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Abstract. Statistical ,properties are examined for a class of pipelined-block linear 
time-varying (LTV) and linear time-invariant (LTI) discrete-time systems. Pipelined­
block equations are derived, using the general solution of LTV discrete-time system in 
state space. Afterwards, we analysed the state covariance and output covariance matrices 
of pipelined-block LTV and LTI discrete-time systems in state space. For this class of 
pipelined-block realizations expressions are found for calculation of characteristics of 
the roundoff noise. Finally, scaling in the pipelined LTV discrete-time systems in state 
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1. Introduction. Pipelining and block processing are two of several algo­

rithmic transformation techniques that can be used to exploit the concurrency 

within a digital signal processing algorithm to improve its operating speed 

(Lucke and Parhi, 1994). Pipelining (Chung and Parhi, 1994; Parhi and Messer­

schmitt, 1989b; Lucke and Parhi, 1994; Parhi and Messerschmitt, 1989c; Jump 

and Ahuja, 1978; Cappello and Steiglitz, 1983; Lim and Lui, 1992) increases 

the speed of a system at the expense of latency. Block processing (Parhi and 

Messerschmitt, 1989a; Burrus, 1971; Barnes and Shinnaka, 1980a; Azimi­

Sadjadi and King, 1986; Azimi-Sajadi and Rostampour, 1989; Nikias, 1984) 

is a form of parallel processing which transforms a scalar system into a block 

system. Block processing has been applied to numerous areas in digital signal 

processing (Burrus, 1971; Meyer and Burrus, 1976; Lu et al., 1985; Barnes 
and Shinnaka, 1980a) and control (Khorasani and Azimi-Sadjadi, 1987). This 
is, to a great extent, due to its advantages in performing parallel processing 
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with an increased throughput rate, increased computation efficiency, reduced 

roundoff error, and sensitivity performance (Burrus, 1971; Meyer and Burrus, 

1976; Barnes and Shinnaka, 1980a). 

When systems are implemented on general-purpose computers or with spe­

cial-purpose hardware, numbers are represented by a sequence of finite word­

length binary digits. Finite wordlength representation of numbers causes in­

accuracies of system coefficients, rounding or truncation after multiplication, 

and overflow of addition. Furthermore, rounding, truncation, and overflow 

cause undesirable oscillations in recursive digital systems. The effects of the 

quantization of digital systems can be classified as roundoff noise, coefficient 

sensitivity, and limit cycles, all of which deteriorate system performance. The 
problems of quantization effects have received a great attention for the second­
order direct form realization, since it is the basic section used in high-order 

cascade and parallel forms with low roundoff noise and low coefficient sensi­
tivity. Quantization effects are well reviewed in (Liu, 1971; Oppenheim, 1972; 

Claasen et al., 1976). 

Synthesis of digital systems with respect to quantization effects is an im­
portant problem, since quantization effects depend on system structures. It is 

well known that the state space approach is the most effective method that can 
be used to find the optimum structures for narrow-bandwidth filters (Hwang, 

1976, 1977; Mullis and Roberts, 1976; Jackson et a!., 1979; Barnes, 1979). 

One disadvantage of the state space approach is that the resultant structures 

require more mUltipliers than the direct forms. However, this does not always 

mean a demerit of the state space approach in practical applications (Kawamata 

and Higuchi, 1985). While most of the literature dealing with quantization 

effects in state space digital systems have studied roundoff noise and limit 

cycles, the output error due to the coefficient quantization has not yet been 

analysed in a state space fonnulation for pipelined-block systems. 

In Section 2, using the general solution of LTV discrete-time systems in state 

space, we got pipelined-block equations. In Section 3, we derived general ex­

pressions of state covariance and output covariance matrices for pipelined-block 

LTV discrete-time systems in state space. Roundoff noise in pipelined-block 

LTV and LTI discrete-time systems in state space is considered in Section 4. 
Finally, in Section 5, we have analysed scaling in the LTV discrete-time systems 
in state space. 
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2. Pipelined-block LTV discrete-time state space model. We derive here 

equations for pipelining and block processing of LTV, LP1V, and LTI discrete­

time systems in state space. 

Consider an LTV discrete-time system described by 

x(k + 1) = A(k)x(k) + b(k)u(k), (la) 

y(k) = cT(k)x(k) + d(k)u(k), k = 0, 1,2, ... , (lb) 

where the state x(k) is N x 1, the state update matrix A(k) is N x N, b(k) 
and c(k) are N x 1; d(k), the input sample u(k) and the output sample y(k) 
are scalars, and N is the order of the system. 

The solution of the dynamic equation (la) is given by Chui and Chen (1991) 

n-1 

x(n) = F(n, k)x(k) + L F(n,j + l)b(j)u(j), n = 0,1,2, ... , (2) 
j=k 

where for the N x N state transition matrix F(n, k) the following relationships 

F(n, n) = IN, and F(n + I, k) = A(n)F(n, k) (3) 

hold. 

From Eq. 3, we get 

F(k + 1, k) = A(k), F(k + 2, k) = A(k + I)A(k), 

so 

n-k n-j-l 

F(n, k) = II A(n - i), and F(n,j + 1) = II A(n - i). (4) 
;=1 ;=1 

Substituting x(n) from (2) into (lb), we have 

y(n) =cT(n)F(n, k)x(k) 
n-l 

+ L cT(n)F(n,j + I)b(j)u(j) + d(n)u(n), n = 0, 1,2, ... (5) 
j=k 
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Substituting n = kM + M and k = kM, k = 0,1,2, ... , where M is the 

pipelining level, into (2), we obtain 

x(kM + Af) = F(kM + M, kM)x(kM) 
kM+M-1 

+ L F(kM + M,j + l)b(j)u(j) 
j=kM 

=F(kM + M, kM)x(kM) 
M 

+ L F(kM + M, kM + j)b(klvI + j - l)u(kM + j - 1), (6) 
j=l 

where 

M 

F(kM + M,kM) = II A(kM + M - i), 
;=1 

M-j 

F(kM + M,kM + j) = II A(kM + M - i). 
;=1 

Then we get from (6) the state equation of a pipelined LTV discrete-time system 

in matrix form: 

x(k + 1) = A(k)x(k) + f3(k)u(k), k = 0,1,2, ... , (7) 

where the N x N matrix A( k) is defined by 

M 

A(k) = II A(kM + M - i). 
i=l 

The N x M matrix f3( k) is defined by 

in which 

M-j 

Bj = II A(kM + M - i)b(kM + j - 1), j = 1,2, ... , M -1, 
;=1 

BM = b(kM + M - 1), 

u(k) = [u(kM), u(kM + 1), ... , u(kM + M - 1)]T , 

x(k) = x(kM), x(k + 1) = x [(k + l)M]. 

(8) 

(9) 
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Substituting n = kM + i. and k = kM. k = 0, 1,2, ...• i = 0,1, ... , M - 1 
into (5). we obtain 

or 

where 

y(kM + i) =cT (kM + i)F(kM + i, kM)x(kM) 
kM+i-l 

+ L cT(kM + i)F(kM + i,j + l)b(j)u(j) 
j=kM 

+ d(kM + i)u(kM + i), i = 0,1, ... , M - 1, 

y(kM + i-I) = cT (kM + i - l)F(kM + i-I, kM)x(kM) 
i 

+ L cT(kM + i -1)F(kM + i -1, kM + j)b(kM + j - 1) 
j=1 

x u(kM + j - 1) + d(kM + i - 1)u(kM + i-I), (10) 

i = 1,2, ... ,M, 

i-1 i 

F(kM + i-I, kM) = II A(kM + i - j - 1) = II A(kM + i - j), 
. j=1 j=2 

and 

i-j-1 i-j 

F(kM+i-1,kM+i)= II A(kM+i-I-1)=IIA(kM+i-l). 
'=1 1=2 

Then from (10) we get the output equation of pipelined-block LTV discrete-time 

system in matrix form: 

y(k) = C(k)i(k) + b(k)u(k), k = 0,1,2, ... , (11) 

where the M x N matrix C(k) is defined by 

C(k) = [C1, ... ,Cj"",CMf, 

in which 

C1 = cT(kM), 
j 

Cj = cT(kM + i-I) II A(kM + i-i), i = 2,3, ... , M. 
j=2 

, (12) 
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The M x M matrix D( k) is defined by 

fJ(k) = [dij] , i,j = 1,2, ... , M, 

in which 

djj=O, ifi<j; 

djj = d(kM + i-I), if i = j; 

djj=cT(kM+i-1)b(kM+j-1), ifi=j+1; 
i-j 

(13) 

dij = cT (k M + i-I) IT A (k M + i - l)b( k M + j - 1), if i > j + 1; 
1=2 

y(k) = [y(kM), y(kM + 1), ... , y(kM + M - l)f . 

For LPTV discrete-time systems, A( k), b( k), cT (k), and d( k) are L-periodic, 
i.e., A(k + L) = A(k), b(k + L) = b(k), cT(k + L) = cT(k), and d(k + L) = 
d( k). In case the pipelining level M is equal to the periodicity L of a LPTV 

system, we get, from Eqs. 8 and 9, simpler expressions for calculating matrices 

A(k) = A and .8(k) = .8 
L 

A = IT A(L - i), 
i=1 

in which 
L-j 

Bj = IT A(L - i)b(j - 1), j = 1,2, ... , L - 1, 
;=1 

BL = beL -1). 

(14) 

(15) 

In the case the periodicity is equal to the block size, for the LPTV discrete­

time system, we obtain simpler expressions for calculating C ( k) = C, and 

D(k) = D. Then, using Eqs. 12 and 13, we get 

(16) 

in which 

; 

OJ = cT(i - 1) IT A(i - j), i = 2,3, ... , L, 
j=2 
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and the L x L matrix 

in which 

dij = 0, if i.< j; 

dij = d(i - 1), if i = j; 

dij = eT (i - 1 )b(j - 1), if i = j + 1; 
i-j 

dij =eT (i-l)IIA(i-l)b(j-l), if i>j+l. 
1=2 

(17) 

Eq. 7 with matrices (8) and (9) can be used for pipelining of the Nth order 

LTV discrete-time system and Nth order LP1V discrete-time system with an 

arbitrary pipelining level M. In expressions (12) and (13) M is the block size, 

which is not the same (or may be the same) as the periodicity L of the LP1V 

discrete-time system. 

For LTI discrete-time systems, A( k) = A, b( k) = b, eT (k) = eT , and d( k) = 
d. Hence, matrices (14), (15), (16), and (17) are of the forms, respectively 

in which 

A(k)=A=AL, 
- - [L-1 ] B(k) = B = A b, ... ,Ab,b , 

- - [T T T L-1]T C(k)=C= e,e A, ... ,e A , 

fJ(k) = fJ = [dij], 

dij = 0, if i < j; 
dij = d, if i = j; 
dij = eT b, if i = j + 1; 

dij = eT A i-j- 1b, if i > j + 1. 

(18) 

(19) 

(20) 

(21) 

3. Statistical characteristics of pipe lined-block LTV discrete-time systems 

in state space. Consider a pipelined-block LTV discrete-time system in state 

space described by 

x(k + 1) = A(k)x(k) + B(k)u(k) + v(k), (22a) 

y(k) = C(k)x(k) + b(k)u(k) + w(k), k = 0,1,2, ... , (22b) 
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where A(k), f3(k), C(k), and D(k) are N x N, N x M, M x N, and M x M 
matrices defined in (8), (9), (12), and (13), respectively; x(k + 1) = x[(k + 
l)M), x(k) = x(kM), u(kM) = [u(kM), ... , u(kM + M - 1)]T, y(kM) = 
[y(kM), ... , y(kM +M -1)]T; v(k) and U:'(k) are N x 1 and M x 1 zero-mean 

white noise vectors, respectively. For noise vectors, it holds E[v(n)vT(m») = 
K v(n)c5(n - m), E[v(k») = 0; E[w(n)wT(n») = K w(n)c5(n - m), E[w(k») = 
0, where E is the expectation; c5(n - m) = 1, if n = m and c5(n - m) = 0, if 

n::pm. 

3.1. State covariance matrix. The solution of state equation (22a) is given 

by 

n-1 

x(n) =11>(n, ko)x(ko) + L l1>(n, k + l)f3(k)u(k) 

n-1 

+ L l1>(n,k+ l)v(k), n = 0,1,2, ... , (23) 
k=ko 

where 

n-ko n-k-1 

l1>(n, ko) = II .4(n - i), l1>(n, k + 1) = II A(n - i), 
;=1 ;=1 

x(n) = x(nM), x(ko) = x(koM). 

The expected mean value of the state variable x(n) is as follows: 

n-1 

E [x(n)] = l1>(n, ko)E [x(ko») + L l1>(n, k + l)f3(k)u(k). (24) 
k=ko 

Subtracting (24) from (23), we get 

n-l 

i (n) = l1>(n, ko) i (ko) + L: l1>(n, k + l)v(k), 
k=ko 

where 
o 
x (n) = x(n) - E [x(n)]. 
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Assume, that initial values E[i(ko)] and Rz(ko) = E[ £ (ko) £ T(ko)] are 

known; the state i(ko) and the noise vector are uncorrelated. In this case the 

expression of the state variables covariance matrix is given by 

[ 
0 0 T T 

=E ~(n,ko)i (ko)i (ko)~ (m,ko) 

+ ~(n, ko) £ (ko) (E vT (k)~T (m, k + 1)) 
k=ko 

+ (I: ~(n, k + l)V(k)) i T(ko)~T(m, ko) 
k=ko 

+ I: E ~(n, k + l)v(k)vT(l)~T(m, I + 1)]. 
k=ko I=ko 

Under the assumption that the vectors x( ko) and ii( m) are uncorrelated, the 
state covariance matrix can now be expressed as 

!{z(n, m) =~(n, ko)Rz(ko)~T (m, ko) 

n-l m-l 

+ L L~(n,k+1)!{ii(k)8(k-l)~T(m,1+1). (25) 
k=ko l=ko 

It follows from (25) that the state covariance matrix is given by 

!{z(n, m) =~(n, ko)Rz(ko)~T (m, ko) 
m-l 

+ L ~(n, k + l)J{ii(k)~T (m, k + 1), if n > m, (26a) 
k=ko 

!{z(n, m) =~(n, ko)Rz(ko)~T (m, ko) 
n-l 

+ L~(n,k+1)J{ii(k)~T(m,k+1), if n<m, (26b) 
k=ko 

!{z(n, n) =~(n, ko)Rz(ko)~T (m, ko) 
n-l 

+ L ~(n, k + l)J{ii(k)~T(n, k + 1), if m = n. (26c) 
k=ko 
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For thepipelined LT! discrete-tinie system A(n) = A = AM, B(n) = B = 
[AM - 1b, ... , Ab, b] and 

n-ko 
~(n,ko)= II A(n_i)=An-ko=PAn-koS, (27) 

i=l 

where A is an N x N diagonal matrix A = diag(A1, ... , AN) in which Ai are 

eigenvalues of the matrix A, P is an N x N matrix which is formed of the 

right row eigenvectors of the matrix A, S is an N x N matrix which is formed 

of the left row eigenvalues of A. 
Assuming ko = 0 and substituting (27) into (26), one can show that 

Rr(n) =PAnSRr(O)ST An pT 
n-1 

+ L: PAn- k- 1S/{fjsT An- k- 1p T , 
k=O 

/{r(n, m) =PAnSRr(O)ST Am pT 
m-1 

(28a) 

+ L PAn- k- 1SKfjST An-k-1pT , if n> m, (28b) 
k=O 

/{r(n, m) =PAnSRr(O)sT Am pT 
n-1 

+ L:PAn-k-1SI<fjsTAn-k-1pT, if n<m. (28e) 
k=O 

Using expressions (3), we can write 

~(T1, n) = IN, ~(n + 1, n) = A(n), and 

~(n + 1, m) = A(n)<P(n, m). (29) 

Then, from (26) and (29), we have recursive equations for calculating the state 
covariance matrix 

I<r(n + 1, m) = A(n)I<r(n, m), if n > m, (30a) 

Kr(n, m + 1) = K~(n, m)AT(m), if n < m, (30b) 

Rr(n, n) = A(n - I)Rr(n - I)AT(n -1) + Kfj(n - 1), (30e) 

R.f(O) = o. 
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So the state covariance matrix is computed in two steps: 1) using (30c), 

we compute Rx(n, n); 2) keeping in mind, that /{x(n, n) = Rx(n), we solve 
(30a) and (30b). 

For stable pipelined LTf discrete-time system in a steady state (i.e., n, m -+ 

00) define n - m = I. Then, from (30), we get 

/{.r(l + 1) = A/{x(l), if I> 0, 

/{x(l-I) = /{x(l)AT, if 1 < 0, 
- -T Rx = ARxA + /{fj, /{x(O) = Rx. 

(31a) 

(31b) 

(31c) 

3.2. Output covariance matrix. Substituting (23) into (22b), we have 

n-1 

y(n) =C(n)~(n, ko)x(ko) + L C(n)~(n, k + I)B(k)u(k) 
k=ko 

n-1 

+ L C(n)~(n, k + l)ii(k) + D(n)u(n) + w(n), (32) 
k=ko 

n = 0,1,2, .... 

The expected mean value of the output ii( n) is defined by 

E [y(n)] =C(n)~(n, ko)E [x(ko)] 
n-1 

+ L C(n)~(n, k + I)B(k)u(k) + D(n)u(n). (33) 
k=ko 

Subtracting (33) from (32), we get 

o _ 0 

y (n) =ii(n) - E [y(n)] = C(n)~(n, ko) x (ko) 

n-1 

+ L C(n)~(n, k + l)v(k) + w(n), (34) 
k=ko 

where 
o 
x (ko) = x(ko) - E [x(ko)]. 
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The output covariance matrix is given by 

Kg(n,m) =E [~(n)~T(m)] 

=E [C(n)<p(n, ko) i (ko) i T (kO)<pT (m, ko)CT (m) 

m-l 

+C(n)<p(n,ko)i (ko) L: vT(k)<pT(m,k+ l)CT(m) 
k=ko 

+ C(n)<p(n, ko) i (kO)wT (m) 

+ ( I: C(n)<p(n, k + l)V(k») iT (ko)<pT (m, ko)CT (m) 
k=ko 

n-l m-l 

+ L: L: C(n)<p(n, k + l)v(k)vT (l)<pT (m, I + l)CT (m) 
k=ko 1=10 

+ ( I: C(n)<p(n, k + l)V(k») wT (m) 
k=ko 

+ w(n) iT (ko)<pT (m, ko)CT (m) 

+ ~(n) ~ vT(k)<pT(m, k + l)(Y(m) + w(n)wT(m)]. 

Under the assumption that the vectors x(ko), v(n), and w(n) are uncorrelated, 

the output covariance matrix can now be expressed as follows 

Kg(n, m) =E [c(n)<p(n, ko) i (ko) i T (ko)<pT (m, ko)CT (m) 

n-l m-l 

+ L: L: C(n)<p(n,k+ l)v(k)vT(I)<pT(m, I + l)CT(m) 
k=ko 1=10 

+ w(n)wT(m)] (35) 

- T-T =C(n)<P(n, ko)Rx(ko)<p (m, ko)C (m) 
n-l 

+ L: C(n)<p(n, k + l)Ku(k)<pT(m, k + l)CT(m) + Kw(n, m), 
k=ko 
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where 

n-ko n-k-l 

<P(n, ko) = II A(n - i), <P(n, k + 1) = II A(n - i), 
i=1 i=1 

ro . ° T ] R5J(ko) = E lX (ko) x (ko) , /{w(n,m) = E [w(n)u7(m)]. 

4. Roundoff noise in pipelined-block LTV discrete-time systems in state 

space. In digital discrete-time systems implemented with fixed point arithmetic, 

after multiplication of two numbers, the roundoff operation is performed through 

the limited register length. For recursive discrete-time systems, this roundoff 

can cause roundoff limit cycles, even though the discrete-time system is stable. 

In this section we shall statistically model the effects of the roundoff as 

stationary zero mean white noise. We shall derive general expressions for the 

autocovariance matrix of the roundoff noise in the vector output of pipelined­

block state space realization. 

We assume that the pipelined-block discrete-time system is stable, and the 

roundoff is performed only at the outputs of state variable summing nodes, and 

at the outputs of the summing nodes at the discrete-time system output. We 

model the effects of roundoff as stationary zero mean white noise sources. 

In the additive roundoff noise model, we can apply superposition and com­

pute contribution to output due to noise sources separately, Thus, we obtain 

the following equations as a model of the roundoff noise: 

x(k + 1) = A(k)x(k) + v(k), (36a) 

y(k) = C(k)x(k) + w(k), k = 0,1,2, ... , (36b) 

where A(k), C(k), x(k), y(k), v(k), and w(k) are the same as in (22). 

The solution of dynamic equation (36a) is given by 

n-l 

x(n) = <P(n, ko)x(ko) + I: <P(n, k + l)v(k), (37) 
k=ko 

or 

n-l 

x(n) = <P(n, ko)i(ko)+ I: <P(n, n-k)v(n-k-1), n = 0, 1,2, ... , (38) 
k=ko 
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where 

n-ko 

<I>(n, ko) = II A(n - i), 
i=1 

k 

<I>(n, n - k) = II A(n - i). 
i=1 

For the LTV discrete-time system A(n) is computed using (8), and for LP1V 

discrete-time system A(n) is computed using (14). 

From (36b) and (37), we have 

n-1 

y(n) = C(n)<I>(n, ko)x(ko) + L C(n)<I>(n, k + l)v(k) + w(n), (39) 
k=ko 

where for the pipelined-block LTV discrete-time system C( n) is computed 

using (12), and for LP1V discrete-time system C(n) is computed using (16). 

Since the white noise inputs are zero mean, then the mean of the vector 

output y( n) is given by 

E [y(n)] = C(n)<I>(n, ko)E [x(ko)]. 

By observing statistical independence of the white noise input and using (26) 

and (35), we obtain the autocovariance matrix Kg(n, m) of the roundoff noise 

y( n) of the pipelined-block LTV discrete-time system as follows: 

Kg(n, m) =E [(y(n) - E [y(n))) (Y(m) - E [y(m)]f] 
- T-T =C(n)<I>(n, ko)Rx(ko)<I> (m, ko)C (m) 

m-1 

+ L C(n)<I>(n,k+ l)Ku(k)<I>T(m,k+ l)CT(m) 
k=ko 

+ Kw(n, m), if n > m, 

,- T-T Kg(n, m) =C(n)<I>(n, ko)Rx(ko)<I> (m, ko)C (m) 
n-1 

+ L C(n)<I>(n, k + l)Kv(k)<I>T(m, k + l)CT(m) 
k=ko 

+ Kw(n, m), if n < m, 
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Kg(n, m) = Rg(n) =C(n)<p(n, ko)Ri'(ko)<pT (m, ko)CT (m) 
n-l 

+ L C(n)<p{n, k + l)I<ii(k)<pT(m, k + l)CT(m) 

+ Kw(n, m), if n = m, 

Rx{ko) = E[i (ko) i T(ko)] is the covariance matrix of the initial state. 

5. Roundoff noise in pipelined-block LTI discrete-time systems in state 
space. Substituting (38) into (36b), we get 

y(n) =C(n)<p(n, ko)x(ko) 
n-l 

+ L C(n)<P(n,n-k)v(n-k-1)+w(n), n=O,1,2, .... (40) 
k=ko 

For the pipelined-block LTI discrete-time system A(n) = A, C(n) = C, 

n-ko 

<P(n, ko) = II A(n - i) = A n-ko, (41) 
;=1 

and 
Ie 

<P(n, n - k) = II A(n - i) = A k. (42) 
;=1 

Substituting (41) and (42) into (40), we get roundoff noise y( n) of the pipelined­

block LTI discrete-time system as follows: 

n-l 

y(n) = cA n-kox(ko) + L cA kv(n - k - 1) + w(n), (43) 
k=k o 

where v(n) and w(n) are noise vectors with covariance matrices Kii = (721N' 

and Kw = (721M ' respectively. Since the white noise input is zero mean, the 

mean of the output y( n) is given by 

- - n-ko 
E [y(n)] = CA E [x(ko)]. 

If the discrete-time system is stable, then the steady state mean of the output 

converges to a zero vector E[Y( 00)] = O. By observing statistical independence 
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of the white noise input, using (43) and assuming ko = 0, we obtain the 

autocovariance matrix of the roundoff noise as follows: 

(44) 

where 

Rx(O) = E [(i(O) - E [i(O)]) (i(O) - E [i(O)])T] . 

The steady state output covariance matrix is defined by 

/{g(n - m) = /{g(n, m)ln_oo. 

Since the discrete-time system is stable, in the steady state the first term in (44) 

converges to a zero matrix. Thus we obtain the steady state autocovariance 

matrix of the roundoff noise as follows: 

/{g(n - m) = u2 [f OAk (A k)T OT + 1M ]. (45) 
k=O 

The block output is combined by a parallel-in, serial-out register to form a 
scalar output. Then the autocovariance function /{ y and the variance u~ of the 

roundoff noise at the jth output summing node are given by 

and 

respectively. 

/{y(nM + i, mM + j) = /{g(n, m)i+1.i+1, 

n,m=O,1,2, ... ; i,j=O,l, ... ,M-l, 

In the steady state the autocovariance function and the variance of the round­

off noise at the jth output summing node are given by Barnes and Shinnaka 

(l980b): 

and 

respectively. 

Ky(nM + i, mM + j) = /{g(n - m)i+1,j+1, 

u;(mM + j) = /{g(O)j+l,j+b (46) 
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So in the steady state, the autocovariance function of a roundoff noise in a 

pipelined-block implementation is periodic with period M. 
Substitution of (45) into (46) yields 

u;(mM + j) =u2 [t cA k (..4: kf CT + 1M] , (47) 
k=O I+IJ+l 

j = 0,1, ... , M - 1. 

For LTI discrete-time system, from (18), (20), and (47), we get the same result 

as in Parhi and Messerschmitt (1989c). 

u;(mM + j) =u2 [CAl ~ AkM (AkM)T (AI)T cT + 1], (48) 

j=O,l, ... ,M-1. 

Eq. 48 demonstrates that the steady state variance of the roundoff noise at the 

jth output in a pipelined-block implementation is periodic with period M. 
We define the average steady state roundoff noise variance at the outputs in 

a pipelined-block implementation by 

(49) 

Substituting (48) into (49), we have 

(50) 

For the state space realization of LTI discrete-time system, the roundoff 

noise variance at the scalar output is given by 

(51) 

However, 

M-l 00 00 

L L cAkM+i (AkM+i)T cT = LeAk (Ak)T cT + 1. (52) 
1=0 k=O k=O 
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Then, comparing (50) and (51), it can be observed, that in a pipelined-block 

implementation the average roundoff noise variance at the outputs is reduced 

by the factor M, the dimension of the input and the output vectors. 

6. Scaling in the pipelined LTV discrete-time systems in state space. In 

this section we shall introduce a scaling rule for the pipelined LTV discrete-time 

system in state space. 

In digital discrete-time systems implemented with fixed point arithmetic, 

overflow can occur during addition. In the state space realization, it is common 

to place dynamic range constraints on the states variable to control overflow. 

This procedure is called scaling. 

We scale a pipelined-block discrete-time system as follows: for stationary 

zero mean white noise vector input with the covariance matrix u~I, we require 

that each state variable variance U;i in steady state satisfies the inequality 

2 
U Xi 2 
-2 ~ I, i = 1,2, ... , N, 
Uu 

where I is a parameter that controls the overflow. 

(53) 

The variance ui, of the ith state variable Xi is the ith diagonal element of 

the covariance matrix of the state vector x. Then we are concerned with the 

properties of the state covariance matrix I<x(n, m). 
Let us consider the state equation with zero mean white noise block input 

u(k) of the pipelined LTV discrete-time system described by (7): 

x(k + 1) = A(k)x(k) + fJ(k)u(k), k = 0,1,2,.... (54) 

We assume that the system is stable. The solution of (54) is given by 

n-1 

x(n) = ~(n, ko)x(ko) + L ~(n, n - k)fJ(k)u(n - k - 1), 
k=ko 

where 

n-ko 

~(n, ko) = II A(n - i), 
i=1 

k 

~(n, n - k) = II A(n - i). 
;=1 
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The mean of the state vector x(n) is given by 

E [x(n)] = ~(n, ko)E [x(ko)]. 

The covariance matrix of the state vector x(n) is given as follows: 

/{x(n, m) =E [(x(n) - E [x(n)]) (x(m) - E [x(m)])T] 

=E [4>(n, ko) i (ko) i T(ko)4>T(m, ko) 

m-l 

363 

+ ~(n, ko) £ (ko) L uT(m - k - l)BT(k)~T(m, m - k) 

where 

k=ko 

n-l 

+ L ~(n,n-k)B(k)u(n-k-1)£T(ko)~T(m,ko) (55) 
k=ko 

n-l m-l 

+ L L ~(n, n - k)B(k)u(n - k -1) 
k=ko 1=10 

x uT(m -1- l)BT(l)~T (m, m -l)j 
=~(n, ko)/{x(ko)~T(m, ko) 

n-l 

+ O'~ L ~(n, n - k)B(k)jjT(k)~T(m, m - k), 
k=ko 

o 
x (ko) = x(ko) - E [x(ko)] . 

Since the discrete-time system is stable, for the steady state the first term on 

the right side in (55) converges to a zero matrix. Thus we obtain the covariance 

matrix of the state vector x in the steady state as follows: 

00 

/{x(n, m)ln ..... oo = O'~ L ~(n, n - k)B(k)BT (k)~T (m, m - k). 
k=ko 

Thus, for scaling the pipelined LTV or LPTV discrete-time system, we select 

A(k) and B(k) as follows: 

~i =[ f: ~(n,n-k)B(k)BT(k)~T(m,m-k)] .. ~1'2, (56) 
U k=ko U 

i = 1,2, .. . ,N, 
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where ui; is the steady state variance of the ith state variable. 

For thepipelined LTI discrete-time systems ...1(n) = A, B(n) = B, <I>(n, n-
k) = ...1(n -1) .. . ...1(n - k) = Ak. Assuming ko = 0, and using (56), we get 

~; = ["£...1kBBT(AT)k] .. ~'Y2, i=1,2, ... ,N. (57) 
U k=O II 

Therefore for scaling the pipelined LTI discrete-time system, we select A and 

13 from (57). 

7. Concluding remarks. This paper proposed a unified approach to the 

modeling of pipelined-block LTV discrete-time systems. Using the general 

solution of an LTV discrete-time system, we can get any form of a pipelined­

block LTV, LPTV, or LTI discrete-time system. Models of pipelined-block and 

scalar discrete-time systems in state space are of the same form. So, we derived 

the state covariance and output covariance matrices for pipelined-block models, 

using the ordinary way. Analysis of the roundoff noise error in pipelined state 

space digital systems shows, that the roundoff error strictly improves with an 

increase in number of pipeline stages. We assumed that the roundoff operation 

was performed at the output of the state variables and at the system outputs. 

The noise sources are assumed to be white stationary with zero mean and 
statistically independent of signals. The roundoff noise is nonstationary, and 

the maximal variance of the roundoff noise in a pipelined-block realization is 

never greater than the variance of the roundoff noise in the associated scalar 

state space realization. The effect of the pipelined-block structure is to reduce 

the internally generated roundoff noise. Pipelined-block realizations can result 

in reduced roundoff noise with the greatest reduction occuring in digital systems 

with poles near the unit circle. 
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KONVEJERINIQ-BLOKINIQ TIESINIQ KINTAMQ PARAMETRQ 

DISKRETINIQ SISTEMQ STATISTINES SAVYBES 

Kazys KAZLAUSKAS 

Nagrinejamos konvejerinitl-blokiniq tiesiniq kintamq parametrq diskretiniq sistemq 
statistines savybes. Konvejerines-blokines lygtys i~vedamos naudojant kintamq paramet­
f1.! diskretiniq sistemq biisenll erdves bendrllii sprendini. Analizuojamos konvejeriniq­
blokiniq kintamq ir pastoviq parametrq diskretiniq sistemll biisenq ir isejimo signalo 
kovariacines matricos. ISvestos israiskos apvalinimo triuksmams apskai~iuoti. Parodyta, 
kaip parenkamas konvejerinill kintamll parametrq diskretinill sistemq mastelis. 


