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Abstract. In this paper, the following questions for computing coefficients of Fourier 
series are discussed: n-order Filon quadrature formula and its partial cases, some features 
of applying the Filon method in computing coefficients when the adaptive integration 
strategy is employed, the program implementation of 3-order and 5-order Filon quadra­
ture formulas, using the adaptive integration strategy, and the experimental results of 
applying them in computing coefficients of Fourier series. 
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1. Statement of the problem. The Fourier series for a periodical function 

/(x) with a period 21 can be written 

00 

ao "" ( mr . mr ) /(x) = "2 + ~ an cos -I-X + bn sm -I-X 
n=l 

1 

where ao = } J /(x) dx, 
-I 

1 1 

1 J mr an = T /(x) cos -I x dx, bn = } J /(x) sin nl1r x dx. 

-I -I 

Hence, for computing coefficients of Fourier series it is necessary to find val-
1 1 

ues of the integrals f /(x) coskx dx and f f(x)sinkxdx with some given 
-I -I 

precision €. 

In numeric integration, the videly used Newton-Cotes and Gaussian quadra­

lUre formulas for these integrals are not the best choice. For computation of 
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these integrals, quadrature formulas taking into account the character of inte­

grand function are needed. The first such quadrature formula was suggested by 

Filon in 1928 (Hamming, 1962; Tranter, 1956). 

If we want to evaluate coefficients of Fourier series of many different fre­

quencies, we can use DFT (Press et al., 1992). This method, however, is not 

free from drawbacks. 

• While computing Fourier coefficients at fixed frequencies, it is necessary 

before doing this to obtain them for the special values of frequencies 

Wn = 27rn/ N~, n = 0, ... , N - 1, where N is an integer power of 

2, ~ is the length of the integration step, and afterwords to apply an 

interpolation. 

• In the process of coefficient computation, this method involves an inte­

gration strategy based on the use of the same step in the whole integra­

tion interval. This results in the computation of a larger number of the 

function f( x) values. 

• It is difficull to evaluate the computation error. 

A method for computing coefficients of Fourier series proposed in this paper 

has the following features which are not pertinent to the DFT method. 

• The method allows to compute the coefficients of Fourier series at the 

fixed frequencies with a given precision. 

• To obtain the result, an adaptive integration strategy is employed, which 

allows to compute an integral value with any desirable precision, using 

the smallest number of integrand function values. 

• The method allows to create an universal procedure suitable for comput­
ing Fourier coefficients, using polynomial of any degree for approxima­

tion of the integrand function f(x). 
In this work, the following questions are considered: 

1) n-order Filon quadrature formula and partial its cases for computing 

coefficients of Fourier series when the function f(x) is being replaced 

by 3-order and 5-order Hermitian and Lagrangian polynomials; 

2) some features of applying the Filon method for computing coefficients 

of Fourier series when the adaptive integration strategy is employed; 

3) the experimental results of applying mentioned above quadrature formu­

las, using the adaptive integration strategy, for computing coefficients of 

Fourier series. 
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These questions were discussed in the reports presented at the conferences 

(Plukiene and Plukas, 1995; 1995b). This paper contains the generalized results 

of an investigation. 

2. n-order Filon quadrature fonnula for coefficients of Fourier series. 
Z"i+l 

Assume we are asked to compute the value of the integral J I( x) cos kz dx . 
.1:,-1 

The idea of Filon method is very simple. The function I( x) in the inter-

val [Xi-I, xi+!l is replaced be the quadratic interpolating polynomial y(x) = 
a + b(x - Xi) + c(~ - Xi)2, going through the points (Xi-I, li-l), (Xi, li), 
(X;+!, IHl); here Xi = (Xi+! + xi-t}/2, and li is an abbreviation of I(Xi). 

Then (cf. Tranter, 1956) 

Z"i+l Z"i+l 

R = J I(x) cos kx dx ~ J y(x) cos kz dx 
.2:i_l .1:i-l 

=~ ( (/Hl - :~) sin kzi+! - (/i-l - :~) sin kzi-l 

1 (3/H1 - 4/i + li-l k 4/i - IHl - 3/i-l k )) + k 2h cos Xi+! - 2h cos Xi-l , 

h h Xi+l -. Xi-l IHl - 2/i + /;-1 
W ere = 2 ' c = 2h2 . 

Z"i+l 

An analogous quadrature formula for the integral J I( x) sin kz dx is also 

given in (Tranter, 1956). 

Armed with this idea, we can give the n-order Filon quadrature formula for 

coefficients of Fourier series and develop an efficient algorithm of its calculation. 

Suppose the n-order polynomial 

aproximates function I(x) defined in the interval [Xi-I. Xi+!]; here and in the 
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text below Xi = (Xi+! + Xi-l)/2. Then 

where 

Zi+l Zi+l n 

Rc = J f(x)coskxdx~ J y(x) cos kxdx = ?:ajCj, 
J=O X"_1 X'j_l 

Zi+l Zi+l n 

Rs= J f(x)sinkxdx~ J y(x) sin kx dx = ?:ajSj, 

Zi-l Zi-l J=O 

Zi+l Zi+l 

Cj = J (x - Xi)j coskxdx, Sj = J (x - Xi)j sinkxdx. 

Z'i_l 

(2) 

For computing these integrals it is resonable to use the recurence formulas. 
Obviously, 

Zi+l 

Co = J coskxdx = i(sinkxi+! - sinkxi_l), 

Zi+l 
(3) 

So= J sinkxdx=-i(coskxi+l-Coskxi_l). 

We can integrate Cj and Sj by parts 

Zi+l -~ J (x - Xi)j-l sin kx dx 

1"j_l 

:&i+l 

Sj= J (x-xi)jsinkxdx= 

Zi+l 

+~ J (X-Xi)j-1coskxdx 
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here and in the text below h = (Zi+1 - zi-t}/2. By introducing additional 
variables, we can write 

Cj = (hjts - jSj_l)/k, 

Sj = (jCj-l - hjte)/k, j ~ 1, 
(4) 

where Co and So are integrals expressed by (3), and 

ts = sinkzi+l + (-1)i+1 sinkzi_ 1, 

te = COSkzi+1 + (-1)i+1 COSkzi_l, 

By virtue of (4), for computing the quadrature fonnulas (2) it is convenient to 

apply the following algorithm stated using the Pascal language syntax . 

.2:2 

3. An algorithm for computing the Integrals f I( z) cos kz dz and 

.2:2 

f I( z) sin kz dz using n-order Ftlon quadrature formula. 

Input: the interval of integration [d,z2], (d ~ z2), 

the order n of polynomial (1), and the array (ao, ab ... , an) of the 
coefficients of (1). 

n n 
Output rc = E ajCj and rs = E ajSj. 

begin 

j=O j=O 

rc:= 0; rs:= 0; h := (z2 - d)/2; 

cl := cos(k * d);' c2 := cos(k * z2); 

sl := sin(k * d); s2:= sin(k * z2); 
tcp := cl + c2; tcm:= c2 - cl; 
bp:= sl + s2; tsm := s2 - sl; 
cj := 0; sj := 0; hj:= 1; 
for j := 0 to n do 

begin 

if j mod 2 = 0 then begin ts:= tsm; 
tc:= tcm; 

end 

else begin ts:= tsp; 
tc:= tcp; 

end; 
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end; 

Computing coefficients of Fourier series 

cl := (hj * ts - j * sj)/k; 

st := (j * cj - hj * tc)/k; 
ej := cl; sj := st; 

re := re + a[j] * ej; 
rs := rs + a[j] * sj; 
hj:= hj * h 
end; 

4. Specific realizations or the approximating function Y(:l:). We now 

discuss different realizations of the approximating function y = f( x) and the 

remainder terms of the quadrature formulas obtained. 

1. Filon method. As already mentioned above, in this case 

is the Lagrange interpolating polynomial obeying the equalities y( x j) = /i, j = 
i-I, i, i + 1. This condition allows to write 

ao =Ii, 
IH1 - li-1 

a1 = 2h ' (5) 

IH1 - 2/; + /;-1 
a2 2h2 

As shown in (Plukiene and Plukas, 1995), the remainder term of the Fourier 

series coefficients obtained using Filon method satisfies the following inequality 

2. Third order Filon quadrature fonnula. In this case the function y( x) is 

the third order Hermitian polynomial y(x) = ao + a1(x - Zi) + a2(z - Zi)2 + 
aa(z - Zi)3, satisfying the following conditions 

Y(Zj) = /i, j = i -1,i,i+ 1, 

1I'(z;) = If. 
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It follows from above that 

ao = I;, 
a1 = If, 

IH1 - 21i + li-1 
a2 = 2h2 ' 

li+1 - 21th - li-1 
as= 2h3 • 

279 

(6) 

The remainder term of this third order Hermitian polynomial is !CS) (c) 0 1 (x), 
3! 

where c E [Xi-1, Xi+l], and 0 1 (x) = (x - Xi_1)(X - Xi)2(x - xi+d (Kvedaras 
and Sapagovas, 1974). So the remainder term of quadrature formula (6) for the 

Xi+l 

integral f I ( x ) cos kx d x is expressed as follows 

Observing that 01(X) ~ 0 when x E [Xi-1, xi+d and letting the function 
1(3)(X) be bounded in the interv~ [Xi-I, Xi+l], we can give evaluation of the 
remainder term. Thus 

here Ma = max 11(3)(x)l. 
XE[Xi_l,Xi+l] 

It is easy to see that the remainder term EF of the Fourier series coefficients 

obtained using the quadrature formula (6) satisfies the following inequality 

here M; = max IJC3)(x)l. 
xE[-I,I] 

3. The 5th order Filon quadratureformula. In this case the function y(x) 
is 5th order Hermitian polynomial 

satisfying the following conditions 

Y(Xj) = Ii, 
y' ( x j) = Ij, j = i-I, i, i + 1. 
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These conditions imply that 

where 

ao = /i, 
5t2 - ts 

as = 4hs ' 
t4 - 2t1 

a4 = 4h4 ' 

ts - 3t2 
a5 = 4h5 ' 

t1 = /i+! - 2fi + fi-1, 

t2 = fi+! - 2fth - fi-1, 

ts = Uf+! - 2ft + ft-dh, 

t4 = Uf+! - ff-1)h. 

(7) 

Since the remainder term of the 5th order Hermitian polynomian is 
f(5)(c) 2 
~'h(x), where C E [Xi-1, Xi+t1, and 'h(x) = (x - Xi_1)2(x - Xi) (x-
Xi+t}2 (Kvedaras and Sapagovas, 1974), it follows that the remainder term of 

Zi+l 

the quadrature formula (7) for the integral J f( x) cos kx dx can be obtained 

using the following formula 

(8) 

Observing that 'h(x) ~ 0 when x E [Xi-b xi+d and letting the function 

j<5)(x) be bounded in the interval [Xi-b Xi+l], we can give evaluation of the 

remainder term. Hence 

Obviously, the remainder term EF of the Fourier series coefficients computed 

using the quadrature formula (7) satisfies the following inequality 
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In practise, the remainder terms of quadrature formulas are evaluated aplying the 

Richardson-Romberg method (Forsythe, Malcolm and Moler, 1980). Suppose 

the remainder term of quadrature formula is proportional to hP . For example, 

for quadrqture formulas (5) and (6) p = 4, while for (7) p = 6. Then the 

absolute value of E can be expressed 

where Rh and Rh/2 are the values of the integral obtained using the integration 

steps h and h/2, respectively. 

5. An adaptive integration. Suppose we are asked to find the value R = 
6 
J y( x) dx with some given precision e. We can use a quadrature formula for 
a 
integration the remainder term of which is proportional to hP, where h is an 

integration step. An adaptive integration strategy can be formulated as follows. 

1. Set the length of the integration interval H = b - a. 
2. Apply quadrature formula in the interval [a, b) to obtain the interval value 

Rh, here h stands for the integration step. 

3. Using integration step h/2, compute Rh/2 := R~/2 + Rh/2, where R~/2 
and R'i./2 are the values of the integral R in the left and right half­

intervals of the integration interval, respectively. 

4 If I Rh/2 - Rh I H the the ired . . f . .. . > -b -e, n requ precISion 0 IDtegrahon ID 
2P-I -a 

the current intrerval is not attained. "In this case, keep the following 

values: the integral value R'h/2 on the right half-interval, x-coordinates 

of integration and coresponding values of the integrand function. Take 

integration interval := left half-interval, Rh := R~/2' H := H /2 and 

return to 3. 
If I Rh/2 - Rh I H then the ired . . f . . ~ -b -e, requ precision 0 lDtegratlon 

2P-I -a 

in the current interval (oflength H)is already RH := Rh/2+ R~2 ~ ~h • 
Take the right half-interval· (if any) letting RH := R'h/2' extract x­

coordinates of integration over the right half-interval and corresponding 

values of the integrand function stored earlier, integration interval := 

right half-interval, compute the length H of the integration interval and 

return to 3. 
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If the list of right half-integrals is empty, then stop. The integral 

value R is equal to the sum of all RH with precision c. 

We apply this strategy of adaptive integration for computing coefficients of 

Forier series, using quadrature formulas given above. 

For Filon quadrature formula, there exists such a mesh Xi-lo Xi, Xi+1 that 
Rh = Rh/2 independently of the integrand function f(x). Consequently, the 

estimate of the remainder term based on the Richardson-Romberg method 
is erroneous. As shown in (Plukiene and Plukas, 1995), such a degenerate 

Z~I ~ t~ 
mesh for the integral f f(x) cos kx dx is Xi-1 = (21- t + I)2k' h = T' 

%'._1 

Zi+1 

while for the integral f f(x)sinkxdx such the analogous mesh is Xi-1 = 

(21 - t)~, h = t;, where I = 0, ±I, ±2, ... , t = 1,2,3, .... In (Plukiene 
and PlulCas, 1995), a refinement of the adaptive integration strategy is dis­
cussed which allows ascertain and adjust a degenerate mesh. The problem of 
the degenerate mesh ceases whenever the quadrature formulas (6) and (7) are 
used. 

6. Program implementation. For computing coefficients of Fourier series, 
the PASCAL-language procedures Fourier, Fourier3 and Fourier5. using the 
formulas (5), (6) and (7) respectively. were written. While creating these pro­
cedures, the structure of procedure reS (Forsythe, Malcolm and Moler. 1980) 
was taken into account. In this procedure. an adaptive integration strategy with 
8th order Newton-Cotes quadrature formula employed is realized. . 

The results of experimentation with the procedures Fourier, Fourier3 and 

Fourier5 are given bellow. 

We applied our procedures for computing coefficients of Fourier series for 

the functions f( %) = eZ and f( %) = _1_2 , The precission was chosen equal 
. 1+% 

to 10-8 • At the top of each table the function and the length of the half-period 
are shown. The first column of each table indicates coefficient of the series (be 

giving its index n).The rest columns display the number of function values 
needed for computing coefficients of Fourier series with a specified precision. 

In the case of computing Fourier coefficients by the DFT method, the inte­
grand function f( x) is approximated by the Lagrangian interpolating polyno­
mial. 



K. P[u/cas and D. Plukiene 283 

18blel. /(z)=ez , 1=2 

n Fourier Fourier3 Fourier5 

1 375 344 58 
5 539 424 58 
10 654 408 50 
15 731 392 34 
20 766 352 26 
25 791 256 26 
30 830 336 18 
35 831 304 10 
40 850 360 10 
45 863 392 10 
50 886 368 10 
55 903 250 10 
60 930 329 10 
70 982 129 10 
80 1030 241 10 
90 962 241 10 
100 1086 153 10 
150 1038 121 10 

Table 2. /(x) = eZ , 1= 10 

n Fourier Fourier3 . Fourier5 

10 1890 872 154 
20 2762 976 138 
30 3542 1032 106 
40 4182 1104 130 
50 4706 1056 146 
60 4710 1200 130 
70 4714 1232 138 
80 1288 106 
90 1298' 114 
100 1104 106 

Dashes in the second column mean that the required precision of 10-8 was 

nol attained after using 5000 values of /(x). 
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1 
Table3. f(z) = -1 -2' 1=2 

±z 
n Fourier Fourier3 Fourier5 

10 654 505 114 
20 694 465 98 
30 710 409 50 
40 734 393 10 
50 738 393 10 
60 782 337 10 
100 1010 313 10 

1 
Table4. f(z) = --2' 1=10 

l±x 

n Fourier Fourier3 Fourier5 

10 1284 1456 274 
20 1434 1424 274 
30 1646 1408 242 
50 1974 1264 210 
70 2130 1264 194 
90 2150 1184 194 
100 2278 1074 10 

d 
The algorithm given earlier for computing the integrals J f( x) cos kx dx 

c 
d 

and J f ( x ) sin kx dx allows to compare experimentally the accuracy of the 
c 

quadrature formulas based on the Lagrangian and Hermitian polynomials. 

The coefficients of the cubic polynomial 

defined by four neighboring points (Xk, Yk), k = 0, ... ,3, laying at the same 
distance one from another are given by the following expreSsions 

27(Y2 - yt) - (113 - Yo) 
al = 16h ' 
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a _ 9(yo - Yl - Y2 + Y3) _ 9(Y3 - Yo - 3(Y2 - yt) 
2 - 16h2 ,a3 - 16h3 ' 

where z = (zo + z3)/2, and h = (Z3 - zo)/2. 
Analogously, coefficients of the 5-order polynomial 

defined by points (Zk, Yk), k = 0, ... ,5, laying at the same distance one from 

another are expressed by the following formulas 

625 (1 3 ) 
a4 = 384h4 2(YO +Ys) - 2(Yl + Y4) + Y2 + Y3 , 

25 (5 39 ) 
a2 = -192h2 2(YO + ys) - "2(Yl + Y4) + 17(Y2 + 1/3) , 

1 ) 4 2 ao = 2(YO + Ys - a4h - a2h , 

625 (1 5 ) as = 384hs 2(YS - Yo) - 2(Y4 - yt} + 5(1/3 - Y2) , 
(9) 

25 (5 195 ) 
a3 = -192h3 2(Y5 - Yo) - T(Y4 - Yl) + 85(1/3 - Y2) , 

al = ~ (~(Y5 - Yo) - ash5 - a3h3) , 

where z = (zo + zs)/2, and h = (Z5 - zo)/2. 
Applying the above mentioned algorithm to the examples considered earlier 

and choosing the integration strategy based on the same step in the whole 

interval, the following results were obtained. 

• Quadrature formulas using 3-order Lagrangian and Hermitian polynomi­

als essentialy are the same accuracy, that is in both cases the coefficients 

of the same order of accuracy are obtained provided the same number 

of integrand function values is used. 

• The quadrature formula (7) is considerably more accurate then the quad­

rature formula (9). To obtain the same occuracy, ·the quadrature formula 

based on the 5-order Hermitian polynomial uses on the average ten times 

less integrand function values than the formula based on 5-order La­

grangian polynomial. 
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7. Condusions 

1. In this work, we investigated the n-order Filon quadrature formula for 

coefficients of Fourier series which allows in aproximate the function 

f{ x) by the Hermitian or Lagrangian interpolating polynomial of the 

desired order. 

2. Although computing of the 5th order Hermitian interpolating polynomial 

requires more values of f{x) and /'(x) at each iteration than for poly­

nomials of lower order, using this polynomial for computing coefficients 

of Fourier series is considerably more efficient than in the case where 

lower order polynomials are employed. This can be explained by the 

fact that the polynomial approximates the function f(x) in each interval 

[Xi-17 Xi+1] with a greater accuracy than the lower order polynomials. 
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FURJE EILUTES KOEFICIENTQ APSKAIClAVIMAS 

Kostas Plukas ir Danute Plukiene 

Darbe nagrinejami tokie Fulje eilures koeficienhl apskail!iavimo klausimai: n-tosios 
eiles Filono kvadratiirine fonnule ir jos atskiri atvejai. kai periodine funkcija keil!iama 
3-osios ir 5-osios eiles Ermito ir Lagranlo interpoliaciniais polinomais; Furje eilures 
koeficienhl apskail!iavimo Filono metodu ypatumai. kai naudojama adaptyviojo inte­
gravimo strategija; minehl kvadratiiriniq fonnuliq programine realizacija. panaudojant 
adaptyviojo integravimo strategijll ir jq eksperimentinis tyrimas. skail!iuojant Furje eilures 
koeficientus. 


