5) 

k 

~ L { sup (Xj_1(S) - Xj(s)) } /a(n) for j = 1,2, ... , k. 
j=l O~s~n 

Using O;j-1 - O;j < 0 for j = 1,2, ... , k and just like in (15), we prove 
that the first term in inequality (14) tends to zero. 

Thus, p(yj, flJ) tends to zero for j = 1, 2, ... , k. 
Finally, it follows from (13) that d( wj , flJ) also tends to zero (for j = 

1,2, ... ,k). 
Hence we obtain that family {wj, n ~ 3} is a relatively compact set, and, 

the set of its limit points is consides with k( qj) for j = 1, 2, ... , k. 
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Also similarly as in the proof of Theorem 1 we can prove 

and 

p( lim Wj(t) - /3rt = 1) = 1 
t-co qj' a(t) 

p(lim Wj(t)-(~j"t=_l)=l for j=1,2, ... ,k. 
t-=OO qr a t 

The proof is complete. 
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3. Concluding remarks. The theorems of this work are proved for a class of 

MQS in heavy traffic with the service discipline "first come, first served", end

less waiting time of a customer in each phase of the queue, when times between 

arriving customers to MQS are independent identically distributed random vari

ables. However, similar limit theorems can be applied to a wider class of MQ S 

in heavy traffic: when arrival and service of customers in a queue is by group, 

when times between the arriving customers to the MQS are independent and 

weakly dependent random variables, etc. 

The author thanks prof. Br. Grigelionis and prof. K. Kubilius for valuable 

and helpful advice and remarks on this and other topics. 
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APIE KARTOTINIO LOGARITMO DESNI DAUGIAFAZESE 
MASINIO APTARNA VIMO SISTEMOSE. IT 

Saulius MINKEVICIUS 

{rodyti kartotinio logaritrno desniai surniniam parai~kq ilgiui. parai§kq eUes Ugiui it 
virtualiniam laukimo laikui daugiafazese masinio aptarnavimo sistemose. 


