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Abstract. The aim of investigation was to seek new ways for the analysis of extremal 
problems. A method of visual analysis of a set of objective function values is proposed. 
It allows us to find a direction where the variation of function is maximal. The method 
ensures a high quality of analysis when the number of used values of the objective 
function is small, and a possibility of identifying a specific character of the objective 
function. The results of analysis are used in search of a new coordinate system of the 
extremal problem and in a graphical representation of the observed data. The analysis 
will lead us to a better optimization strategy. 
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1. Introduction. Extremal problems that arise in the design of technical 

systems may often be transformed into the form 

min f(X), 
x=(xl, ... ,xn)EA* 

where A * is a bounded domain in an n-dimensional Euclidean space Rn, the 

objective function f(X) : A* --+ R is continuous and multiextremal in the 

general case. In particular, A* may be an n-dimensional rectangle [A, B] = 
{X:ak~xk~h, k=l,n, A=(al, .. "an ), B=(b1, ... ,bn )}. 

Functions f(X), occurring in practice, are often very complex, and some­

times it is difficult to solve the problem directly by classical methods. In such 

cases it is reasonable to analyse the problem. The analysis allows us to base 

optimization methods not only on functional characteristics of the objective 

function (linearity, convexity, etc.), but also on the information about the vari­

ation of function in various directions, relations among separate variables or 

their groups, the structure of a calculation process of the function value. Re­

cent results of analysis of the set of the objective function values are presented 
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in papers by Saltenis and Dzemyda (1982), Saltenis (1989), Dzemyda (1983, 

1987). The analysis of extremal problems is also discussed by Dzemyda and 

TieSis (1991). 

In the paper by Dzemyda (1996b), a possibility of analysing visually the set 

of values of the objective function is determined. Here the ideas and results of 

Dzemyda (1996b) are extended and generalised. 

The aim of analysis is to find a direction in the definition domain A * such 

that 

- maximizes the mean absolute difference between two values of the objec­

tive function calculated at randomly selected points in this direction (distribution 

of the points is uniform), or (and) 

- maximizes the mean absolute difference per distance unit for the objective 

function values calculated at two randomly selected points in this direction 

(distribution of the points is uniform). 

It would also be interesting to analyse cases, where the distribution of the 

points defined above is normal or the distance between these points is fixed. 
But these cases are out of the scope of this paper. 

The quantities above are characteristics (not the only possible) of variation 
of the objective function. In the general case, the directions optimizing both 

characteristics of variation are not identical, and the investigator should have a 

possibility to choose one of them or integrate both the directions. Let us denote 
these directions by Y 1 and Y 2, respectively. 

The directions defined above may be useful in developing new optimiza­

tion algorithms. If we start the minimization at the randomly selected point 

XI E A * , and execute a step of random length to the point X I I E A *, then the 

mean absolute change in the objective function value will be maximal, if both 

the points lie in the first direction defined above. The second direction defined 

above (and the first direction, to some extent as well) is an extension of the 

gradient concept: the gradient 'l1(X*) points to the direction of the steepest 

slope of hyper-surface of 1(- ) at the point X* (see Foulds, 1981). 

2. Data sets. The initial information for the analysis is: 

- points Xi = (xL ... , x~) E A*, i = 1, rn, m ~ 2, that form a discrete 
setDCA*; 

- values of J(X) at these points. 

The points Xi = (xL ... , x~), i = 1, rn, may be selected at random from 
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A * or in a detenninistic manner. In the first case, these points may be considered 

as observations of a n-dimensional random variable X = (Xl, ... ,xn ) whose 

components Xl, ... , X n are independent and it has a uniform distribution in A * . 
The methods of such an analysis are given in papers by Saltenis and Dzemyda 

(1982), Dzemyda (1987), Saltenis (1989). But sometimes it is advantageous to 

select points that are of some interest to the investigator (see Dzemyda, 1983). 
The aim is to transform the initial information given above so that we 

could observe and analyse the variation of function in various directions. Two 

transformations "'1 and "'2 are proposed below. 
Let any pair of points Xi, Xi, i f j, be taken from D with the same 

probability. In this case, we can observe random quantities ",. = (",.1> ... ,"'.n), 
- .. ij ij·· .. 

S = 1,2, and f whose values ",~J = (",.1' ... ' "'.k' ... ' 1J~-h), s = 1,2, and f'J 

are uniquely related with a randomly selected pair Xi, xj, if j, as follows: 

n . 
where t = f(X i ), Sij = L:(xi - xi)2, T E [-1,1]. 

1=1 

The transformations "'., s = 1,2, depend on T. Therefore, in further for-

mulae we sometimes use ",.(0 < T < 1), ",.(0.25), etc., where detailed values 

of T are given in parenthesis. 
Why did we introduce such transformations? 

",!j = (1J!{, ... ,1J!~), s = 1,2, are as follows: 

Lengths of vectors 

Therefore, a longer distance of ",!j from the centre (0,0, ... ,0) corresponds 

to a greater 'variation of function', in the case of positive T, and to a smaller 

'variation of function', in the case of negative T. 

Examples of distributions of the values of "'. = (",.1, ",.2), s = 1, 2, are pre­

sented graphically in Figures 1-4 for four functions dependent on two variables 

(n = 2): 
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r= 1 

r= -0.25 

Fig. 1. Distributions of the values of 1]1 and 1]2 

for the linear function It. 
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Fig. 2. Distributions of the values of 711 and 712 

for the piecewise linear function h. 
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1. Linear function: !1 = :1:1 + 3:1:2, -1 ~ :1:1,:1:2 ~ 1. 
2. Piecewise linear function: 12 = 1:1:1 - 3:1:21 + :1:1 + 3:1:2, 

-1 ~ :1:1,:1:2 ~ 1. 
3. Quadratic function: 13 = (:1:1-:1:2)2+[(:1:1 + :1:2)/2]2 , -1 ~ :1:1.:1:2 ~ 1. 
4. Multiextremal Branin's function (three local minima) (Dzemyda, 1985; 

Dixon and Szego, 1978): 

14 = (:1:2 - 0.1292:1:~ + 1.59155:1:1 - 6) + 9.60211 cos(:l:d + 10, 
-5 ~ :1:1 ~ 10, 0 ~ :1:2 ~ 15. 

m = 30 points Xi = (xL x~), i = 1, rn, were generated randomly in the 

definition domain~ The abscissa is meant for the values of TJsl> and the ordinate 

is meant for the values of TJ,2, S = 1,2. Surfaces of functions !1, h, 13, and 

14 are given in Fig. 5. 
Data are scaled in Figures 1-4. Each figure consists of four pictures. The 

distance of the nearest point to the border of any ~icture is the same. This 

point has such a value of abscissa or ordinate: max ITJ!{ I, i, j = 1, m, i =P j, 

k = 1,2. The centre of the picture corresponds to (0,0). 
The distributions given in Figures 1-4 show that their analysis should lead 

to the detection of new pecUliarities of the objective function. 

2.1. Selecting a parameter 'T. The analysis of distributions of the values 

of TJl, in the case of positive T, allows us to search for a direction Y 1 in the 

definition domain A'" that maximizes the mean absolute difference between two 

values of the objective function calculated at randomly selected points in this 

direction, and the analysis of distributions of the values of TJ2, in the case of 

positive T, allows us to search for a direction Y 2 that maximizes the mean 

absolute difference per distance unit of the objective function values calculated 

at two randomly selected points in this direction. 

It follows from Figures 1-4 that a lot of points concentrate in the centre of 

pictures in case T = 1. It means that, in case T = 1, a visual decision may 

often be influenced by the significantly smaller number of points located near 

the border of pictures. A natural problem arises: how to present the points 

which are located in the centre of the picture to the investigator? This may be 

done by varying the value of T. The dependence of distributions of the values 

of TJl and TJ2 on T is illustrated in Figures 6 and 7. We observe here that varying 

T one can analyse functions better. A special attention should be paid to the 

analysis of cases where T is negative. 
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Jj(X) 

4 
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-1 

Fig. S. SurfaceS of functions 11. /2. Is, and 14' 

1.2. FormlDg the data set D. Seeking representative data sets for the anal­
ysis of the extremal problem, the poinls Xi = (zL ...• z~). i = 1. rn, should 
cover the definition domain A· uniformly. 1berefore, the poinls Xi. i = 1. rn, 
maybe 

• selected at random in A· (uniform distribution is essential); 
• taken in a deterministic manner as 

• the nodes of the rectangular lattice (Sobolj, 1979), 

• the poinls of the LP-sequence (Sobolj, 1979). 



188 On the visual analysis of extremal problems 
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Fig. 6. Dependence of distributions of the values of '11 on 7" for the 

quadratic function Is. 

3. Covariance matrices. The formulae above implies that if set D contains 

m points Xi, i = 1, m, then random quantities 7 and '13 = ('1,1,.,., '1m), 

s = 1,2, can acquire m(m-l) different values. The mean values off and TJIk, 
s = 1,2, k = 1, n, are equal to 0, the variance of 7 is 

m m m ( m)2 - 2 ' '2 2 ,1, 
D f = m(m _ 1) ~ ,~ (r - f') = (m _ 1) ~ r - ;; ~ f' , 

1=1 ,=1+1 1=1 3=1 



G. Dzemyda 189 

~'-"--.... /" '. / ..... 
~ \ 

I '. I , 

\ I ........ I 
," ,/ ( ~~\ 

\ ) 
". ,,'/ '-.. _ .. __ ..... r= 0.25 r= 1 

.. = ·0.1 

..... -~ ". 

",\ '-., 
.............. ,., .. 

~-.--'.- ... . ..... 

r = -0.25 r= .05 r= ·1 

Fig. 7. Dependence of distributions of the values of 7'/2 on T for the 

linear function !l. 

and covariance matrices J{8 = {J{'1.k'l.I' k, I = f,7i} of 7'/8 = (7'/81, ..• , 7'/m), 

s = 1, 2, are as follows: 

J{ = 2 ~ ~ [(r' _ fi)2T _ (z~ - zt)(z~ - zf)] 
'11k'l1l m(m _ 1) L.J L.J S~·' 

;=1 j=;+1 IJ 

J{ - 2 ~ ~ [(r"- fi)2T . (z~ - zt)(z; - z1)] 
'12k'l21 - m(m _ 1) L.J L.J '. S2(T+l)' 

;=1 j=i+1. • ;j 

REMARK. The variances of random quantities 7111, •.. , 7'/1n, in case T = 1, 
are related with the estimate D* f of the variance of f(X), calculated on the 
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basis of all m points Xi, i = 1, m, from D, as follows: 

n _ 2 m (0 m 0)2 
EK'Ilk'llk = DJ = (m -I)?: f' -?:f1 = 2D* f. 
k=1 ,=1 3=1 

The covariance matrix Ki of the n-dimensional random quantity 7]1(1)/2 

was used by Saltenis and Dzemyda (1982), Dzemyda (1987), Dzemyda (1983) 

for the analysis of extremal problems and for the construction of optimization 

algorithms. A multiplier 1//2 was introduced to simplify the further formulae 

only. It does not have any influence on eigen-vectors of the covariance matrix 

and on the proportionality among diagonal elements and among eigen-values 

of the covariance matrix. Namely, this proportionality was used in making a 

decision on the problem structure. So the covariance matrix K 1 of 7]1 (1) may be 

used for the analysis like in papers by Saltenis and Dzemyda (1982), Dzemyda 

(1983, 1987) as well. The covariance matrix K1 was analysed by Saltenis and 

Dzemyda (1982), Dzemyda (1983) using the factor analysis, and by Dzemyda 

(1985, 1987) using extremal parameter grouping (Dzemyda, 1988, 1996a). As 

a result of analysis, the efficiency of local optimization was increased and the 

extremal problem was simplified, in the first case, and the efficiency of global 

optimization (LP-search) was increased, in the second case. In the paper by 

Saltenis and Dzemyda (1982), the dependence of optimization errors, occurring 

as a result of fixing separate variables, on the values of diagonal elements and 

eigen-values of Ki are investigated. 

Sometimes m is sufficiently great and the values of function J(X) are not 

calculated before the analysis starts. In such a case, sometimes it is impossible 

to calculate the covariance matrices K, = {K'IOk'lO" k, 1 = 1, n}, s = 1,2, 
analytically. In this case, the covariance matrices may be estimated using m1 

pairs of points. m1 < m(m -1) because the use of m1 ~ m(m -1) is sense­

less. Let us denote these pairs by Xlt = (zP, .. 0' z~t), X2t = (z~t, 0 0.' z~t), 

where t is the number of pair, t < m(m-l). In this case, 7], = (7]81, ... , 7]m), 

s = 1,2, will take the following values: 7]! = (7]!1'0 .. , 7]!n), t = 1, mb 

s = 1,2. Taking into account that the mean values of 7]8k, s = 1,2, 

k = 1, n, are equal to 0, not shifted estimates of covariance matrices of 

7]8 = (7]81, ... , 7]m), S = 1, 2, are as follows: 

K - _ '" (Jlt _ J2t)27". zk - zk z/ - z/ 1 ffll [ (It 2t)( 1t 2t)] 
'1U'Ill - m L..J 8 2 ' 

1 t=1 t 
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K =_'"' (f1t_f2t)2T. Xk -Xk XI -XI 1 m, [ (1t 2t)( It 2t)] 
1J2k1J2! m W 2(T+1)' 

1 t=l St 

n 

where St = L: (xP - xft)2 and jUt = f(xut), U = 1,2. 
1=1 

4. Analysis. Three possibilities of the directional analysis of covariance 

matrices are discussed in this paper: 

1. The factor analysis of covariance matrices of 'TJs = ('TJsll ... , 'TJm), 
s = 1,2. 

2. The interactive visual analysis of observations of 'TJs = ('TJsb ... ,'TJm), 
s = 1,2. 

3. Combination of the visual and the factor analysis. 

The stress is put on the interactive visual analysis. 

4.1. Application of factor analysis. The factor analysis allows us to find 

a linear combination 191 = ah'TJs1 + ab'TJ.2 + ... + a1n'TJsn of 'TJs!, ... , 'TJm, 
s = 1,2, having the maximal variance. The solution ai = (ah, ... , ain) 
is a normalized eigen-vector (i.e., a vector of unit length) corresponding to 

the maximal eigen-value of K.. Therefore, applying factor analysis for the 

case T > 0, the criterion of 'variation of function' may be the maximal 

eigen-value of the covariance matrix. The eigen-vector corresponding to the 

eigen-value represents the desired direction. The factor analysis also allows 

us to find a second combination 19~ = a~1'TJ.1 + ah'TJ.2 + ... + a~n'TJsn' where 
a~ = (ah, ... , a~n) is a normalized eigen-vector, corresponding to the second 

in size eigen-value of the covariance matrix. The variance of 19~ is maximal 

for any direction perpendicular to a1. Thus, it is possible to find all n direc­

tions ak = (ah, ... , akn ), k = 1, n, that create a new coordinate system. The 

factor analysis may also be used in the case T < 0, but the first found direction 

a1 = (ail, ... , a1n) will show where 'variation of function' is the least. 

Let the aim of analysis be to make a new coordinate system Y' = U X': 

( 
Y1) (un 
• ~2. = ~~~ 
Yn Un1 

U1n) (Xl) 
. ~~~ ~.2 . 
Unn Xn 

for the extremal problem., where U = {Uij, i, j = 1, n} is a square matrix, 
Y' and X' are column vectors obtained from row vectors Y = (Y1, ... , Yn) 
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and X = (Xl"'" X n ). As a result of the factor analysis, the rows of matrix 

U would be normalized eigen-vectors ai = (ail, ... , ain)' i = 1, n of Ks. 
The characteristics of variables Xi, i = 1, n, are respective diagonal elements 

K 17 • k17 • k , k = l,n, of Ks. The characteristics of variables Yi, i = r,n, are 
respective eigen-values Ai, i = r,n, of K •. If new coordinates are introduced 

according to the decreasing value of Ai then the following inequalities are valid: 

n n 

LA~ = LK17 • k17 • k • 

k=l k=l 

K l7.kl7.k' k = 1, n, and AL i = 1, n, are related with the optimization errors 
occurring as a result of fixing separate variables (see Saltenis and Dzemyda 

(1982) on experimental investigation of the covariance matrix Ki of the n­

dimensional random quantity 1/1 (1) / V2). 
The quality of analysis depends, to a great extent, on the number m of 

calculated values of f(X). For instance, let us analyse m = 50 values of 

the function fs(X) = Xl + 2X2 + 3X3 + 4X4 calculated at randomly selected 
and uniformly distributed points in [A, B] where A = (-1, -1, -1, -1) and 

B = (1,1,1,1). These points form the discrete set D. The ideal direc­

tion when analysing the covariance matrix K2 of 1/2(1) is (1,2,3,4), which, 

as a result of normalization (division by viI + 22 + 32 + 42), is as follows: 

(0.1826,0.3651,0.5477,0.7303). However, the obtained solutions are very sen­

sitive on the set D. For example, the factor analysis of K 2 (in case T = 1) 

calculated for four different sets D gave solutions which are presented in the 

first four rows of Table 1. .6. is the distance between the point from Table I 

and the ideal solution. The last two rows show the averaged and normalized 

solutions after the analysis of K2 obtained using 100 and 1000 randomly filled 

sets D, respectively. A similar sensitivity of the result to m is observed in the 

analysis of any other covariance matrix, too. This indicates that the analysis of 

covariance matrices gives poor results in the case of small m. However, even 
for small m such an analysis allows to find a new coordinate system, where 

(see Saltenis and Dzemyda, 1982) 
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• the first variable is most essential (its fixing causes the greatest error as 
compared with any other variable from both systems), 

• variables with larger order numbers are less significant (their fixing causes 

smaller errors), and the variables with the largest order numbers are often less 

significant than any variable from the old system, 

• coordinate descent gives better results. 

Table 1. Factor analysis of matrix K2 

K2 

X .6. 

(0.1544,0.3952,0.6265,0.6538) 0.117 

(0.1770,0.3311,0.4199,0.8263) 0.164 

(0.1412,0.4368,0.5333,0.7106) 0.086 

(0.1806, 0.2602, 0.6578, 0.6833) 0.159 

(0.1702,0.3776,0.5466,0.7278) 0.053 

(0.1726,0.3622,0.5553,0.7285) 0.045 

These advantages of the new coordinate system require to look for new and 

more effective analysis methods. 

4.2. Interactive visual analysis. The main idea of such an analysis is 

to present the sets of observations of TJ8 = (TJ81. ••• , TJm), S = 1,2, to the 
investigator graphically. The investigator makes a decision on the best direc­

tion. Therefore, the main direction (not the system of perpendicular directions) 

may be found in ;his manner only. 

Sometimes it may be useful to analyse the distributions of TJ1 and TJ2 at the 

same time because the directions Y 1 and Y 2 are frequently often similar (see 

Section 7 and Fig. 8). In this case, the investigator's decision is influenced by a 

specific character of distributions of the values of both random quantities TJ1 and 

TJ2' Our experience shows that it would be better to present to the investigator 

the distributions of TJ1(T < 0) and TJ2(T < 0) rotated by the 90° angle, if he 

. prefers to analyse the distributions of TJ1 and TJ2 for both positive and negative 

values of T at the same time. 

The algorithm of visual analysis: 
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FA VA fleX) FA VA J2(X) 

1 1 1 1 

01 
01 
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3lII4 11 0 11/4 fII2 31114 " 

Fig. 8. Dependence of 01 and 02 on the angle a. 

1. The pictures of distributions of ('1!{,'1!{), i,j = I,m, i # j, are 

presented graphically to the investigator for any pair (k, 1), k,1 = 1, n, k < 1, 

of variables in consecutive order. 

2. The investigator analyses the distributions visually and shows the best, to 

his mind, direction ak/Zk - a/kZ/ = 0 for any pair (k, 1), k,1 = 1, n, k < 1, of 

variables. The decision depeods 00 the goal of analysis and may be made 00 the 

basis of distributions of separate random quantities or groups of distributions 

(e.g., quantities '1" 8 = I;2, for various values of T). 

3. The integral direction is determined by n(n - 1)/2 subdirections 

This approach has beeo investigated an compared with the factor analysis 

in the sections below. 
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4.3. Combination of the visual and the factor analysis. Various combina­

tions of the visual and the factor analysis are possible. For example: 

1. Factor analysis precedes the visual analysis: determination of direction 

using the factor analysis; an interactive visual analysis taking into account the 

results of the factor analysis. 

2. Visual analysis precedes the factor analysis: an interactive visual anal­

ysis taking into account the results of the factor analysis; creation of a new 

coordinate system by finding other n - 1 directions using the factor analysis. 

3. Combination of the previous two strategies: determination of direction 

using the factor analysis; an interactive visual analysis taking into account the 

results of the factor analysis; creation of a new coordinate system by finding 
other n - 1 directions using the factor analysis. 

In the first case, the results of the factor analysis serve for the visual analysis 

as initial data. 

The aim of analysis in the second case is to make a new coordinate system 

Y' = U X' taking into account the results of visual analysis. As a result of 

visual analysis, let the direction a = (al,"" an) be found. Ilall = 1. Let us 
modify the covariance matrix K. by adding a new matrix Ka = {Aa;aj, i, j = 
r,n}, where A > 0. A further examination of the matrix K a + K. is performed 
using the factor analysis (see Section 4.1). 

The matrix Ka has only one non-zero eigen-value A. The vector a is a 

normalized eigen-vector corresponding to A. The matrix Ka + K. is non­
negative definit~ because A > 0, and in the general case, the matrix K. is 

non-negative definite. If the value of A is chosen sufficiently high then 

• the values of elements of the matrix K. are insignificant in the search 
for the maximal eigen-value and the corresponding eigen-vector of the 

joint matrix Ka + K. because the absolute values of elements of the 

matrix K a + K. become significantly greater than the absolute values 

of elements of the matrix K., 

• the normalized eigen-vectors corresponding to the maximal eigen-value 

of both matrices K a and K a + K. are similar, 

• in the case of identical normalized eigen-vectors corresponding to the 

maximal eigen-value of both matrices Ka and Ka+K., all the remaining 

eigen-values and respective eigen-vectors of the matrix Ka + K. are 

determined by the matrix K. only. 
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The last proposition requires additional proof. Let 

- Ili be the i-th eigen-value of the matrix Ka + Ks: III ~ Ilz ~ ... ~ Iln; 

- Zi be a normalized eigen-vector corresponding to Ili' 

Then 

where Zj, i = 2, n, are sets of vectors of unit length in Rn perpendicular to 

z", k = 1, i-I, Zl is a set of all the vectors of unit length in Rn. 
If the vectors zl and a are identical, then J1-i may be expressed as follows: 

i.e., vectors zi, i = 2, n are determined analysing the matrix K •. 

All normalized eigen-vectors of both matrices K s and K a + K s are identical, 

if a = (ab"" an) and ai = (ail, ... , ain) are identical. Slight differences 
between a and ai cause small changes in the coordinate system defined by 

analysing K.. The introduction of a new coordinate system is illustrated by the 

analysis of the following matrix: 

New coordinates are shown in Tables 2-4. The results of factor analysis 

(without visual analysis) are given in Table 2. In Tables 3 and 4, we illustrate 

a combination of the visual and the factor analysis for two different vectors a. 
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Table 2. Results of the factor analysis 

Xl X2 X3 

Y1 .397 .521 .756 

Y2 .233 .739 -.632 

Y3 .888 -.427 -.172 

Table 3. Results of a combined analysis. a = (.415, .461, .784) 

Xl X2 X3 

Y1 .415 .461 .784 

Y2 251 .770 -.586 

Y3 .874 -.440 -.204 

Table 4. Results of a combined analysis. a = (.577, .577, .577) 

Xl X2 X3 

Y1 .577 .577 .577 

Y2 -.211 -.577 .789 

Y3 .788 -.578 -.212 

5. Problems or finding the integral direction. The direction in Rn is en­

tirely defined if the coordinates of start and end points of the direction vector 

are known. The start point in our case is XO = (0, ... ,0). The end point 

X* = (xi, ... , x~) must be determined from the system of n(n - 1)/2 equa­

tions: 

where ak/ is the coefficient at X/c when Xk is in the same equation as Xl' 

There are two equivalent solutions: 

X* = (xi, ... , x~) and (-1). X* = (-xi, ... , -x~). 
n 

Let the distance between XO and X* be equal to 1, i.e., L xi 2 = 1. 
/=1 

(1) 
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The problem is as follows: 

(2) 
n 

LZ~ = 1. (3) 
1=1 

The number of equations in the system of linear equations (2) starting from 

n > 2 is greater than the number of variables. However, it is necessary to find 

a solution. In this case, problem (2)-(3) may be formulated and solved as an 

optimization one using the least squares approach: 

(4) 

subject to (3). 

The Lagrangian (Reklaitis et al., 1983) of the problem is 

The goal of analysis of L(X, 11) is to find 11 :1= ° and X, where 

- OL/OZk = 0, k = 1, n, (5) 

- oL/oII = 0, (6) 

- the Hesse matrix H(X, 11) = {hkl = 02 L/OZkOZI, k, 1= 1, n} is po-
sitive definite. 

The obtained X value is the point of local minimum for cp(. ) in this case. 

Any stationary point of L(X, 11) satisfies system (5)-(6) of n + 1 equations 

with n + 1 unknowns. 

The following n - 1 parts of cp(X) depend on Zk: (alkzl - ClklZk)2, 
(a2k z2-ak2z k)2, ... , (ak_lk z k_1-aH_1 z k)2, (aH+1zk-ak+lk Z k+d 2, ... , 

(aknZk - ankZn)2. Thus, equations (5) will be as follows: 

k-1 
- 2 L (a,kz, - aklzk) akl 

1=1 
n 

+ 2 L (aklzk - a,kz,) akl - 211Zk = 0, k = 1, n, 
l=k+1 
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and system (5)-(6) will consist of such equations: 

n 

L (alelXIe - alleXI) akl - lIXk = 0, k = 1, n, 
1=1 
I"",k 

n 

LX? -1 = O. 
1:1 

199 

(7) 

(8) 

Let us analyse the matrix H(X, 1I) and determine 1I when the matrix is 

positive definite. H(X, 1I) is positive definite, if and only if its eigen-values 

are positive. Therefore, a further investigation is oriented to the analysis of 

eigen-values of H(X, 1I). 
The elements of H (X, 1I) are independent of X: 

Let 

n 

fP L/axi = 2 L ail - 211, 
1=1 
k"",1 

- B* = {bkk = tat, k = 1, n; 
.=1 
#k 

blel = -alkakl, k, 1= 1, n, k i= I}, 
- AI, ... , An be eigen-values of the matrix B*, 
- Amin be the least eigen-value of B*. 

(9) 

(10) 

(11) 

PROPOSITION 1. H(X, 1I) is positive definite, if and only if 11 < Amin. 

Proof. The Hesse matrix H of L(X, 11) is defined by (9) and (10). This 

matrix is a sum of two matrices: H = 2(B* + C), where B* is defined by 

(11), and C is a diagonal matrix, all n diagonal elements of which are equal to 

-11, i.e., 

C = {Ckk = -1I, k = 1, nj Ckl = 0, k, 1= 1, n, k i= I} . 

Let 

- Pi be the i-th eigen-value of the matrix H: PI ~ P2 ~ ... ~ Pn; 
- zi be a normalized eigen-vector corresponding to Pi; 



200 On the visual analysis of extremal problems 

- Z1 be a set of vectors of unit length in Rn; 
- Zj, i = 2, n, be sets of vectors of unit length in Rn perpendicular to 

zk, k = 1, i - 1. 

Then 

(12) 

It follows from (12): 
n n n n' 

arg max LLzkZlhkl = arg max LLzkZlbkl, 
Z=(Zl, ... ,Z .. )eZi k=11=1 Z=(Zl, ... ,Z .. )eZi k=11=1 

i.e., matrices H and B* have the same eigen-vectors. Hence 

(13) 

From (13), it follows that H is positive definite, if and only if Ai - v > 0, 

i = 1, n, i.e., if v < Amin. 
The proposition is proved. 

Amin may be successfully found because there are effective algorithms to 

search for it (see, e.g., Krylov et al., 1976). 

The next problem is to find a solution of the system of nonlinear equations 

(7)-(8). We suggest formulating an optimization least squares problem: 

mm 
.3:iE[-l,l), i=1,'; 
X~(O.O ..... O) 

·1I<lmin. 

+ (tz~ _1)2 
1=1 

(14) 
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Problem (14) may be simplified by analytical search for the optimal value 

of 1/, when the values of other variables are fixed. From 

a, /01/ = -2 ~ ( t (aklxk - a,kx,) akl - 1/Xk) Xk = 0 

I;ek 

it follows 
n n 
2: Xk 2: (aklxk - a,kx,) akl 
k=l 1=' 

I",k 
(15) IJ = ------:::n------

LXf 
1=1 

From 
n 

02,/OIJ2 = I:>~ > 0 
k=l 

it follows that 1/ defined by (15) corresponds to the minimum of , , when the 

values of Xl, ... , Xn are fixed and Xk E [-1,1], k = 1, n, X =j:. (0,0, ... ,0). 
Problem (14) may be transformed as follows: 

where .B( Amin - 1/)2 is a penalty function, 

.B = {O ~f IJ < Amin' 
1 If IJ ~ Amin. 

The starting point for local search may be X = (1J1i, ... , 1/ vIn). The 

value of ,* is not defined at the point X = (0, ... ,0). So, it would be better 

to start optimization from the point where ,* < 1. Then, one of two equivalent 

solutions will be found depending on the starting point. The variable metric 

algorithm (TieSis, 1975; Dzemyda, 1985) gave good results in minimizing the 

function ,* (Xl, ... , xn ). 

The investigations above showed that the analysis of problem (3)-(4) and 

application of the Lagrange method gave a possibility of finding efficient ways 
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for solving the system of equations (2)-(3). This approach may be used to 

solve other similar optimization problems having restriction (3). 

6. Experimental illustration of search for the integral direction. The first 

experiment was executed analysing the function Js(X) = Xl + 2X2 + 3X3 +4X4 
calculated at m = 50 randomly selected and uniformly distributed points in 

D, where A = (-1, -1, -1, -1) and B = (1,1,1,1). Distributions of the 

values Of1]I(I), 1]1(-0.25), 1]2(1), and 1]2(-0.25) were analysed visually. 1be 

matrix A = {ak/' k, I = 1, n} obtained as a result of the visual analysis 
is given in Table 5. The aim is to find a solution of problem (16). The 

starting point X = (Xl' ... ' X4) and the corresponding value of ,*(X) are 
given in the first column of Table 6. The results of optimization (,* (X*) and 

X* = (xi, ... ,x;» are given in the second column of Table 6. The respective 

values of <p(X) (see (4» at the points X = (Xl, ... ,X4) and X* = (xi, ... ,x;) 
are given in Table 6, too. The visual analysis was facilitated by the known an­
alytical expression of the function. This resulted in integer numbers in Table 5. 

If we have an unknown analytical expression, then the numbers in Table 5 
would differ to some unessential extent only because this data set bears some 

features that predestine the decision. The function with the known structure is 

also a good test for the optimization algorithm from the section above. 

Table 5. The matrix A obtained during the visual analysis 

kl/ 1 2 3 4 

1 - 2 3 4 
2 1 - 3 4 
3 1 2 - 4 
4 1 2 3 -

The second experiment was performed on the function J6(X), X = (Xl> ... , 
X7), which is an objective function in the problem of computer-aided synthesis 

of the external circuit of the tunable subnanosecond pulse TRAPATT-generator 

(Dzemyda et aI., 1984, 1990; Dzemyda, 1993, 1995). It is often used as a 

test for comparison of the efficiency of optimization methods (Dzemyda et 

al., 1990; Dzemyda, 1993, 1995). The number of variables is equal to 7. 

Xk E [0,1], k = 1,7. The function J6(XI, ... , X7) has two minima near zero. 
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Table 6. The results of optimization 

,*(X) 15 2.301.10- 11 

<p(X) 5 1.400.10- 13 

Xl 0.5 0.1826 
X2 0.5 0.3651 
X3 0.5 0.5477 
X4 0.5 0.7303 

The surface of the function f6(X1, ••• , X7) is given in the paper by Dzemyda 
(1995) for the case, where the values of Xl, ... ,X5 are set to be equal to 0.5, 
and those of X6 and X7 are varied in [0,1]. 

The number rn of points Xi, i = 1, rn, was selected equal to 30, dis­
tributions of values of 7]1 and 7]2 were analysed visually in the case T = 
-1, -0.25, 1. The points Xi, i = 1, rn, were generated randomly. The ma­

trix A = {akl' k, I = 1, n} obtained as a result of visual analysis is given 
in Table 7. The starting point X = (xt, ... , X7) and the respective value of ,* (X) are given in the first column of Table 8. The results of optimization 
(,*(X*) and X* = (xi, ... , X7) are given in the second column of Table 8. 

The respective values of <p(X) (see (4» at the points X = (Xl"'" X7) and 
X* = (xi, ... , X7) are given in Table 8, too. 

Table 7. The matrix A obtained during the visual analysis 

k 1 2 3 4 5 6 7 

1 - 1.000 1.000 1.000 1.000 -1.000 -1.000 
2 0.915 - -1.000 1.000 -0.890 1.000 1.000 
3 0.221 0.246 - -1.000 0.459 -1.000 0.057 
4 0.353 0.175 0.996 - -1.000 1.000 0.822 
5 0.674 1.000 1.000 0.825 - -1.000 1.000 
6 0.218 0.245 0.914 0.777 0.339 - 1.000 
7 0.514 0.385 1.000 1.000 0.787 1.000 -
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Table 8. The results of optimization 

"y'"(X) 11.45 3.106.10- 14 

cp(X) 3.6783 0.5676 
Xl 0.3780 -0.0451 
X2 0.3780 0.1128 
X3 0.3780 -0.6074 
X4 0.3780 0.4309 
X5 0.3780 -0.1693 
X6 0.3780 0.5860 
X7 0.3780 0.2422 

7. Experimental investigation of functions dependent on two variables 
(n=2). Experiments were performed on functions 11, 12, fg, and 14. The 

mean absolute difference (Dl) and the mean absolute difference per distance 

unit (D2) for these functions calculated at randomly selected pairs of points 

in the direction whose orientation defines the angle Q are presented in Fig. 8. 

Each curve in Fig. 8 is drawn on the basis of the values of DIor D2 at 

Q = t· 7r/36, t = 0,35. Each value of Dl and D2 is determined on the basis 

of 500000 randomly selected pairs of (Xl, :1:2). 

Distributions of the values of "'1 (1) and "'2 (1) were investigated by the factor 
analysis (FA) and the visual analysis (VA). The final results of factor analysis 

have been obtained after averaging the results of analysis of 100 different data 

sets containing 300 randomly selected points in A" (m = 300). This was done 

with a view to find a sufficiently precise direction that tends to be indicated by 

the factor analysis. Pointers show the directions found as a result of the analysis. 

From Fig. 8 it follows that both D1 and D2 have one maximum for h and 

h. and two maxima for fa and 14. The visual analysis, using different data 

sets containing 30 randomly selected points in A* (m = 30), indicated all of 

them by different respondents: decisions made by the respondents are located 

around the pointers denoted as VA. But the direction Q = 7r /2 was indicated 

in the analysis of distributions of the values of "'2(1) for 12, too. In this case, 

the investigator tries to recognize and take into account some regularity of the 

distribution. 

The factor analysis yielded a direction that is an attempt to integrate both 
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maxima of Dl and D2 for functions is and 14' In most cases of the analysis 

of distributions of the values of 7]1(1) and 7]2(1), the factor analysis indicated 

directions different from those corresponding to maxima of Dl and D2. Indeed, 

the factor analysis showed the global orientation of distributions of the values 

of 7]. (1) on the plane. The visual analysis of distributions of the values of 

771 (-0.25) and 7]2(-0.25) gave similar results to that of the factor analysis. It 
means that the visual analysis of distributions of the values of 771 (7 < 0) and 

7]2 (7 < 0) also allows us to estimate the global orientation of distributions of 

the values of 771 (7 > 0) and 772 ( 7 > 0), respectively. 

The investigations showed that in most cases it was better to use 0 < 7 < 1 

and -1 < 7 < 0 instead of 7 = 1 and 7 = -1, respectively. However, 7 has 

to be sufficiently far from 0, e.g., 171 = 0.5,0.25,0.1. 

8. Dependence or the distribution or values or 711 and 712 on the set or val­

ues or x. The experiments were carried out on the problem of computer-aided 

synthesis of the external circuit of the tunable subnanosecond pulse TRAPATI­

generator (Dzemyda et al., 1984, 1990; Dzemyda, 1993,1995). The sets ofval­

ues of 7J1 were investigated. The number m of points Xi = (xi, ... , X~), i = 
1, m, was selected equal to 70. The values of X2, •.• , Xs and X7 were fixed 

and set to be equal to 0, and the values of Xl and X6 were generated randomly 

in [0,1] for the first experiment. In Fig. 9, six sets of all the possible values of 

7]1 (l) and 7]1 ( -0.1) for six different sets of points Xi, i = 1, rn are presented 

graphically. We observe a consequent evolution from the pictures of the first 

row to the pictures of the last one. Indeed, the pictures occurred in random 

order, because the sets of points Xi, i = 1, rn, were generated at random. 

The second experiment illustrates a situation where the values of X3, ..• , X7 

are fixed and equal to 0, and the values of Xl and X2 are varied in [0,1]. In 

Fig. 10, eight sets of all the possible values of 7]1 (1) for eight different sets of 

points Xi, i = 1, m is presented. Here we also have a possibility to construct 

a sequence of pictures with a consecutively evolving view. 

In Figures 9 and 10, the results for 7]1 are presented, but the same evolution 

of pictures is observed for 7]2, too. 

The experimental results suggest an idea, that any set of m points 

Xi = (xL ... , x~), i = 1, m, may be related with the picture of the con­

secutively evolving sequence. Thus we can introduce a visual measure of 

similarity of sets. We have a possibility to compare the pictures interactively, 
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Fig.9. '11(1) and '11 ( -0.1) for six different sets of points Xi, i = 1, m 

(to be continued). 

i.e., we can answer "which picture of the two follows next?". The pictures may 

be ranked using specialized decision support methods, e.g., the paired compar­

isons method, introduced by Saaly (1980; 1982) and included into the decision 

support computer system (D2emyda and §altenis, 1994). It means that we can 

rank and compare the sets of m points Xi, i = 1, m. A visual human criterion 

may be used here. Further investigations require to answer many interesting 

questions. For instance, 

- what is a formal (not visual-human) similarity criterion of the sets, 

- how to compare the sets visually when n > 2; whether any two-

dimensional projections may be used? 
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~. 

'1'= 1 '1'= -0.1 

"0. 

". ..' 
'1'= 1 '1'= -0.1 

... = 1 ... = .0.1 

Fig. 9 (Continuation). 771 (1) and 771 (-0.1) for six different sets of 

points Xi, i = 1, m. 

We observe a tendency of dependence of the pictures of the sequence on 

variance D* f, calculated on the basis of m points Xi, i = 1, m. The pictures 

from Fig. 10 are put in an increasing order of D* f, and only one pair of pictures 

violates the monotony of D· f in Fig. 9. 

We also see that such an evolution of views may be well detected in the 

case of functions whose variance D* f varies in a wide range for different 

sets of points Xi, i = 1, m. Such functions often appear in practice. The 

problem of computer-aided synthesis of the external circuit of the TRAPATI­

generator possesses such a property, too. Function f6(X) is positive for any 
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X and its values varies in a wide range. Therefore, it is possible to analyse 
the transformation 19[fs(X)]. In this case, the evolution of views is not so 
impressive, however the decision on the new coordinates is more exact. 

9. Application of new coordinates in the optimization. Fig. 11 illustrates 

the introduction of a new coordinate system and its application in the opti­

mization. The extremal problem, containing Branin's function 14(:1:1, :1:2), has 

been analysed. The problem was simplified by introducing a new coordinate 

system Y = (Yl, Y2) and by fixing the variable Y2' The new problem has only 

one variable Y1' This variable is entirely determined by the point (:l:i, :1:2) and 

the angle a (for a see Fig. 11). Let us denote the objective function of the 

simplified problem by A(yt}. 100000 different points (xi, X2) were generated 

at random in the definition domain A·. The values of 14 were calculated at five 

different points yL i = I;5, for each (xi, x2): A(yf) = 14(xi,:l:2) and the 

remaining four points y{, i = 2,5, were selected at random in the definition 

domain. Thus, some steps of random search for the minimum of the function, 

dependent on a single variable, have been made. The results were averaged 

by all the 100000 searches. The averaged minimal value l:un is presented in 

Fig. 11 dependent on a. The pointers repeat the results of visual and factor 

analysis from Fig. 8. The results of Fig. 11 prove the possibility of applying 

the analysis presented in this paper. 

35 ftin 

30 

25 VA FA 

1 1 20 

15 "~ 10 r i i Xl 
5 VA FA VA 
0 et. 

0 11/4 1[/2 3'11/4 '11 

Fig. 11. Averaged results of minimization. 
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10. Conclusions. The results presented in this paper make the basis for new 

directions in the analysis of extremal problems. The method of visual analysis 

of the set of objective function values has been proposed. It ensures a high 

quality of analysis when the used number of function values is small, a minor 

dependence of results on the analysed set of function values, and a possibility 

of identifying a specific character of the function. The results of analysis may 

be used in creating a new coordinate system of the extremal problem and in 

the graphical representation of the observed data. 

The efficiency of analysis depends on the software abilities. The 

WINDOWS-oriented application with a mouse managed choice of the best 

direction has been made. It simplifies the visual analysis of data sets. 

When the investigator makes a decision on the new coordinates, he can 

better evaluate or predict the evolution of a picture and make some approxima­

tions. Fig. 9 and 10 illustrate such an evolution. The investigator often has an 

opportunity to observe some different data sets for the same function. This also 

increases the quality of final analysis. The factor analysis gives a new direction 

taking into account only one concrete data set. In this case, any new point may 

essentially influence the new direction. 

Let a set of points Xi, i = 1, m, be generated at random. The variance 

D* I depends on this set. The search for new coordinates (both visually and 

using the factor analysis) will be more effective in the case of slight dependence 

of D* I on different sets of points Xi, i = 1, m. Therefore, such a dependence 

may be reduced by using greater m. A sufficient value of m depends on 

the complexity of the function I(X). For example, m = 30 is sufficient for 

the functions /I, 12, Is, and 14, but insufficient for 16' Also, the reduction of 

variance may sometimes be achieved by using, e.g., logarithmic transformations 

of the objective function. 

The factor analysis may be applied in search of directions just like the 

visual analysis. However, the factor analysis uses another criterion of 'changes 

of function', and its results are often different as compared with the visual 

analysis. In a global sense however, we can observe similarities of results 

obtained by both these approaches (see Fig. 8). 

Further investigations may be directed to the extension of areas of applica­

tion of the proposed analysis in the optimization. 
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OPTIMIZAVIMO UZDAVINIlJ VIZUALI ANALIZE 

Gintautas DZEMYDA 

Tyrimo tiksIas yra naujll optimizavimo uMavinio analizes booll paie§ka. PasiUly­
tas tiksIo funkcijos reik§mill aibes vizualios analizes metodas. Jis igalina rasti kryptj. 
kur funkcijos kaita yra didliausia. PasiUlytas metodas ultikrina gefll analizes kokyb~. 
lcuomet turime nedaug tiksIo funkcijos stebejimll. ir galimyb~ identifikuoti tiksIo funkci­
jos specifik/l. Analizes rezuItatai yra naudojami kuriant naujll koordinal!ill sistemll. 


