
INFORMATICA, 1997, Vol. 8, No. 2,237-264 

A SET OF EXAMPLES OF GLOBAL AND DISCRETE 
OPTIMIZATION: APPLICATION OF 

BAYESIAN HEURISTIC. APPROACHt I 

Jonas MOCKUS 
Institute of Mathematics and Informatics 
Akademijos 4, 2600 Vilnius, Lithuania 
E-mail: mockus@ktl.mii.lt 

Abstract. The following topics are important teaching operation research: 
- games theory; 
- decision theory; 
- utility theory; 
- queuing theory; 
- scheduling theory; 
- discrete optimization. 

These topics are illustrated and the connection with global optimization is shown 
considering the following mathematical models: 

- competition model with fixed resource prices, Nash equilibrium; 
- competition model with free resource prices, Walras equilibrium; 
- Inspector's problem, multi-stage game model; 
- "Star War" problem, differential game model; 
-" "Portfolio" problem, resource investment model; 
- exchange rate prediction, auto-regression-moving-average (ARMA) model; 
- optimal scheduling, Bayesian heuristic model; 
- "Bride's" problem, sequential statistical decisions model. 

The first seven models are solved using a set of algorithms of continuous global and 
stochastic optimization. The global optimization software GM (see Mockus, 1996) is 
used. The underlying theory of this software and algorithms of solution are described in 
Mockus (1989, 1996). The last model is an example of stochastic dynamic programming. 

For better understanding, all the models are formulated in simplest terms as "class­
room" examples. However, each of these models can be regarded as !limple represen­

tations of important families of real-life problems. Therefore the models and solution 
algorithms may be of interest for application experts, too. 

The paper is split into two parts. In the part one the first five models are described. 
In the part two the rest three models and accompanying software are considered. 
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1. Optimization problems in competition models 

1.1. Introduction. We consider optimization problems of a simple compet­

itive model. There are several servers providing the same service. Each server 

fixes the price and the capacity of service. The servers capacity determines the 

average rate of served customers so defining the customers time losses while 

waiting in queue for the service. The customer goes to the server with less 

total service cost. The total cost includes the service price plus waiting losses. 

The customer goes away, if the total cost exceeds a certain critical level. Both 

the flow of customers and the service time are stochastic. There is no known 

analytical solution for this model. The results are obtained by Monte-Carlo 

simulation. The analytical solution of a simplified model is considered, too. 

The model is used to illustrate the possibilities and limitations of the opti­

mization theory and numerical techniques in competitive models. We consider 

optimization in two different mathematical frameworks: the fixed point and 

Lagrange mUltipliers. Two different economic and social objectives are consid­

ered: the equilibrium and the social cost minimization. 

In the Nash case the servers rent their service equipment at fixed price per 

unit capacityl. We are looking for the equilibrium capacities and service prices. 

In the Walras case servers share resources which they own. Therefore we are 

looking not only for the equilibrium capacities and service prices but also for 
the prices of shared resources under the condition that a server cannot pay more 

than it gets. 

The competitive model is applied as a test function for the Bayesian al­

gorithms. However, the simple model may help to design more realistic ones 

describing the processes of competition better. 

2. Competition model with fixed resource prices, Nash equilibrium 

2.1. Optimization. The competitive model is applied as a test function 

for the Bayesian algorithms. However, a simple model may help to design 

more realistic ones describing the processes of competition better. Besides, one 

may use the competitive model for teaching Operations Research, too. Let us 

consider rn servers providing the same service: 

Ui = Ui(Xl, Yl, ... , Xm, Ym) = aiYi - Xi, i = 1, ... , rn, (1) 

1 We call by capacity the average service rate in the case of non-stop operation. 
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where Ui is the profit, Yi is the service price, Xi is the server capacity, ai is the 
rate of customers, and i is the server index. Assume, as a first approximation, 

that the a server capacity2 is equal to the running cost Xi' The service cost 

Ci = Yi +,i, (2) 

where,i is waiting cost. Assume that the waiting cost is equal to an average 

waiting time at the server i. A customer goes to the server i, if 

Ci<Cj, j=l, ... ,m,j#i, Ci~CO. 

A customer goes away, if 

m.inCi > Co, 
I 

where Co is the critical cost. The rate a of incoming consumers is fixed: 

m 

a=La;, 
;=0 

where ao is the rate of lost customers. 

(3) 

(4) 

(5) 

Conditions (3) and (4) separate the flow of incoming customers into 

m + 1 flows thus making the problem very difficult for analytical solution. 

The separated flow is not simple even in the Poisson incoming flow case (Gne­
denko, 1987). Thus we need Monte Carlo simulation, to define the average 

rates of customers aj, i = 0, 1, ... , m, by conditions (3), (4), and the average 

profits Uj, i = 1, ... , m by expression (1). 

2.2. Search for Nash equilibrium. First we fix the the initial values, the 

"contract-vector" (x?, Y?, i = 1, ... , m). The transformed values, the "fraud­

vector" (xt, Yl, i = 1, ... , m), is obtained by maximizing the profits of each 

server i, under the assumption that all the partners j # i will honor the contract 

(xJ,yJ, j = 1, ... ,m, j # i) 

( 1 1) _ ( 0 0 . 1 . -I- .) 
Xj,Yj -argmaxuj Xj,Yi,Xj'Yj' J = , ... ,m, J -r Z, 

Zi,Yi 

i= l, ... ,m. 

2 Average number of customers that may be served per unit time 

(6) 
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Condition (6) transforms the vector zn = (x?, y?, i = 1, ... , m) E B C 

R2m , n = 0, 1,2, ... into the vector zn+l. Denote this transformation by T 

zn+l = T(zn), n = 0, 1,2, .... (7) 

One may obtain the equilibrium at the fixed point zn, where 

(8) 

The fixed point zn exists, if the feasible set B and the profit functions (1) are 

all convex (Michael, 1976). We obtain the equilibrium directly by iterations 

(7) , if the transformation T is contracting (Neuman and Morgenstern, 1953). 

If not, then we minimize the square deviation 

min /I z - T(z) /1 2 • 
zEB 

(9) 

The equilibrium is achieved, if the minimum (9) is zero. If the minimum (9) 

is positive then the equilibrium does not exist. One minimize (9) by the usual 

stochastic approximation techniques (Ermoljev and Wets, 1988), if square devi­

ation (9) is unimodal. If not, then the Bayesian techniques of global stochastic 

optimization (see Mockus, 1989) are used. 

Obviously an eqUilibrium will be stable if transformation (7) is locally con­

tracting in the vicinity of fixed point (8). If not, then some stabilizing conditions 

should be introduced. The transformation T(z) is referred to as locally con­

tracting if there exists a constant 0 ~ a < 1 such that 

(10) 

for all zl, z2 E Zft where Ze is an (-vicinity of fixed point defined by the 

"natural" deviations from the equilibrium. 

2.2.1. Simplified illustration. To illustrate the idea of equilibrium we con­

sider very simple deterministic model. We express the waiting time as 

"'Ii = ai/x;, i = 1,2. (11) 

We may compare the simplified expression (11) with the well-known expres­

sion of average waiting time in the Poisson case, see Gnedenko and Kovalenko 

(1987) 
ai 1 

"'Ii=---. 
Xi Xi - ai 

(12) 
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Assume the steady-state conditions3 

a;/Xi + Yi = q. (13) 

Here q is a steady-state factor. From expression (4) 

(14) 

From steady-state conditions (13) 

aj = (q - Yi)Xj (15) 

and 

(16) 

Maximizing the profit 

we obtain the optimal values 

Xi = a, Yi = q/2, i = 1,2, q = c. (18) 

From expressions (17) and (18) the maximal profit 

Uj = a ((c/2)2 - 1) . (19) 

We achieve a positive profit equilibrium, if c > 2. These results may be 

helpful understanding the model (1). 

2.2.2. Monte-Carlo simulation. Assume that the n-th customer estimates 

the average waiting time at the server i as the relation 

'Yi(nY=n;jXj, n=I, ... ,N, i=I, ... ,m, (20) 

3This example is merely an illustration, stability of equilibrium conditions is not con­

sidered here. 
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Table 1. Simulation results 

Alg. Prices Yi and rates Xi Profits Ui Object. 
No Xl Y1 X2 Y2 X3 Y3 U1 U2 U3 mint 

1 0.04 0.95 2.45 8.30 1.31 1.25 0.03 2.87 1.50 1.78 
2 3.24 8.81 0.13 0.09 0.45 1.32 9.48 0.02 0.77 0.45 
3 0.63 6.87 0.63 1.88 3.13 9.38 2.73 2.15 4.67 0.88 
4 0.01 0.95 2.45 8.30 1.31 1.25 0.01 3.46 1.50 1.48 
5 2.23 3.56 0.73 0.38 3.52 2.99 0.12 0.09 0.13 1.72 

Algorithm Numbers 

1 2 3 4 5 
MIGI BAYES 1 LPMIN EXKOR GLOPT 

where nj is queue length at the server i when the n-th customer arrives. Th~n 

from expressions (2) and (20) the service costs 

Ci=Yi+n;jXj, n=I, ••• ,N, i=I, ... ,m. (21) 

Table 1 indicates the possibilities and limitations of direct Monte-Carlo sim­
ulation of transformation (7) using different algorithms of global optimization. 

The simulation parameters are: 

m = 3, N = 500, a = 2, C = 12. 

The constraints are: 

0.0001 ~ Xi ~ 10, 0.0001 ~ Yi ~ 10, i = 1,2. 

The positive result is that we obtained relatively small deviation from the 
equilibrium (0.45 using BAYESl and 0.88 using LPMIN). However, we need 
much greater accuracy to answer a number of questions, for example: 

• why using algorithm 2 we obtained the profit U1 which is much greater 
as compared with U2 and U3 in the symmetric conditions? 

• why using different algorithms we obtained so different results? 
• is the equilibrium solution unique? 
• is the algorithm accuracy sufficient? 
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The visual inspection shows that the profit functions Uj look like convex. 

That indicates the existence of the equilibrium. However one needs a large 

amount of computing to obtain the answers to these and related questions. 

That is outside the objective of this paper because we consider the competitive 

and the other models mainly as test functions to compare different algorithms 

including the Bayesian ones. Table 1 shows that in this special case the best 

results we obtained by the Bayesian methods and the second best by the uniform 

search algorithms during comparable time (see lines 7 and 3 correspondingly). 

2.3. "Social" model. Define the "social" cost of service as follows 

(22) 

Expression (22) defines a sum of running and waiting costs. For example, 

both the running and waiting costs may be defined as a time lost by the members 

of society while running the servers and waiting in the queues. The prices y 

are not present in social cost expression (22), since the service rates Xi are not 

limited. 

In the simplified case (11), the optimal service rates 

Xj=ai, i=I,2. (23) 

Here the prices y are eliminated, since the of service rates are not limited. 

2.4. Lagrange multipliers. Consi~ now the Lagrangian model. We limit 

the total service rate of both servers by b 

(24) 

fix the customer rates ai, i = I, 2, and minimize the service losses 

(25) 

Problem (25), (24) can tJe solved by Lagrange multipliers, assuming the 

convexity of 'Yi 

maxmin (I: ani + y(I: Xi - b)). 
y;il:O .t:;il:O. . ' , . (26) 
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Here the Lagrange multiplier Y means the "price" which the server pays to 

the supplier of service resources Xi. First let us fix Y and minimize (26) by 

x. Thus the optimal rate Xi = Xi(Y) is defined as a function of price y. Next 

we maximize (26) by Y ~ 0 to obtain the equilibrium (max-min) price Y = Yo. 
Now each server can define the optimal service rate Xi = Xi(YO) by minimizing 

the social service cost 

min(YOXj + aii'd, i = 1,2. 
Zi~O 

(27) 

Apparently this model is not quite competitive, since the customer rate is 

fixed for each server. One defines equilibrium between the supplier and the 

servers. Here we assume a competition not between servers, like in (1), but 
between the supplier and the servers. The servers are of "non-profit" type. 

They minimize the social service cost including the customer waiting losses 'Yi 

plus the price YoXj paid by the server to obtain the resource Xi' 
In the simplified case (11), 

~~~~~ (~aUXi + Y(~Xi - b))' 
I I 

(28) 

First we fix Y and obtain optimal Xi = Xi(Y) as a function of Y 

Xi(Y) = adVY' (29) 

Next we maximize by Y 

~~ ( VY ~ ai + Y( 1/ VY ~ ai - b) ) = ~~(2avy - by) (30) 
I I 

and obtain the optimal price 

(31) 

This and expression (29) imply 

Xi = ai/ab. (32) 

All the solutions of simplified models are illustrative. However, they may be 

used as a first approximation considering more complicated models, correctly 

representing the stochastic service and processes. 
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2.5. Stable coalition (Core of game). If m > 0 then the formation and 

stability of coalition S C M is important. Denote by S = i a coalition of 

an individual server i. Denote by S = (il' i2) a coalition of two servers i l 
and i2 , and so on. Denote by S = (i l , ... , im ) = M the coalition of all the 

m servers. A coalition S of servers means equal service prices Yi = y( S), 

equal service rates Xi = x(S), and equal share of profit Ui(S) = 1/ISI u(S) 
for all i E s. Here ISI denotes the number of servers in the coalition S and 

u(S) = LiEs Ui assuming that all the remaining servers form the opposite 
coalition M \ S and that the profits Ui corresponds to the equilibrium service 

prices and rates y(S), x(S), y(S), y(M\S). This way we consider the m-server 
system as a set of two-server systems, where the first server is coalition S and 

the second one is coalition M \ S. The coalition S C M is stable if there are 
no dominant coalition S C M such that 

Ui(S) > Ui(S), for all i E S. (33) 

The definition of stable coalition is related to the definition of game core 

C, see Rosenmuller (1981). It is well known that if 

u(M) > E ui(M), (34) 
iEM 

U(S) + u(M \ S) = u(m), (35) 

then the game core is empty C = 0 and thus there is no stable coalition S. 
'The server system is clearly not a constant-sum game. Thus one of two "non­

existence" conditions (35) is not satisfied meaning that a stable coalition S may 

exist. If a stable coalition S exists one may determine it testing if there exists 

a dominant coalition S satisfying condition (33). 

3. Competition model with free resource prices, Walras equilibrium. In 

the previous Nash model the cost of service capacity unit is known and the 

individual server i controls the service capacity Xi and the price Yi charged 

for the service. In the Walras model·the service capacity Wi of the server i 
depends on the resource vector Xi = (Xij, i, j = 1, ... , m) defining the share of 

resources. The server i controls the price of its own resource Pi' The server also 
controls the resource vector Xi. The notion of "credit" is introduced defining 
the credit Vi as the difference between what the server i pays for resources 
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obtained from partner-servers j and what it gets selling them its own resource. 

The server also controls the price Yi of its outside services, as in the Nash 

model. Now we shall describe the Walras model in the terms similar to those 

of the Nash model (see expression (1». 
Suppose there are m servers providing the same service. In this case we 

may write: 

Ui=Ui(Xi,Yi,Pi, Xj,Yj,Pj, j=I, ... ,rn, jf;.i) 

=UiYi - (I + Q:i)Vi, i = 1, ... , rn, (36) 

where Ui is the profit, Yi is the service price, Xi is the resource vector deter­

mining its capacity Wi, Vi is the credit of the server i, 1 + Q:i defines the credit 

"price"4 , Ui is the rate of customers, and i is the server index. The bank 

interest is defined as 
if Vi ~ 0, 
if Vi < 0, 

(37) 

where Q:1 > Q:2. Expression (37) means that one pays more for the bank credit 

comparing to what one gets for his deposit (denoted as a "negative credit" 

Vj < 0). Suppose that each server i owns a single resource bj • Assume that 

a service capacity Wj is an increasing function of the resource vector Xj = 

(Xjj,j = 1, ... , m). 

Wj = tPi(Xj). (38) 

The resource component Xij denotes the amount of resource bj used by 

server i. The amount of resources is limited by the budget condition 

m 

L:PjXjj =Pjbj+Vi, i= I, ... ,m. 
;=1 

(39) 

Assuming the lower and upper limits UP;'U"';j,aypbp;,b"'ij,by;, i,j = 

I, ... , m, we obtain the ineqUalities 

It is natural to assume the following upper resource limit b"'ij = bj. 

4Here Q:j is a bank interest. 
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The service cost, the waiting cost and the customer behavior remains the 

same as in the Nash model. Namely, the service cost 

Ci = Yi + 'Yi, ( 41) 

where 'Yi is waiting cost. Assume that the waiting cost is equal to an average 

waiting time (see expression (20) at the server i. A customer goes to the server 

i, if 

Ci < Cj, j = 1, ... ,m, j =J. i, Ci ~ co· 

A customer goes away, if 

m.incj > co, 
I 

(42) 

(43) 

where Co is the critical cost. The rate a of incoming consumers flow is fixed: 

m 

a = Laj, 
i=O 

where ao is the rate of lost customers. 

(44) 

3.1. Search for Walras equilibrium. We fix a contract-vector (x?, yp, p?, 
i = 1, ... , m). Then the fraud-vector (xl, Yl, pt, i = 1, ... , m), is obtained 

by maximizing the profits of each server i and assuming that all the partners 

j =J. i will honor the contract (x~, y~ ,p~, i = 1, ... , m) 

( 1 1 1) xi' Yi ,Pi 

( 0 0 0 • 1 . .../.. .) = arg max Ui Xi,Yi,Pi, Xj,Yj'Pj, J = , ... ,m, J..,... z , 
Zi,Yi,Pi 

satisfying the budget condition 

and the constraints 

m 

LPjXij = Pibi + Vi, 
j=l 

ap, ~ Pi ~ bp" 

(45) 

(46) 

aX,j ~ Xjj ~ bx,j' (47) 

ay; ~ Yi ~ by;, j = 1, ... ,m, i= 1, ... ,m. 
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Condition (45) transforms the vector zn, n = 0,1,2, ... into the vector 

zn+1, where zn = (xn,yn,pn), xn = (xi, ... ,x~). yn = (yi, ... ,y~). and 

pn = (p~, ... , p~). Denote this transformation by T 

zn+1=T(zn), n=0,1,2, .... (48) 

Here the vector z = (Xj, Yj,Pi, Vj, i = 1, ... , rn) E B C Rm2+2m • We obtain 

the equilibrium at the fixed point zn, where 

(49) 

We may obtain the equilibrium directly by iterations (48), if the transfor­

mation T is contracting (Neuman and Morgenstern, 1953). If not, then we 

minimize the square deviation 

min" z - T(z) 1/ 2 • 
zEB 

(50) 

The equilibrium is achieved, if the minimum (50) is zero. 

3.2. Walras equilibrium regarding bank as server. The difference from 

the previous Walras model is that the bank providing funds for the other servers' 

is considered as an additional server with zero index i = O. In this case adding 

the bank profit expression is added to the equalities (36) 

m 

Uo =uo(Po, xJ, yJ ,pJ, j = 1, ... , rn) = LPo(i)Vi, 
i=1 

Uj =Ui (p8(i), Xi,Yi,Pi,Vj, xJ,yJ,pJ, j=I, ... ,m, j::pi) 

=aiYi - pg(i)Vi, i = 1, ... , rn, 

(51) 

where Ui is the profit, Yi is the service price, x i is the resource vector determin­

ing the service capacity, Vi is the credit of the server i, po(i) = 1 + O:i defines 

a bank interest, ai is the rate of customers, and i is the server index. Note that 

the credit parameter Po (i) is equal to 1 + 0: 1 or to 1 - 0:2 depending on the sign 

of Vi, see expression (37). 

The service .cost, the waiting cost and the customer behavior remains the 

same as in the previous model. 

3.3. Search for Walras equilibrium regarding bank as a server. Let us 

to fix a contract-vector (x~, Y? , Pi, i = 1, ... , rn, o:~, o:g). Then the fraud-
t ( 1 1 1 . - 1 1 1)' b>n: ed b nl",vinli'7ing the profits vecor Zi,Yj,Pj, z- , ... ,m, 0:1'0:2180 ..... n y.~ ...... 



J. Mockus 249 

of each server i = 0, 1, ... , rn, under the assumption that all the partners 

j #- i will honor the contract (x~, y?, pp, i = 1, ... , rn, o:~, o:g). Then, from 
expression (51) 

m 

LPjXij = Pibi + Vi; 

j=l 

ap• ~ pj ~ bp., i = 0, ... , rn, 

(52) 

(54) 

ar'j~xjj~br;j' ay;~yj~bYi' j=I, ... ,rn, i=I, ... ,rn. (55) 

Condition (53) transforms the vector zn, n = 0,1,2, ... into the vector 
zn+1, where zn = (xn, yn ,pn, o:~, o:~), xn = (x~, ... , x;;), yn = (y~ , .. . ,y;;), 
pn = (p~, ... , p;;). Denote this transfonnation by T 

zn+1=T(zn), n=0,1,2, .... (56) 

Here the vector z = (Xj, Yi, i = 1, ... , rn, Pi i = 1, ... , rn, 0:1,0:2) E B C 
Rm 2+2m+2. We obtain the equilibrium at the fixed point zn, where 

(57) 

We obtain the equilibrium directly by iterations (56), if the transfonnation 

T is contracting (Neuman and Morgenstern, 1953). If not, then we minimize 

the square deviation 

min 1\ z -T(z) 1\2. 
teB 

The equilibrium is achieved, if the minimum (58) is zero. 

4. Inspection model, multi-stage game 

(58) 

4.1. Linear case. Denote by x = (Xl, .•. , Xm), Xi ~ 0, Li Xi = 1 the 

inspection vector and by Y = (Y1, ... , Ym), Yj ~ 0, Lj Yj = 1 the violation 
vector. Here Xi denotes the probability of the area i to be inspected and Yj 
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means the probability of violation in the area j. Denote by u( i, j) the inspection 

utility function when the object i is inspected and the object j is violated. 

Denote by v( i, j) the violation utility function when the object i is inspected 

and the object j is violated. Denote by U (x, y) and V (x, y) the expected values 

of the inspection and violation utility functions using inspection and violation 

vectors x, y defining the probabilities of inspection and violation. For example, 

( .. ) {PiYiq;, ifi=j, 
U Z,J = 0 th' , 0 erwISe, 

(59) 

and 
( .. ) _ { -qjp;gj + (1 - Pi)qjgj, if i = j, 

v Z, J - th . qjgj, 0 erwISe, 
(60) 

Here Pi is the probability of detecting the violation if it happens in the area 
i, qj the probability of successful violationS if it occurs the area i, and gi is 

the utility of successful violation in the area i. The average utility functions at 
fixed inspection and violation vectors x and y 

and 

U(x, y) = E xju(i,j)Yj, 
i,j 

V(x, y) = E Xjv(i,j)Yi. 
;,j 

(61) 

(62) 

4.2. Search for equilibrium. We fix the contract-vector xO = (x~, yp, i = 
1, . " ,m). Then the fraud-vector xl = (xl, Yl, i = 1, ... , m), is obtained 

by maximizing the expected utilities U(x, y) and V(x, y) separately, under the 

assumption that the "partner" will honor the contract (xP, yp, i = 1, ... , m) 

Xl = argmaxU(x, VD), U = maxU(x, VD), 
x x 

yl =argmaxV(xO,y), V=maxV(xO,y). 
y y 

(63) 

(64) 

These expressions define two linear programming problems that may be 
solved for any fixed contraCt vectors xO = (:ep, yp, i = 1, ... , m). However, 

using the standard simplex algorithm, an optimal base solution of linear pro­

gramming problem representing the "best" vertex on the simplex is obtained, 

SPor example, killing the prey. 
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as usual. It follows from expressions (61), (62), (63) and (64) that the best 

vertex is defined by conditions 

and 

xl = {I, if Ej u(i,j)Yj > Ej u(k,j)Yj, 
0, otherwise, 

y/1 = {I, if L:i v{ i, j)x; > L:i v{ i, l)xi' 
, 0, otherwise: 

k =I i, (65) 

I =I j, (66) 

These conditions define a set of pure strategies. However, mixed strategies 

are needed to obtain the equilibrium (see Owen, 1968). A mixed strategy may 

be determined using a continuous set of all the solutions not just the base ones. 

The following expressions define such a set 

m 

LU(i,j)yJ = u, i = 1, ... ,m; 
j=l 

m 

L v( i, j)x? = V, j = 1, ... , m; 
i=l 
m 

m 

'" x~ - 1· ~ ,- , 
;=1 

X? ~ 0, yJ ~ 0, i,j = 1, ... , m. 

(67) 

(68) 

(69) 

(70) 

(71) 

The expressions (67), (69) define values of yJ providing the mUltiple "con­

tinuous" maximum of U(x, yO) in a sense that any vector xl, Ei xl = 1, Xi ~ 

O .. th ·li· ° ° (0 ° ) ,maxImIzes e average utI ty at given y = y , y = Y1'···' Ym : 

(72) 

and, correspondingly, 

yl = argmaxV(xO,y), V = maxV(xO,y). 
y y 

(73) 

Since any probability distribution xl satisfies the maximum condition we 

may obtain the equilibrium just by setting 

(74) 
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and 

(75) 

n:spectively. 

4.3. Zero-sum case. It is well known (see Owen, 1968) that in the zero­

sum case where Vij = -Uij the equilibrium may be defined as two two linear 

programming problems. One may reduce the utilities (59) and (60) to the 

zero-sum case by subtracting the penalty terms (1 - Pi)qjgj and qigi from the 

inspectors utilities. In such a case 

( .. ) _ {Pi9jqi - (1 - Pi)qjgj, if i = j, 
U 3,) - th . -qigi, 0 erwlse, 

(76) 

and 
( . .) _ { -qjPigj + (1 - Pi)qjgj, if i = j, 

v 3,) - th . qjgj, 0 erwl8e. (77) 

It follows fom expressions (76) and (77) that vij = -Uij. Then we may ob­
tain the equilibrium by solving the following two linear programming problems 

(see Owen, 1968): the direct problem 

m 

max U, 
z 

LZiUij ~ U, j = 1, ... ,m, 
i=1 

and the dual one 

m 

mi.n V 
11 

- LYjUij ~ V, i= 1, ... ,m, 
j=1 

m 

LZi=l, Zi~O, 
i=1 

m 

LYi=l, Yi~O. 
i=1 

(7S) 

(79) 

The important difference between the zero-sum expressions (78), (79) of 

linear programming and the system of equalities and inequalities (67)--(71) is 
that in the zero-sum case the mini-max condition holds 

min V=max U. 
11 z 

(SO) 

This condition makes the zero-sum case a convenient tool for testing the 

results of non-zero-sum cases where the mini-max condition is not true. 
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4.4. Nonllnear case. Suppose that the probability distributions x and y are 
not controlled directly by the inspector and/or the violator and depend on some 

control vectors sEA C Rk and t E B C R' 

x = x(s), y = yet). 

Then the average utility functions at fixed controls s and t 

and 

U (x(s), y(t» = L xi(s)u(i,j)Yi(t), 
i,i 

v (x(s), y(t» = L xi(s)v(i, j)Yi(t). 
i,i 

(81) 

(82) 

(83) 

We fix the contract-vector zO = (s~, tJ, i = 1, ... , k, j = 1, ... , I). Then 

the fraud-vector Z1 = (sl,t}, i = 1, ... ,k, j = 1, ... ,/) is obtained by 

maximizing the expected utilities U(x(s), y(t» and Vexes), y(t» separately, 
under the assumption that the "partner" will honor the contract zO 

S1 = arg max U (x(s), y(tO» , , 
t 1 = arg max V (x(SO), yet») . 

t 

(84) 

(85) 

Conditions (84), (85) transforms the vector zn, n = 0,1,2, ... into the 

vector zn+l, where zn =.= (sn, t n ), sn = (s~, ... , si;), and tn = (t~, .. . , t?). 
Denote this transformation by T 

Z"+1 = T(z"), n = 0, 1,2, .... (86) 

Here the vector z = (Xi,Yi, i = 1, ... ,m) E B C RH'. We obtain the 

equilibrium at the fixed point z", where 

z" = T(z"). (87) 

We obtain the equilibrium directly by iterations (86), if the transformation 

T is contracting (Neuman and Morgenstem, 1953). If not, then we minimize 
the square deviation 

min 11 z - T(z) 112 • 
.EB 

(88) 
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The equilibrium is achieved, if the minimum (88) is zero. 

A reduction to the linear case (61), (62) is an another way for solving 

nonlinear inspector game (82), (83) using the equations relating the probabilities 

x, y and the control parameters s, t 

There are two solution stages: 

• the equilibrium values of xO and yO are found by expressions (67)-(71); 

• the equilibrium values of so, to are obtained by solving system (89) at 

given xo, yO. 

One may see that the linearization way is possible if the solution of system 

(89) is not too difficult. Otherwise the direct optimization of control parameters 

s, t using expressions (84), (85), (88) is preferable. 

5. "Star Wars" problem, differential game model 

5.1. Introduction. Consider two objects in space trying to destroy each 

other. Assume, as a first approximation, that there are three control parameters: 

the initial points Zo, WO, the rates a, b and the firing times tl, t2 of both objects. 

Suppose that these parameters are set before the start. Denote the control 

parameters by vectors x = (Xi, i = 1, ... ,m) and y = (Yi, i = 1, ... ,m) 
correspondingly. In the illustrative example Xl = Zo, X2 = a, Xa = tl and 

Yl = WO, Y2 = b, Ya = t2· The trajectories of the objects are described in the 
"hight-time space" by the equations 

dz(t)jdt = az(t), 

dw(r)jdr = bw(r), r = 2 - t. 

Then the trajectories are 

z(t) = zoeat 

w(r) = woebT • 

Denote by d(t) the distance between the objects at the moment t 

d(t) = lI(w(r), r) - (z(t), t)lI. 

(90) 

(91) 

(92) 

(93) 

(94) 
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Denote by p(t) the hitting probability 

p(t) = 1- (d(t)jDt . (95) 

Here D ~ maXt d(t) and et > O. 

The expected utility function of the first object 

{ 
p(xa) - (1- p(xa))p(1/3), if Xa < Ya, 

U(x, y) = -p(ya) + (1 - p(ya» p(xa), if Xa > Ya, 

p(xa) - p(ya)O, if Xa = Ya. 

(96) 

The expected utility function of the second object 

{ 
p(ya) - (1- p(1/3))p(xa), if Xa < Ya, 

V(z, y) = -:-p(za) + (1 - p(za»p(ya), if Za > Ya, 

p(ya) - p(za), if Za = 1/3. 

(97) 

The expected utility functions (96) and (97) follows from hitting probability 

expression (95) assuming that utility of hitting the hostile object is plus one 

and the utility to be hit is minus one. 

S.2. Convex version. The expected utilities (96) and (97) are not convex 

functions of the variables p(za) and p(ya). The convex version may be obtained 

assuming that the object "hears" the enemy fire and keeps moving until d(t) = 0 
(correspondingly p(t) = 1). In such a case modifying expressions (96) and (97) 

the expected utility function of the first object 

{ 
p(xa) - (1 - p(za)) , if Xa < Ya, 

U(z,y) = -p(ya) + (1- p(ya)) , if Za > Ya, 

p(za) - p(Ya), if Xa = Ya· 

(98) 

The expected utility function of the second object 

{ 
P(ya) - (1 - p(1/3» , if Za < 1/3, 

V(x, y) = -p(za) + (1- p(xa» , if Za > 1/3, 

p(1/3) - p(za), if Za = 1/3. 

(99) 
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It is easy to see that expected utilities (96) and (97) are convex functions of 

probabilities p(X3) and p(Y3) at the equilibrium point 

P(X3) = 0.5, 

P(Y3) = 0.5. 
(100) 

Note that convexity of expected utilities (96) and (97) as functions of prob­

abilities p(X3) and p(Y3) does not provide their convexity as functions of firing 

times X3 and Y3 and other parameters. One may exploit conditions (100) in 

two ways: 

• testing the validity of solution (104); 

• reducing the dimension of search for equilibrium using expressions (101) 

by defining the firing times X3 and Y3 directly from equalities (100) at 

fixed parameters Xl, X2, Yl, Y2. 

5.3. Search for equilibrium. We fix the contract-vector (xO , yO) = (zg, aO , 

tY,wg,bO,tg). Then the fraud-vector (xl,yl) = (z6,al,tLw6,bl,t~) is ob­

tained by maximizing the expected utilities U(x, y) and V(x, y) separately, 

under the assumption that the "partner" will honor the contract (xO, yO) 

yl = argmaxV(xO,y). 
y 

(101) 

Condition (101) transforms the vector zn, n = 0,1,2, ... in~o the vector 

zn+l, where zn = (xn, yn). Denote this transformation by T 

zn+l = T(zn), n = 0,1,2, .... (102) 

Here the vector z E B C R2m. In the example m = 3. The equilibrium is at 

the fixed point zn, where 

(103) 

One may obtain the equilibrium directly by iterations. (102) , if the trans­

formation T is contracting (Neuman and Morgenstern, 1953). If not, then one 

minimizes the square deviation 

min 11 z - T(z) 112 • 
zEB 

(104) 
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The equilibrium is achieved, if the minimum (104) is zero. 

5.4. One-dimensional example. In one-dimensional space from expressions 

(90)-(97) the trajectories 

z(t) = t, 

w(r) = 2 - r, 

the hiting probability 

p(t) = 1 - d(t)/ D. 

(105) 

(106) 

(107) 

Here D ~ maXt d(t). The control parameters are the firing times x = t1 
and y = t2 of the first and the second object respectively. Assuming, that 

D = 2 the expected utility function of the first object from expression (98) 

{
X-(l-X), ifx<y, 

U(x, y) = -y + (1- y), ~f x ~ y, (108) 
x - y, If x - y. 

The expected utility function of the second object from expression (99) 

{ 
y - (1 - y), if x < y, 

V(x,y)= -x+(l-x), ~fx~y, 

y - x, If y - x. 

(109) 

The equilibrium is reached at the firing moment x = y = 1/2. The one­

dimensional example may be used testing the results of the two-dimensional 

case (104). 

6. "Portfolio" problem, resource inveStment model 

6.1. Utility-theoretical Investment model. The portfolio problem is to max­

imize the average utility of wealth obtained by the optimal distribution of avail­

able capital between different objects with uncertain parameters. Denote the 

part of the capital invested into the object i by Xj and the corresponding wealth 

returned with interest (}:j > 0 by Yj = CjXj, where the return Ci = 1 + (}:i' 

Denote by Pi = 1 - qi the reliability, where qi is the insolvency probability. 

Denote by u(y) the utility function of the wealth y and by U(y) the expected 

utility function which we should maximize. This means 

maxU(y), 
x 

n 

LXi = 1, Xi ~ O. 
i=1 

(110) 

(111) 
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Here the objective U(y) depends on n variables :I:j and is defined as follows: 

00 

U(y) = Eu(y) = J u(y)p(y)dy, (112) 
o 

where p(y) is probability density of wealth y. 

6.2. Average utility. One may define probabilities p(yi) of discrete values 

of wealth yi, j = 1, 2, ... , by the exact expressions, for example, 

p(y2) = P2 IT qi, 
i;a!2 

p(yn) = Pn IT qi, 
i;a!n 

p(yn+1) = P1P2 IT q;, 
i;a!l,i;a!2 

p(yn+2) = P1P3 IT qi, 
i;a!1,i;a!3 

Then.from expressions (124) and (113) follows that 

M 

U(y) = L U(y.l:)p(yk) , 
.1:=1 

where M is the number of different values of wealth y. 

(113) 

(114) 

Using Monte Carlo approach we may determine U(y) approximately: 

K 

U K(Y) = 1/ /{ L u(if). (115) 
k=1 

Here 
n 

yk = Eyf, (116) 
i=1 
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where 
le { CiXj, if Tl[ E [0, Pi], y. = 
l 0, otherwise, 

(117) 

In these expressions f{ is the number of Monte Carlo samples and Tl[ is a 

random number uniformly distributed on the unit interval. 

It is easy to see that 

U(y) = lim UK(Y). 
K-oo 

(118) 

6.3. Optimal portfolio, special cases. The optimal portfolio depends on 

the utility function u(y). Consider, for example, the optimal portfolio for three 

different utility functions The first utility function is linear 

u(y) = CY, (119) 

The second one is of the "non-risky" type 

( ) _ {O, if 0 ~ y < a, 
u y - 'f 1, 1 a ~ y ~ c. 

(120) 

The third example is a "risky" utility function 

( ) _ {O, if 0 ~ y < c, 
u y - 'f 1, 1 Y = c. 

(121) 

Here a is a risk threshold and C = maXi CjXi denotes the maximal return of 

invested capital, see expression (111). It easy to show that in the linear case 

(119) the optimal portfolio is to invest all the capital in the object with highest 

product PiCj. If a = l/m mini CiXi then in the not-risky case (120) an optimal 

decision is xi = l/m, i = 1"", m. Here one divides the capital equally 
between all the objects6 • In the risky case (121) one should invest all the 

capital in the object with highest return, thus Xi = 1 if Cj = maxj Cj. 

6.4. Defining utility function. The utility function u(y) is different for 

each individual person or organization. It can be defined by some lottery 

L(A, B,p) = {pA + (1 - p)B}, where p is the probability to win the best 

6 The optimal decision x=l/m is not a unique, any decision satisfying the inequality 

cixi~a, i=l, ... ,m, minimizes the expected utility function U(y), 
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event A, and (1 - p) is the probability to get the worst one. Denote by C the 

"ticket price" of this lottery. Denote by p( C) the "hesitation" probability, when 

one cannot decide what is better: to keep the money C in a safe or to risk this 

money hoping to win A with probability p( C). Denote the "hesitation" lottery 

as 

L (A, B, C,p(C)) = [C ~ {p(C)A + (1 - p(C)) B}]. (122) 

Then, from Rosenmuller (1981) it follows that assuming the utilities u(A) = 1 

and u(B) = 0 the utility u(C) = p(C). 
Suppose, for example, that event C when y = 1 means keeping a unit capital 

in the safe (no risk, no profit). Assume that the event A when y = 2 means 

doubling the unit capital and the event B when y = 0 means losing this capital. 

Denote by p(l) the hesitation probability. Then u(l) = u(O) + p(l)(u(2) -
u(O». In the case u(O) = 0, u(2) = 1 the utility of the unit capital u(l) = p(I). 
Thus we obtained utilities at the three points: y = 0, y = 1, y = 2. To define 
a ~able approximation of the utility function u(y) one needs at least two 

additional points. For example, the points of half and one-and-half of the unit 

capital y = 0.5, y = 1.5. We may define the corresponding utilities by the 
hesitation probabilities p(0.5) and p(1.5) obtained by the two hesitation lotteries 

L (1.0, 0.0, 0.5, p(0.5» . 

= [(V = 0.5) ~ {p(0.5)(y = 1) + (1 - p(0.5)) (y = O)}] , 

and 

L (2.0,1.0, 1.5,p(1.5» 

= [(V = 1.0) ~ {p(1.5)(y = 2.0) + (1 - p(1.5)) (y = I)}] . 

In this case following Rosenmuller (1981) we obtain utility values u(O) = 
0, u(0.5) = p(0.5)u(I), u(l) = p(I), u(1.5) = u(l) + p(1.5)(u(2) -
u(I», u(2) = 1. The remaining utility values may be defined by a simple 

expression of linear interpolation 

U(y) =U(Yi) + p(Yi) (U(Yi+l - U(Yi» , (123) 

Yi ~ Y < Yi+l, i = 0,1, ... ,4. 

6.5. Potential portfolio model. Consider the exponential utility function 

u(y) = 1 - e- ay , (124) 
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where a ~ 0 is risk aversion constant and the wealth y = E7=1 Xiei' Assume 

that the return vector e = (ei, i = 1, ... , n) is a Gaussian one (c, E), where 

C = (Cj, i = 1, ... , n) and E = (lTij, i, j = 1, ... , n). In this case (see Freund, 
1956) the optimal portfolio may be obtained by maximizing the average utility 
function 

n 

U(y) = c'x - a/2 x'Ex, Ex; = 1, Xi ~ o. (125) 
j=1 

Here c' and x' are transposed vectors C and x, and Ci ~ 0, i = 1, ... , n. 
Assuming that lTij = ITj, i = j and ITjj = 0, i :f:. j we express the La­

grangian as 

If a > 0 then maximizing Lagrangian (126) we define the optimal portfolio 

(127) 

where 

(128) 

If one does not care of risk, meaning that a = 0, then the optimal porfolio 

may be obtained directly maximizing expression (125): 

*_{1, ifci=maxjcj, x· - . 
• 0, otherwtse. 

(129) 

If one feels a strong risk aversion, meaning that a -+ 00 then from expression 

(127) the optimal porfolio is 

1 
xi = n 

ITj I: ITj 
j=l 

(130) 

We see that in the case when the risk aversion constant tends to infinity 

the optimal investment is equal distribution of capital between all the objects 
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if variances (1'j = (1', i = 1, ... , n. If the risk aversion is zero then the optimal 

investment is to put all the capital into the object with largest return Cj. Thus 

in the case of "risky" exponential utility we obtained asymptotically the same 

optimal investment as in the case of "risky" piece-vise utility functions (see 

expressions (120) and (121». In the case of "non-risky" functions the optimal 

portfolio remains the same only if variances (1'j = (1' are equal. That shows the 

important difference between the two portfolio problems defined by expressions 

(110) and (125). In the first case the utility function is based on the assumptions 

of utility theory and the returned wealth is determined by the reliability of 

different objects, what is natural for banks. In the second case the utility 

function is assumed to be exponential and the return wealth is defined as a 

Gaussian random variable. 

The advantage of exponential case (125) is the possibility of analytical 

solution. The disadvantage is that there is only one "control" parameter a 

to "adapt" the utility function to the individual user. Besides, the Gaussian 

returned wealth model is not convenient describing the reliability of investment 

objects. 

In the case of piece-wise linear utility function (see expression (123» there 

are many control parameters, for example, p(O.5), p(I), p(1.5) which are de­

fined following the procedure of the '"hesitation lotteries" which follows from 

the well-known results of utility theory. A number of different utility functions 

has been considered, see, for example, Ziemba et al., 1974. We prefer the '"hes­

itation lottery" approach since it is based on the simple and clear assumptions 

of utility theory, see Rosenmuller, 1981. . 
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GLOBALINIO IR DISKRETINIO OPTIMIZA VIMQ PAVYZDZIQ 

RINKINYS: BAJESO HEURISTINIQ METODll TAIKYMAS. I 

Jonas MOCKUS 

Destant operacijl! tyrimll svarbu susip~inti su lo~iml!, naudingumo, eilil!, tvarkaras~iq 
bei nuosekliq sprendimq teorijomis. Straipsnyje sios teorijos iliustruojamos bei jq 
rysys su globaliniu optimizavimu parodomas nagrinejant astuonis pavyzd:lius. Visi 
pavyzd:liai fonnuluojami lengvai suvokiamais ivairjll specialybiq studentams tenninais, 
ta~iau kiekvienas is jq atstovauja svarbioms uMaviniq seimoms. Todel aprasomi mo­
deliai bei jq optimizavimo algoritmai gali biiti jdomiis ir patyrusiems atitinkamll sri~ill 
ekspertams. 

Straipsnis padalintas i dvi dalis. Pinnoje dalyje aprasomi penki modeliai, antroje -
liky trys, 0 taip pat bendra programine jranga. 


