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Abstract. Efficiency of one automatic estimation and c1usterization procedure of 
one-dimensional Gaussian mixture which combines EM algorithm with non-parametric 
estimation is considered. The paper is based on mathematical methods of statistical 

estimation of a mixture of Gaussian distributions presented by R. Rudzkis and M. Ra­
davi~ius (1995). The main result of the implementation of the mathematical methods 
is completely automatic procedure which can start from no information about unknown 
parametet;.s and finish with final mixture model (tested for adequacy). 
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1. Introduction. Let {Xl, X 2, ... , X N } ~ X N be a sample of LLd. one­

dimensional random variables with a distribution density f which belongs to 

the class of Gaussian mixture densities 

q def ' 
f(x) = I:p;<P;(x) = fq(x, 8), (1) 

i=l 

where q E {I, 2, 3, ... }, Pi > 0, I: Pi = 1, <Pi is a Gaussian distribution density 

with mean Pi and variance a} , 8 = (pi, Pi, a} , i = 1, 2, ... , q) is a multidimen­

sional parameter. Let the unknown distribution density f(· , iJ) = h(' ,iJ) have 

ij components with unknown parameter iJ = (pi, jJi, jj}, i = 1,2, ... ,ij). Num­

ber of components ij may also be unknown. We suppose that all components 

of distribution density f(· ,iJ) are different: 'P::j:. 'Pj if i ::j:. j. 
We will consider the problem of estimating the unknown parameter iJ, in­

cluding the problem of determining the unknown number of components ij. 
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If number of components q is known (q = if), then the maximum likelihood 

estimate (MLE) 8* = arg maxg I( 8), where 

N 

1(8) = L1og!q(Xj,8), (2) 
j=l 

is an efficient estimate of B. If number of components is unknown, then we 

have an additional problem -- testing of model adequacy. 

The most common method for calculating MLE for Gaussian mixtures is 

so called EM (Expectation Maximization) algorithm. It is an iterative proce­

dure which converges to MLE if starting parameters are sufficiently close to 

8*. For mixture distributions the EM algorithm was proposed independently 

by Schlesinger (1965), Hasselblad (1966), and Behboodian (1970). By now 

the properties of the EM algorithm have been studied well enough. On the 

convergence properties of the EM algorithm see Wu (1983). Also see, e.g., 

monographs (Everitt and Hand, 1981; Aivazyan et at., 1989; McLacklan and 

Basford, 1988; Titterington et at., 1985). For further references see Rudzkis and 

Radavicius (1995). The popularity of the EM algorithm is explained by com­

putational stability and simplicity of implementation on a computer. MLE also 

can be calculated using common optimization methods (for example, conjugate 

gradient method, see the book Gill et at. (1985). 

Nevertheless, many problems arise estimating mixture density (1) using 

EM algorithm for calculating MLE. This algorithm is not robust if there are 

even small number of observations from some non-Gaussian mixture component 

added to mixture model (1). Function (2) has many local maxima, so if we start 

EM algorithm from some point too far from 8* , the EM algorithm converges to 

local maximum, not to the global one. Testing of model adequacy in the case 

of unknown number of components is also a complicated problem. 

This paper is based on mathematical methods of statistical estimation of a 

mixture of Gaussian distributions presented by Rudzkis and RadaviCius (1995). 

These methods include: adding background cluster to model (1), methods for 

selection of initial values for the EM algorithm, methods for joining components 

and methods for testing of model adequacy. The main idea of these methods 

is combining EM algorithm with non-parametric estimation. 

These mathematical methods were implemented on a computer using Bor­

land Pascal compiler. There are two implementations - one for one-dimensional 
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cac;e (briefly described below), second for multidimensional case. The imple­

mentation includes solutions of some other computational problems (for exam­

ple, reducing calculation time not loosing accuracy too much). The main result 

of the implementation (made with J. Susinskas in close cooperation with R. 

Rudzkis and M. Radavicius) was completely automatic procedure which can 

start from no information about unknown parameters and finish with final mix­

ture model (tested for adequacy). Step-by-step procedures are also available. 

In this section we list mathematical methods described.in Rudzkis and Ra­

davicius (1995) (we use slightly different notation because we consider only 

one-dimensional case) and briefly describe implementation of mathematical 

methods. Results of efficiency analysis are given in next section. In Jaki­

mauskas and Susinskas (1996) one can find much more detailed description, 
examples and some additional results of efficiency analysis. 

Sample classification. Problems of estimating the unknown parameter 

and sample. classification are closely related. For given distribution density 
fq (x, f) assignment of each X E X N to some of the distinct classes (i.e., 

subsets of X N) /{j, i = 1,2, ... , q, can be done using non-random classifi­
cation (for example, Bayes rule of classification) or randomized classification. 
Bayes rule of classification assigns an observation X E X N to the ith class 

if i = arg maxk=1,2, ... ,q Pkif!k(X), Randomized classification assigns observa­
tions X E X N (randomly and independently each of other) to the ith class with 

probability 

Piif!i(X) 
1Tj(X, B) = fq(X, B)' i = 1,2, ... , q. (3) 

Any rule of classification does not allow to get precise estimates of true classes 

because mixture density components of (I) overlap each other. Minimal mean 

classification error is achieved using Bayes rule of classification. Note that 

distribution densities which correspond to classes obtained using Bayes rule of 

classification in model (1) are truncated Gaussian densities and differ from true 

density components. 

EM algorithm. EM algorithm is the most common method for calculating 

the estimate B*. Suppose an initial parameter value BO is given (selection of BO 
will be discussed later). Next parameter value f)1 is defined by the following 
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equalities: 

N 

pl= ~L1ri(Xj,OO), i=1,2, ... ,q, 
j=1 

(4a) 

1 _ 1 ~ 1ri(Xj,OO)X. ' 
J.li - NL....J p9 J, i=I,2, ... ,q, 

j=1 I 

( 4b) 

( ?)1 = 2. ~ 1ri(Xj,OO)(X. _ 9)2 . 1 2 
(J'I N L.J 9 J J.l 1 , Z = , , ... , q. 

j=1 PI 

( 4c) 

Equalities (4) are the formulae of one iteration of EM algorithm. Next iteration 

begins with assigning obtained value of 01 to 0° and ends with recalculating 01 

using formulae (4) with changed classification rule (3). EM algorithm usually 

ends after some predefined number of iterations. It is known that (j values in EM 

algorithm converge to some local maximum of function (2). To achieve global 

maximum of (2) it is necessary to select initial parameter value 0° sufficiently 

close to 0*. 
Background cluster. The procedure of EM algorithm is more stable if we 

use an additional background (or noise) cluster for temporary calculations. We 

extend class definition in (1) by adding some non-Gaussian component. Then 

sample elements which can be hardly assigned to any of Gaussian clusters are 

assigned to additional noise cluster. At the end we return to model (1) by 

deleting noise cluster or replacing it by additional Gaussian component. 

Two methods of adding background cluster given below are based on non­

parametric estimate i supposed to be sufficiently close to the true density 

f(·,O). 
The first method is adding an uniform density component only on the set 

{x : /( x) > cu}, where Cu is some small positive value. We get the modified 

model 
q 

fq(x,O) = pouol{z:fcz»eu} (x) + LPilf'i(X), (5) 
i=1 

where Po ~ 0, Ll=o Pi = 1, Uo = l/Vol{x:!(x) > cu}. 
The second method is adding density component only on the set {x : i( x) > 

fq(x,O)} , where fq(x, 0) is defined by (1). We get the model 

I.(x,O) = C· ((1(x) - t,M;(X») + + t,p;~;(X») , (6) 
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where C is a norming constant, (. )+ denotes positive value. To get the modified 

EM algorithm (in both cases) we define non-Gaussian component Po'Po and add 

formulae with indices i = 0 in (3) and (4a). 

Non-parametric density estimate. One of the most simple and widely used 

non-parametric density estimates is kernel estimate with variable bandwidth 

h = h(x, XN) 

~ N 1 (x -X) 
f(x)=j;Nh W h J . (7) 

Selection of kernel function W depends on information about unknown den­

sity. Because class (1) is fairly wide, selection of simple and easy to calculate 

non-negative kernel function is the best choice. Such kernel function is, for 

example, W(x) = (3/4)(1 - x2 )+. Moreover, this kernel function is optimal 

in certain sense (see Rudzkis and Radavicius (1995), p. 43). 

More complicated problem is selecting bandwidth h. Its values can be 

calculated using k-nearest-neighbor approach. Given k value, for each X E 

X N we can find interval that contains at least k nearest data points (including 

itself). Half length of this interval can be treated as bandwidth value for this 

X. Moreover, exact k value is not required, because the estimate (7) does not 

change much when k is changed slightly. 

Selection of initial parameters. Convergence of EM algorithm to global 

maximum 0* depends on the good choice of the initial parameter 0°. This is a 

complicated problem, especially when true number of component'! is unknown. 

This problem can be solved by combining separate steps, each one supposed 

to be an attempt to make a more adequate model. For example, an algorithm 

of finding q components can be divided into algorithm of finding one next 

component repeated until required number of components is reached. Note that 

algorithm of finding next component usually may contain many other procedures 

(for example, EM algorithm) that try to make estimated parameter more precise 

before the end of this algorithm. 

Key problem is finding next component. When new component is found, 

new parameter 0 may be made more precise using EM algorithm or other meth­

ods. We refer to this problem as to problem of selection of initial parameters. 

Note that we use modified mixture model (5) or (6) with background cluster. 

Method using second derivative of non-parametric estimate is given in Rudzkis 

and Radavicius (1995). 
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Let we have 00 with q ~ 0 components and we will find parameter (j1 with 

q + 1 component. Let pI = PP, I-ll = I-lP, (onl = (on°, i = 1,2, ... , q. Then 

we define mean 1-l!+1 using one of equalities 

I ~, 0 
I-lq+l = arg max (f(X) - fq(.X, (j », (Sa) 

xeXN 

1-l~+1 = arg max ((i(X»1/2 - (fq(X, (jO))I/2), (Sb) 
xeXN 

I ~ 0 I-lq+1 = arg max (f(X)/ fq(X, (j », (Se) 
xeXN 

Selection of equality (8b) is based on the asymptotic equal distribution variance 

at each point under very general conditions to be hold. 

Variance of (q + 1 )th component may be calculated using one of the fol­

lowing methods. The first one is the empirical variance of the noise cluster. 

The second one is empirical variance of a part (say, 1/5) of the noise cluster 

points nearest to just selected mean. Probability of (q + 1 )th component may 

be calculated using one of the following methods. The first one is assigning 

P~+I = 1/(q + 2) (we have q + 1 Gaussian components and one noise cluster) 
and proportionally recalculating other probabilities, so that sum of all probabil­

ities will be equal to 1. The second method is evaluating Pq+1 <Pq+1 (for details 

see Rudzkis and RadaviCius (1995), p. 41) and recalculating component proba­

bilities using formula (4a). Methods of finding mean, variance and probability 

may be changed at consecutive attempts to find a new component. 

Testing model adequacy. If number of mixture components is unknown we 

must have some criteria for testing the adequacy of sample data to the model 

with estimated parameters. Parametric criteria (based most often on likelihood 

ratio criterion) are often used for testing the model adequacy. However, the 

application of these criteria in our case faces some theoretical problems. In order 

to check the model adequacy, it is more reasonable to employ non-parametric 

criteria. 

Denote (for details see Rudzkis and RadaviCius (1995), p. 49) 

1 ~ !(Xj) 
1/;3 = N L...J f (K (j) - l. 

j=1 q J, 

(9) 

We reject hypothesis of adequacy of sample data to the model with obtained 

o if value of 1/;3 is not sufficiently small. Given the significance level 0:, it 
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is desirable to choose the rejection level as close as possible to the quantile 

U a : P{ 1/J3 > U a } = 0'. We recommend criterion (9), because we can calculate 
sufficiently accurate distribution characteristics of 1/J3. 

This non-parametric criterion is not sufficient to make a decision that a 
model is adequate. Additional criteria are based on behavior of probability of 

the noise cluster Po (if we use model (5)) and on value of ML function /(0). 
We reject the hypothesis of model adequacy if new value of Po is significantly 
less than its previous value. Similarly, we reject this hypothesis if value of 
l( B) with new parameter B is significantly greater than value of l( B) with pre­
vious parameter. In both cases we make a decision that the new parameter 
made significant improvement and we must make more attempts to improve the 
model. 

Implementation of mathematical methods. Main procedures of the im­
plementation of mathematical methods are Find Next procedure and Auto pro­
cedure. The first one finds parameters of new component. The second one 
finds Gaussian mixture components automatically starting from any specified 
parameter value, including the case when starting parameter is unknown. Other 
procedures are: Refinement (implementation of EM algorithm), Join (joins 
components that differ insignificantly), Optimization (general optimization pro­
cedure using conjugate gradient method (see Gill et al. (1985)), No Noise 

(deletes noise cluster), Clusterization (assigns cluster numbers to each sample 
element). 

Find Next procedure finds parameters of new component and returns indi­
cator done, indicating whether all components are found or not. We can keep 
fixed any number of parameters. Also we can set minimal and maximal number 

of components qmin and qmax. Default model with background cluster is given 
by (5). We can change it to the model (6). 

Auto procedure finds Gaussian mixture components automatically starting 

from any parameter value. To reduce calculation time for most calculations 
we use special grouped sample. At the beginning (if we start from q > 0) we 

apply Refinement procedure and (optionally) Optimization procedure. After 

this we have more precise parameters to start main loop. Main loop of finding 
mixture components consists of Find Next procedure repeated until indicator 
done becomes true. After this we have maximum number of components. 
Remaining procedures can only decrease this number. 
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After the main loop we refine parameters and perform special joining pro­

cedure which joins components that differ insignificantly (using Akaike's in­

formation criterion). From this point we use another special grouped sample 

with bigger length. We apply Refinement procedure and try to delete small 

components. Final refinement of parameters and deleting noise is done us­

ing initial sample. Auto procedure ends with Clusterization procedure, which 

assigns cluster number to each X E X N • 

2. Efficiency analysis. In this section we present some results of testing 

efficiency. We have tested: 

A} how much close components with equal probabilities and standard devi­

ations but different means can be effectively separated, 

B) how much close components with equal probabilities and means but 

different standard deviations can be effectively separated, 

C) how much small component with the same standard deviation, but with 

different mean and small probability can be detected. 

The main goal of the tests was to determine values of the parameter at which 

corresponding problem can be effectively solved. We assume that a problem is 
effectively solved if all components are found for at least 95 per cent of random 

realizations. 

A special program was written for these tests. All test examples start with 

no information about theoretical parameters. 

Efficiency analysis is based on comparing values lAuto of maximum like­
lihood function (2) corresponding to parameters obtained by Auto procedure 

with analogous values IMLE corresponding to parameters obtained using 20 it­
erations of Refinement procedure starting from known theoretical parameters 

(these parameters are considered to be sufficiently near from MLE estimate). 

This comparison is done only for those realizations which estimated number of 

components is equal to the theoretical ones. 

For each mixture model we give empirical means and standard deviations 

for IAuto and lMLE and for difference IAuto -/MLE. Also we give ratio of empirical 

standard deviations corresponding to lAuto -/MLE and IMLE. As seen below, test 

results show that the difference IAuto -IMLE is sufficiently small and considered 
clusterization procedures may be treated as efficient procedures. 

We need two special rules that work in full automatic way to determine 
that all components are found. The first one is to assign correct component 



G. lakimauskas 339 

order to estimated parameters so that each partial theoretical density match 

corresponding partial estimated density. The second one is to make a decision 

whether each partial theoretical density is close enough to the estimated one. 

We say that all components are found if number of components in estimated 

model is not less than in theoretical model and each partial estimated density 
is close enough to the theoretical one. 

Assignment of component order to estimated parameters is done in the 

following way. Let f(" 0) be theoretical density function and fq(x, B), q ~ ij 
be an estimated density function. Let j = j (i), i = 1, 2, ... , ij, be some function 

that assigns different numbers from the set {I, 2, ... , q} for different i. We 
select such function j (i) that 

q 

L Ilpj(i)<Pj(i) - Pi(h11 2 IIIpilZidl 2 (10) 

has minimal value. After this estimated components are reordered according to 

obtained function j (i). 
Decision whether estimated component is close enough to theoretical one 

is made comparing distance between estimated density and theoretical den­

sity with distance between theoretical density and the same theoretical density 
shifted by the value of standard deviation. To be more precise, we compare 

Ilpi, <pC, /1-i, on -Pi'P(" Jli, unll with Ilpi'P(', Jli + Ui, un -Pi'P(" Jl;, unll 
for i = 1,2, ... , ij, and make a decision that all components are found if for 
all i = 1,2, ... , ij, ratios of these values are less than 1.0. Recall that we 

suppose that estimated density components are already reordered and number 

of estimated density components is not less that number of theoretical density 
components. Of course, selection of such shift value and selection of entire 

method leaves a bit of discusssion. 

We considered different number of mixture models for each problem. For 

each mixture model 100 random realizations of length N = 1000 were simu­

lated. For each realization we performed Auto procedure starting from q = 0, 

and (independently) 20 iterations of EM algorithm using Refinement procedure 

starting from theoretical parameters. The second procedure was used to get the 

approximate distribution of difference between maximum likelihood function 

values for estimated parameter and the MLE. 
A. Close means. We consider four mixture models with two components. 

In all cases PI = P2 = 0.5,0'1 = 0'2 = 1.0. Means are the following (of course, 



340 Statistical analysis of Gaussian mixture 

only difference between means is significant): 

(AI): J.ll = -1.0, J.l2 = 1.0, 

(A2): J.ll = -1.0, J.l2 = 1.1, 

(A3): J.ll = -1.0, J.l2 = 1.2, 

(A4): J.ll = -1.0, J.l2 = 1.5, 

B. Close standard deviations. We consider three mixture distributions. In 

all cases PI = P2 = 0.5, J.ll = J.l2 = 0.0. Standard deviations are the following: 

(BI) : 0"1 = 1.0, 0"2 = 0.35, 

(B2) : 0"1 = 1.0, 0"2 = 0.3, 

(B3) : 0"1 = 1.0, 0"2 = 0.25. 

C. Component with small probability. We consider two mixture distri­

butions. In all cases J.ll = -1.0, J.l2 = 2.0,0"1 = 0"2 = 1.0. Probabilities of 
components are the following: 

(CI) : PI = 0.9, P2 = 0.1, 

(C2) : PI = 0.8, P2 = 0.2. 

Table I shows summary information about number of realizations with final 
number of clusters q after Auto procedure and number of realizations with all 

clusters found according to the selected decision rule. 

Table 1. Summary information (total 100 realizations) 

Model Number of realizations with final q Number of realiz. 
q - 1 q=2 q=3 q=4 with all cl. found 

(AI) 10 79 10 I 67 
(A2) 5 83 11 1 76 
(A3) 0 83 16 I 90 
(A4) 0 78 17 5 95 
(BI) I 71 24 4 79 
(B2) 1 78 16 5 90 
(B3) 0 89 8 3 98 
(C1) 0 97 3 0 93 
(C2) 0 94 5 I 98 
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The results show that models (A4), (B3) and (C2) may be considered as 
limit models for listed problems. 

Table 2 shows empirical means of lAuto, lMlE and lAuto -lMLE. Table 3 shows 

empirical standard deviations of lAuto, IMLE, IAuto - lMLE and ratio of empirical 

standard deviations corresponding to lAuto - IMLE and lMLE. 

Table 2. Empirical means of values of ML function . 

Model lAuto IMlE IAuto -lMLE 

(AI) -1.756601 -1.756400 -0.000201 

(A2) -1.778872 -1.778773 -0.000099 

(A3) -1.801570 -1.801627 0.000056 
(A4) -1.862134 -1.862265 0.000131 
(Bl) -1.070186 -1.070208 0.000022 
(B2) -1.026589 -1.026578 -0.000012 

(B3) -0.978246 -0.978248 0.000002 

(Cl) -1.658685 -1.658689 0.000005 

(C2) -1.794119 -1.794157 0.000037 

Table 3. Empirical standard deviations of values of ML function 

Model lAuto lMLE** IAuto - lMlE* ratio* j** 

(AI) 0.020662 0.020616 0.000674 0.0327 

(A2) 0.019335 0.019427 0.001006 0.0518 

(A3) 0.020639 0.020699 0.000840 0.0406 

(A4) 0.021316 0.021341 0.000443 0.0208 

(Bl) 0.030079 0.030079 0.000081 0.0027 

(B2) 0.029524 0.029555 0.000188 0.0064 

(B3) 0.032870 0.032869 0.000014 0.0004 

(Cl) 0.024523 0.024501 0.000318 0.0130 

(C2) 0.024957 0.024958 0.000067 0.0268 
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Note that the difference lAuto -lMJ.E is sufficiently small comparing to IMLE. 

So considered clusterization procedures are sufficiently efficient. 

REFERENCES 

Aivazyan, S.A., Y.M. Buchstaber, I.S. Yenyukov and L.O. Meshalkin (1989). Applied 
Statistics. Classification and Reduction of Dimensionality. Pinansy i Statistika, 
Moscow (in Russian). 

Behboodian, J. (1970). On a mixture of normal distributions. Biometrika, 57, 

215-217. 
Everitt, B.S., and OJ. Hand (1981). Finite Mixture Distributions. Chapman and 

Hall, London. 
Gill, Ph.E., W. Murray and M.H. Wright (1981). Practical Optimization. Academic 

Press, New York (in Russian: Moscow, Mir, 1985). 
Hasselblad, V. (1966). Estimation of parameters for a mixture of normal distributions. 

Technometrics, 8, 431-444. 
Jakimauskas, G., and J. Su§inskas (1996). Computational Aspects of Statistical Analy­

sis of Gaussian Mixture Combining EM Algorithm With Non-parametric Estimation 
(One-dimensional Case). Preprint No. 96-6, Institute of Mathematics and Infor­
matics, Vilnius. 

McLacklan, G.J. and K.E. Basford (1988). Mixture Models. Inference and Applica­
tions to Clustering. Marcel Dekker, New York. 

Rudzkis, R., and M. Radavil!ius (1995). Statistical estimation of a mixture of Gaussian 
distributions. Acta Applicandae Mathematicae, 38, 37-54. 

Schlesinger, M.I (1965). On spontaneous discrimination of images. In Reading 
Automata, Naukova Dumka, Kiev. pp. 38-45 (in Russian). 

Titterington, O.M., A.P.M. Smith and U.E. Makov (1985). Statistical Analysis of 
Finite Mixture Distributions. Wiley, New York. 

Wu, c.PJ (1983). On the convergence properties of the EM algorithm. Ann. Statist., 
11, 95-103. 

Received February 1977 



G. lakimauskas 343 

G. Jakimauskas was born in 1956. He graduated the Faculty of Mathe­

matics'in the Vilnius University in 1979. He is a researcher at the Institute of 

Mathematics .and Informatics. 

VIENOS VIENMACIO GAUSO MrSINIO VERTINIMO IR 

KLASTERIZAVIMO PROCEDUROS EFEKTYVUMO 

TYRIMAS 

Gintautas JAKIMAUSKAS 

Nagrinejamas vienos vienma~io Gauso mi~inio vertinimo ir klasterizavimo automa­
tines proceduros, derinan~ios EM algoritmll. su neparametriniu vertinimu, efektyvumas. 

Straipsnis paremtas Gauso mi~inio statistinio vertinimo metodais, pateiktais R. Rudzkio 
ir M. Radavi~iaus straipsnyje ~urnale Acta Applicandae Mathematicae 38 (1995). Pa­
grindinis matematinill metodll pritaikymo rezultatas yra visi~kai automatine procedUra, 
kuri gali pradeti darbll be jokios informacijos apie ne~inomus parametrus ir baigti darbll 
su galutiniu mi~inio modeliu (pratestuotu modelio adekvatumui). 


