
INFO&V1ATICA, 1997, Vol. 8, No.1, 153-175

PROGRAM ANALYSIS AND VISUALISATION:

TOWARDS A DECLARATIVE APPROACH

Diana SIDARKEVICrUTE

Department of Teleinformatics, Royal Institute of Technology
Electrum 204, 16440 Kista, Sweden
E-mail: diana@it.kth.se

Abstract. The aim of program analysis and visualisation (PA& V) is to help the program­
mer understand a program by means of graphical presentations of different aspects of the
program. Program analysis and visualisation systems can be classified according to the
specification method of visualisation, e.g., in what way can the user of the system specify
his own visualisers. In the article three specification methods (predefinition, annotation
and declaration) are discussed and some example systems are presented. Particular
attention is paid to the declarative specification method, thus, in addition, knowledge­
based program analysers are discussed. Increased understandability and modifiability
are argued to be the main advantages of declarative PA&V systems.

The general discussion is continued by a short presentation of a case study, where
the declarative and synthesisable visualisation in the NUT system is discussed.

Key words: program analysis, program understanding, program visualisation, declar­
ative visualisation, knowledge-based program analysis

1. Introduction

Program analysis and understanding. The aim of program code analysis

is to help the programmer understand the functionality of a program. What is

then program understanding? The definition of program understanding consti­

tutes itself a research topic. We agree with the informal definition provided

in the paper Biggerstaff et al. (1994): "a person understands a program when

able to explain the program, its structure, its behaviour, its effects on its oper­

ational context, and its relationships to its application domain in terms that are

qualitatively different from the tokens used to construct the source code of the

programs" .

Program understanding has been called a challenge of the 90's (Corbi, 1989).

This statement is in no need of justification. A huge amount of legacy code is in

154 Program analysis and visualisation: towards a declarative approach

use which is difficult to maintain, difficult to change and even more difficult, or

even impossible, to discard. Documentation is usually out-of-date, inconsistent

or incomplete. Working in such conditions "programmers have become part
historian, part detective, and part clairvoyant" (Corbi, 1989). It follows that

any tool, which facilitates program analysis and understanding is valuable.

In software engineering research, program understanding is, according to

Johnson (1994), understood in two different ways: "some use it to refer to

automated techniques that determine the intended function of a software system
from source code. Others use it to refer to tools that help people understand
the design of a piece of software but may not be capable of analyzing the code

themsel ves".

We assume that only intensive research and experimentation can transform
the current assistant-tools into fully automated "decision-makers". Conse­

quently we shall only discuss the tools and techniques of program analysis
aimed at helping the programmer with program understanding.

Program visualisation. Traditionally in software engineering tools, pro­
gram understanding has been enhanced by means of graphical presentations
illustrating divers aspects of a program. The construction of a graphical pre­
sentation of a program is called pro gram visualisation. The term software

visualisation is also used instead of program visualisation, although we argue
that software visualisation covers much more. In addition to program visualisa­
tion it may also include visualisations of requirement specifications, information
of configurations, history of corrections and similar.

Program visualisation, as discussed in (Shu, 1988), covers pretty-printing of
source programs, visualisation through diagrams, multiple views of a program

and its execution states, algorithm animation. It is interesting to observe that
most program visualisation systems introduce their own graphical notations as

well as methods for the presentation of the textual code. It is rather difficult
to distill a common notation or technique. This is, of course, in part due to
the fact that the systems have quite different goals. But it also indicates that

program visualisation is still in the experimental stage.

The distinction between program analysis and program visualisation tools
is not clear-cut. On one hand, program visualisation tools usually work with a
fixed program model (for example, an abstract syntax tree) and place the main
emphasis on efficient and appropriate graphical presentations of the information

D. Sidarkeviciiite 155

from the model; whereas program analysis tools offer alternative, advanced

program models (such as, for example, connectionist models). On the other

hand, every program visualisation tool contains at least one analysis feature,
and program analysis tools usually include graphical presentations of program

models. As the distinction is highly subjective and, in many cases, cannot

be deduced from articles, we will henceforward refer to program analysis and

program visualisation tools as: program analysis and visualisation tools ..

Program analysis and visualisation. Program analysis and visualisation

(PA& V) research investigates the ways of combining the features of program
analysis and program visualisation tools. Ideally, PA&V tools should offer
the possibility to specify different program models and to present these models
graphically in different (also specifiable) ways. Neither of the systems presented

in the paper fully satisfy these requirements. In practice, PA&V tools do not
cover such a wide range of features and either program analysis or program
visualisation is limited.

The organisation of the paper. The paper discusses current trends in the
development of tools for program analysis and visualisation. These trends are
revealed in an overview of a set of existing PA&V tools (Part 2) where the
systems are classified according to the specification method of visualisation.
Three common methods are discussed: predefinition, annotation and declara­
tion. For each of these methods, a description, example systems and notes on
limitations and advantages are given. The overview of PA&V tools is contin­
ued (Part 3) by a presentation of knowledge-based program analysers. Then
the general discussion is "mapped" to a case study (Part 4). In partiCUlar, we

discuss the development and usage of declarative and synthesisable program
visualisers in the NUT system (the NUT system itself and the language are
also briefly presented in the article). An illustration of the construction of a

declarative visualiser as well as its work are provided informally, through an

example.

2. Specification methods of PA&V tools. Researchers contributing to the
PA&V field offer different classifications of systems being developed. Price

et al. (1993) use such classification criteria like scope, form, content, method,

interaction and effectiveness, whereas Roman and Cox (1993) consider scope,

abstraction, interface, presentation and specification method. In this article
we adopt the last criteria mentioned - specification method. Thus, we ask the

156 Program analysis and visualisation: towards a declarative approach

question: Can the user of a particular PA& V system specify his own visualisers?

If yes, then how? As in the taxonomy of Roman and Cox (1993), we distinguish

three main specification methods: predefinition, annotation and declaration.

2.1. Predefinition

2.1.1. Method description. Tools with a predefined method for PA&V hide

inside a "black box" all knowledge employed in the visualisation process. The

user can neither construct his own views nor modify them and is obliged to

employ the predefined graphical notation.

2.1.2. Examples: code viewers. The most common PA&V tools are code

viewers - tools, which offer the user a fixed set of graphical presentations of an

input program. In a series of articles (Koskinen et aI., 1994; Linos and Courtois,

1994; Wilde and Huitt, 1992) on object-oriented program maintenance, a book

on visual object-oriented programming (Burnett et aI., 1995) (articles (Citrin

et aI., 1995; Chang et ai., 1995; Grundy et aI., 1995) in particular) a rich set

of views is offered. These include the following (the list could definitely be

lengthened by consulting more articles and books):

• control flow graphs;

• data flow graphs;

• backward and forward slicers (showing the minimal subset of the code
that affects a set of variables and showing the minimal subset of the

code affected by a set of variables);

• dicers (showing the subset of the code that can be executed when a given
assertion is true);

• definition/usage graphs of program variables;

• call graphs;

• module dependence graphs;

• class hierarchies (inheritance, containment) in 00 programs;

• tracing chains of polymorphic functions;

• symbols' (program tokens) lookups;

• deadcode views;

• program layers;

• results of simple queries;

• domain-specific execution visualisers.

The construction of some views is also a feature in many CASE tools which

D. Sidarkeviciute 157

support reengineering. For example, in Rational Rose (a product of Rational
Software Corp.) inheritance and aggregation hierarchies can be shown from the

user's C++ program. Similarly, but more configurable, the Graphical Designer
(a product of Advanced Software Technologies, Inc.) constructs a variety of
views of C and C++ programs.

Why are there so many and so different views? The existence of code views

is based on the idea of program dependencies. A program dependency can

be described as a triple {Point lIn Code , Point2InCode, Link}. (An exam­
ple could be (Class!, Class2, Inheritance}.) On the other hand, during the
development of the area of software engineering, various graph-based presen­
tations of software were offered, beginning with simple program block-charts
and continuing to the present day object-oriented diagrams. The graphs are

also described by a triple {N odel, N ode2, Link}. Combining various program
dependencies and views of graphs has caused the emergence of quite a varied
set of program views. In essence, the process of viewing a program as a graph
includes the extraction of instances of a program dependency, the storage of
these instances, and the retrieval (for a query) or mapping to a graph (for a
graphical view). Chen et al. (1990) point to the need of having a concise
conceptual model (for example, the entity-relationship model), which defines
the software objects and relationships at a selected level of abstraction. But in
many of the aforementioned articles this need is not addressed.

2.1.3. Method advantages and limitations. The main advantage of the
above mentioned systems is performance. A<; the construction of views is
predefined, then specialised, optimised algorithms can be applied. Very often
program visualisation is but one feature among others, nicely integrated with

other subsystems (like forward and reverse engineering features are integrated
in many CASE tools).

Users of these systems face different kinds of problems. First, they are

often offered a narrow set of views in one system. Users may have their own,
highly individual "mental maps" of programs. The potential user of program

visualisation tools is, most probably, a programmer himself and capable of

specifying his own visualisers. It could be argued that the user should be
provided with the option to specify his own visualisers, considering that PA&V
is still a hot research topic and that researchers are still far from having defined
the complete set of program views.

158 Program analysis and visualisation: towards a declarative approach

Second, the semantics of graphical symbols used are described in a very

informal way. If we can assume that a program dependency can be explained

informally or understood intuitively (which is not always true), then we cannot

rely on an informal description of the mapping from a program dependency

to a graphical view. Suppose, for example, that two classes in a graph are

joined with a line presenting link "uses". Do we take into account calling a

class from an implementation of a method of another class or not? This and

similar points might not be clear. Evidently, the user would like to open the

"black box" or, in other words, he needs access to internal representations of

visualisers.

2.2. Annotation

2.2.1. Method description. The annotation method is mainly applied in

algorithm animation. Here, the user develops animation procedures and marks

(or annotates) an input program text with calls to these procedures. Procedures'

parameters are used for data passing.

2.2.2. Examples: program animators. In the Balsa-II system (Brown,

1988), the animation of an algorithm involves three steps. First, the program is

split into three components: the algorithm itself, various input generators that
provide data for the algorithm and different views. Second, the components

are implemented. Components have parameters through which the data is ex­

changed. The implementation of new views or input generators involves the

reuse of existing components from the library. Third, views and input gener­

ators which can be used with each algorithm are identified and named. The

main effort of a Balsa-II programmer is spent in annotating the algorithm being

animated. This is quite understandable, as the identification of the essential

operations in the algorithm is by no means a trivial task itself. To the eager

reader we suggest to take a look at the article (Brown, 1988), where the differ­

ent steps in the construction of the animation are presented (as well as attractive

snapshots of animations).

The Tango system (Stasko, 1990) is based on a framework which includes

three components. To produce an animation, the user must 1) annotate the

program with algorithm operations (or calls to animation procedures - as named

above), 2) write animation actions and 3) specify the mapping from algorithm

operations to animation scenes. Keeping mapping and animation procedures

D. Sidarkeviciiite 159

separated gives a significant advantage in flexibility tenns as the user can change
the animation simply by editing the mapping file.

2.2.3. Method advantages and limitations. The key advantage of the

annotation method is that the user is permitted to provide his own definition

of what should be animated and how. The user can himself define appropriate

events in program execution as well as the way these events should be presented

graphically.

The possibility to write your own animation procedures can be considered
a disadvantage as well, because it consumes additional work. Here, libraries
of animation procedures facilitate the process and ea.<;e the workload. But then

instead, libraries must be well understood themselves, which is not a trivial task
in imperative programming. One more disadvantage of the annotation method
is the need to modify the program code.

2.3. Declaration

2.3.1. Method description. PA&V tools which apply declarative ap­
proaches differ as significanHy from each other as different are the methods
which can be typed declarative. Typically, the user is provided with an en­
vironment in wich he can specify his own visualisers in a given declarative
language. As shown in Fig. 1, the process of writing your own visualiser
includes, essentially, the specification of program and view models and of a
mapping between these models. The extraction of a program model from an
input program and the presentation of the view graphically can also be specified
by the user or else done automatically by the system. Additional models (like

a user model or similar) can easily be added in the same way as, for example,
a new view model.

2.3.2. Examples: declarative visualisers. The usage of the declarative

approach in PA&V systems ranges from the introduction of simple declarative

mappings to the employment of declarative languages tailored to the specifics

ofPA&V.

Declarative mappings. In the aforementioned TANGO system the control

file serves as storage place for the declarative specifications. Here the names of

algorithm operations and animation scenes and mappings between them can be
listed. The mappings have simple form: algorithm operations ---+ animation

scenes.

160 Program analysis and visualisation: towards a declarative approach

..
JII

Programs

r A PA&V toolkit

.",.. - --...
/ Knowledge \ / Knowledge \
I about program~ 1 about views 1
I (a program I I (a view 1
\ model) /' model) I

...! - -- - - --. 4 ~----'1fl 4~ ~ Knowledge ", .. '
C'~(» .1 about mapping ~

I between program I
and view models J ,---_/

I
-I~

Views

Fig. I. The general architecture of a declarative PA&V toolkit.

In the reflexion model approach (Murthy et aI., 1995) for software analysis,

a reflexion model is introduced in addition to a source model, a high-level model

and a mapping. Although the authors do not purport to follow a declarative

approach, they actually use a declarative language for the specification of maps.

(Selfridge and Heineman, 1994) Interactive Code Understanding Environ­

ment (ICUB) takes the infonnation about a C program stored in a database

and provides the user with a graphical query-formation facility as well as the
environment for manipulating object graphs (the graphical representations of

the results of queries).

Declarative languages. In the Pavane system (Roman et al., 1992) the

underlying visualisation model is declarative in the sense that visualisation is

treated as a mapping from program states to a three-dimensional world of ge­

ometric objects. All mappings are represented by rules. Rules can be added,

deleted or modified during visualisation. The specification of the visualisation

in Pavane requires the user to formally specify the state of programs. This

forces the user to work more on the conceptualisation of program behaviour,

which although being a time-consuming requirement also gives a fundamen­

tal benefit - a deeper understanding of the nature of computations and their

graphical representations.

D. Sidarkeviciiite 161

In the SPElCemo system (Grundy et al., 1995), users are free to choose

both the contents and layout of views. The construction of new display ab­

stractions involves specialising and creating new abstractor classes (written in
Snart), while new display visualisations can be developed using the icon layout

language. Both Snart (an object-oriented extension to PROLOG) and the icon
layout language are declarative.

The key technological idea in the (Kotik and Markosian, 1992) approach is

code representation as an annotated abstract syntax tree in an object-oriented
database. This approach differs essentially from code viewers (discussed above)

as it also provides a high-level language, the Refine language, which allows
the user to operate on the abstract syntax tree. For example, one can define
one's own analysis functions. The same language is used for the specification
of graphical views of the results of analysis functions. This is implemented
in Refine Language Tools (a product of Rea~oning Systems, Inc.), where the
initial set of graphical views can be extended with views written by the user in
the Refine language.

In the SoftSpy system (discussed in more detail in Part 4), the user is given
full liberty to specify his own visualisers in the NUT language. A specification,

as well a~ a request for computation, are translated into logical language, a
proof is performed and, if successful, a visualiser is synthesised. The user
is also provided with an environment, which has facilities for NUT language

processing, graphics management and other.

2.3.3. Method advantages and limitations. In the declarative approach
the user has to abstract (or conceptualise) the construction of a program's view
and to record the abstraction (or a conceptual model) in a given declarative

language. The conceptualisation is always time and effort-consuming work.

But this conceptualisation is in any case performed by the user when trying to

understand a program. And so, the main role of a declarative PA&V system
is to provide an environment, where the user can operate with the conceptual

models he produced: to record, reuse or modify them.

An explicit representation is particularly important in the process of PA&V,

as in this case, at least two distinct conceptual models are involved: a model

of the program and another of its view. The mapping between different models
is declarative by nature, and, can thus, more naturally be represented in a

declarative language.

162 Program analysis and visualisation: towards a declarative approach

In addition to being more understandable, visualisers written in a declarative

language are easier to modify. Easy addition, deletion or change of atomic

units of knowledge (like rules, definitions of domain entities etc.) is a feature

inherited from knowledge-based systems (knowledge-based systems are chosen

as implementation environments for many declarative visualisers).

The main disadvantage (which declarative PA&V systems inherited from

knowledge-based systems) is a low speed of execution. The good side of

the coin is that speed measures of many knowledge-based methods have been

extensively investigated and optimisations are known. In addition, the language

used is usually adapted to the visualisation problem and simplified.

3. Knowledge-based program analysers. Kozaczynski et al. (1992); John­

son (1994) discuss the general organisation of typical knowledge-based program
analysers. This organisation usually includes the parsing of a code, typically

generating an abstract syntax tree representation, stored in a knowledge base.
The knowledge base also includes representations of programming knowledge
or, more precisely, common programming patterns and techniques, variously

called design schemas, programming cliches and programming plans. The anal­
yser matches the programming patterns with the code to infer that higher-level

specification concepts are present in the code. The user of a knowledge-based
code analyser is provided with the possibility to modify the knowledge-base

(programming patterns) as well as to use inferential services by asking ques­

tions.

Various representations of programming knowledge and system models a<;

well as inferential features influenced the development of different knowledge­
based software analysers:

• Wills (1992) studies a graph parsing approach to automating program

recognition in which programs are represented as attributed dataflow

graphs and a library of cliches is encoded as an attributed grammar. A

graph parsing algorithm is used to recognise cliches in the code .

• Quilici (1994) represents programming plans as data structures contain­

ing two parts: a plan definition, which lists the attributes of the plan that

are filled in when instances of the plan are created, and a plan recog­

nition rule, which lists the components of a plan and the constraints
on those components. An instance of the plan is recognised when all

its components have been recognised without violating the constraints.

D. Sidarkeviciute 163

In addition, each programming plan also includes indices, specialisation

constraints, and a list of implied plans. The algorithm employed makes

use of indices in order to suggest general candidate plans to match top­

down against the code, specialisations to refine these general plans once

they are recognised, and implications to recognise other, related plans

without doing further matching.

• the LaSSIE system (Devanbu et al., 1991) provides two types of infer­

ence: sUbsumption and rules. The knowledge base has descriptions of

the objects and operations in the domain, the processes, layers and mes­

sages in the architecture, and the functions, variables and files a.<;sociated

with the code.

• GEN++ (Devanbu et al., 1992), a code analysis tool generator for C++,
is implemented by attaching the portable parse tree querying mechanism

to the Cfront compiler. GENOA is an applications' generator that pro­

duces arbitrary analysers from specifications. The GENOA language has

special iteration operators that are tuned for expressing simple, polyno­
mial time analysis programs. The GENOA specification language uses

the vocabulary of abstract syntax trees.

• Kozaczynski et al. (1992); Harandi and Ning (1990) use an object­
oriented environment to implement the concept recognition system. All

language and abstract concepts are represented internally as objects of

a knowledge base. Plans are also objects and have methods associated

with them for recognising concept instances. These instances are found

by pattern matching, which is a unification of abstract syntax trees of

the attribute values.

• In the DESIRE system (Biggerstaff et al., 1994), a domain model know­

ledge-base is built as a semantic/connectionist hybrid network and a

connectionist-based inference engine is employed.

The section below is devoted to a case study. We discuss the results in the

development of toolkits for program analysis in the NUT system. In particular,

we point out both merits and deficiencies of a toolkit (for the presentation of

predefined graphical views of a code). We then reason about the considerable

improvements of this toolkit when shifting to a declarative approach.

164 Program analysis and visualisation: towards a declarative approach

4. PA&V in the NUT system

4.1. A general introduction to the NUT system. NUT is a system of object­

oriented programming with features of automatic program synthesis (Tyugy,

1991). The NUT programming language rests on two paradigms: procedural

object-oriented programming and the automatic synthesis of programs from

declarative specifications. The latter is a technique for automatic construction

of programs for unprogrammed procedures out of their specifications and of

the programs and specifications of programmed procedures. Here a procedure's

specification embodies its external view (states the names of its input and output

parameters). The automatic synthesis of programs, as practised in NUT, is based

on proof search in intuitionistic propositional logic (a more detailed description

of the NUT system and the NUT language can be found in (Uustalu et al.,
1994».

The feature of the NUT language of being both an <?bject-oriented program­

ming language and a declarative language, lead us to the idea of carrying out

various PA&V experiments. That is, starting with the development of code

viewers for object-oriented programs we then moved on to the investigation

of declarative analysis of the same code. The NUT system is well suited to

this purpose as there is no need to change language and environment when

switching to a new (declarative) technique.

In the following two subsections, we discuss the results of our experimen­

tation in PA&V in the NUT system: predefined and declarative approaches.

The predefined approach presents a toolkit for creating graphical views of NUT

programs. Discussion on the declarative approach includes informal and brief

introduction to the problem-oriented language, logical language, proof or in­

ferencing issues as well as an example - once again the toolkit for creating

graphical views of NUT programs. The programs selected for analysis were

written in the NUT language.

4.2. A toolldt for creating OMT-based views of a program with the pre­

defined spedflcaUon method. A toolkit (SidarkeviCiiire et al., 1995) for the

automatic visualisation of object-oriented software modules (or packa~es as

they are called in the NUT system) was developed. The OMT (Rumbaugh

et al., 1991) graphical notation was selected, because it includes notations for

the representation of static, dynamic and functional aspects of a system. OMT

, graphical icons are simple to draw, adapt and modify. In addition, many pro-

D. Sidarkeviciilte 165

grammers possess knowledge about OMT.

For the presentation of the static structure, three graphical symbols from the

OMT Object Model were borrowed and adapted. First, the class icon shows

the name, attributes and methods of a particular class. Inherited attributes

and methods are also shown. Second, the class hierarchy is visualised in a

vertical tree (as it is in the OMT Object Model). Third, the aggregation tree is

illustrated with a horizontal tree by using the icon for aggregation association

of OMT OM. Other associations are not shown. The dynamic aspect" of a

code are displayed through the visualisation of a synthesised algorithm. For

the visualisation of functional dependencies and dataflow, the OMT Functional

Model was chosen and slightly modified. The NUT system provides program

synthesis on higher-order functional constraint., networks (HOFCN) - which

have their own graphical notation. The graphical notation of HOFCN and the

modified graphical notation of the OMT Functional Model were combined.

Thus, in the functional model the data flow between the methods of a class is

shown. Class methods (including equivalences and equations) are considered

to be processes of the OMT Functional Model.

Some snapshots of the views constructed by the toolkit can be found on

www on the address:

http://wwv.it.kth.se/edu/gru/KBPVT/projects/softspy.html.

A number of experiments were carried out. The purpose of the experiments

was to estimate how much the suggested visualisation can help in understanding

the program and evaluating the design. Observations were made like follows.

Inheritance trees help in acquiring a general view of the static structure of a

package: how many classes are employed and how many attributes and methods

are used in their definitions, whether the names chosen are self-explanatory, etc.

We are able to detect empty or too big classes. Aggregation trees provide a

clue for discovering the "main" actors of a package. These are the classes

which usually have more aggregated classes and are normally the most general

classes of the design of a given problem. One can go further from this point

by investigating functional models of these "actors". A functional model of a

class helps the user to trace the computation of class attributes.

Some deficiencies were also detected when using this toolkit. First, the

correspondence between parts of the program and graphical symbols was de­

scribed very informally, and so a considerable amount of time had to be spent

166 Program analysis and visualisation: towards a declarative approach

Problem-oriented language

L Logical language

L Proof

L Synthesised program

Fig. 2. The relation between languages, proof and program in the NUT

system.

in order to get the meaning of pictures ("What does this symbol stand for in

the code?"). Second, a very narrow set of views was offered (''Why can I not

create my own view?"). For example if the user is interested only in coupling

between classes or, more simple, to have just elMS names in inheritance trees,

he can not in a flexible way specify the view he wishes to have.

The exploration of the declarative features of the NUT language seemed to

deal with both problems: it would allow the user to explicitly specify any kind

of internal representations and mappings involved while the structual synthesis

of programs would deal with assembling the visualiser from the specifications.

Thus we switched to the declarative approach in order to further extend the

functionality of the code analysis toolkit.

4.3. A declarative approach. The key idea behind our declarative approach

discussed is the usage of the NUT language for the representation of knowledge

about a program and its various views. As shown in Fig. 2, the user starts by
specifying his visualiser in a problem-oriented language (the NUT language).

Then this specification is automatically mapped into a logical language in which

a proof for the request is perfonned. If the proof succeeds, the program (or a

visualiser) is synthesised. The rest of this section will be devoted to illustrating

each of the steps in the process of constructing a visualiser. In order not

to burden the reader with theoretical and technical details, the illustration is

provided informally, with the help of an example.

D. Sidarkeviciiite 167

An example: an OMT-based visualiser. As in Section 4.2 we again discuss

an OMT-based graphical presentation of a NUT program. We redevelop our

toolkit in the declarative manner as discussed just above and presented in Fig. 1.

We get three system-subparts: a representation of a program model, a repre­

sentation of OM (Object Model of OMT) and a representation of the mapping

of a model to OM. Fig. 3 gives a snapshot of these subparts. The representation

of the model includes the classes Package, Class, Object (two classes are shown

on the left side of Fig. 3). Each of the classes has a method Extract... which

defines how particular attributes of the class could be computed in the particular

package. The representation of OM consists of the classes OM, OMClass, OM­

InhLink, OMAggrLink (two classes are shown on the right side of Fig. 3). The

classes describe OM diagrams in the NUT language and may contain methods

Draw ... for the construction of a drawing. The mapping between Package and

OM is represented by two classes: PackageToOM and ClassToOMClass (shown

in the middle of Fig. 3). In the class PackageToOM, the specification of the

method Compute Classes declares that if in the class ClassToOMClass from

Class, OMClass can be computed then, from Package. Classes, OM. Classes

can be computed. The class ClassToOMClass explicitly defines the mapping

between the class in the program model and the class in OM.

The synthesis of a visualiser can be requested by the goal obj.compute

(Drawing) -- here obj is any object of a class OM.

Problem-oriented language. Classes in the NUT language are used as the

main entities of model representation. Classes act as computational frames as

they are enriched with computability axioms (marked with 1 in Fig. 3), which

contain information about the computability of class components. A class can

also have an image (for example, an image of a OMClass is a rectangle with

one input and one output ports and a parameter for a name).

The NUT language is tailored to PA&V problem, by extending the stan­

dard function libraries with three new libraries: a library for the extraction of

information from a program, another for the graphical layout and a third for

passing data to visualisation in MatLab (a product of the MathWorks, Inc.).

The libraries are linked dynamically.

The extraction of information from the program is supported by a set of

reflective functions (marked with 3 in Fig. 3), such as get classes, getvar, getrel,

etc. The set of available functions covers the extraction of all entities and

168 Program analysis and visualisation: towards a declarative approach

Fig. 3. Parts of the specification of an ~MT-based visualiser in the NUT

language: 1) specification of the ~MT-based view; 2) explicit in­

vocation of inference; 3) extraction of information directly from

the program code; 4) passing of information for graphical layout.

relations according to the ontology (or model) of the program. If the user

analyses a non-NUT program, he can write extraction functions in the NUT

language or invoke programs written in other languages. The existence of

reflective functions in NUT facilitates our program analysis task considerably.

The program model is easy to build in terms of these functions.

The functions of an independent graphical layout generate a drawing from

simple graph specifications. We solved the task of automatic layout of the

diagrams as an instance of the general graph drawing problem (Kuusik et al.,
1996). We adapted algorithms addressing directed acyclic graphs, which per­

form, first, a level assignment of nodes by tracing their connections, and then
apply some heuristics to reduce edge crossings and bends. The layout algorithm

is encapsulated in a separate, self-contained graph layout subsystem under NUT.

Functions of this subsystem (marked with 4 in Fig. 3) allow one to construct a

D. Sidarkeviciiite 169

graph in a declarative way by adding edges and nodes to the graph, to request a

layout calculation on the constructed graph, and finally, to store the layout as a

scheme (diagram representation) of some existing class. The user can view the

automatically generated diagram by requesting the NUT graphics subsystem to

show the scheme of that class.

Visualisation of data in the MatLab is performed by the use of ready made

classes such as Matrix, MatlabLow, MatlabAnim. The link to the Matlab is

transparent for the user, e.g., the user specifies in the NUT language the visu­

alisation in the MatLab.

Logical language. A logical justification for the NUT declarative language

and the main reasoning procedure - the structural synthesis of programs - is
provided in (Uustalu, 1996). The explanation is given in terms of a simple

intuitionistic normal modal logic as the observation is made that "classification

and computability statements are object-relative in object-oriented synthesis in

the same way as propositions are world-relative in normal modal logics - objects
and worlds are implicit in the language of each". Thus, objects are treated

as worlds and component relations between objects as accessibility relations

between worlds.

EXAMPLE 1. The classes PackageToOM and ClassToOMClass definitions
given in Fig. 3 are translated into the following axioms (we shorten ClassTo­

OMClass to CTOMC, PackageToOM to PTOM, OMClass to OMC, Package to P,
Classes to Cls and Class to Cl):

PTOM :J (p}p (1)

PTOM :J (OM}OM (2)

PTOM:J H(CTOMC:J ((Cl}r:J (OMC}r))(P) (Cls}r :J (OM}(Cls}r (3)

CTOMC :J (Cl}Cl (4)

CTOMC :J (OMC}OMC (5)

CTOMC:J ((Cl) (Name}r :J (OMC}(Name}r) (6)

CTOMC:J ((Cl}(VarNames}r:J (OMC}(Attributes}r) (7)

CTOMC:J ((Cl) (RelNames}r :J (OMC}(Operations}r) (8)

Here r stands for computability, (ClassComponentName) and [*] denote
accessibility relations. For example, axiom (6) is interpreted as follows: the

170 Program analysis and visualisation: towards a declarative approach

world (or object) w of the class crOMC implies that if there exists such a world

Wi, which is accessible from w via relations Cl and Name and is computable,

then there exists such a world wI!, which is accessible from w via relations OMC

and Name and is computable. End of Example 1.

Proof. The inferencing carried out by the NUT system is called provable

realizability (Uustalu, 1995). Its main goal is to prove the computability or oon­

computability of an object or its component. If computability can be proven,

then an algorithm (or a program) for its computation is synthesised. A logical

justification of the computability inferencing is also provided in (Uustalu, 1996)

and not discussed here. Rather, an informal illustration of the inferencing

procedure is provided by an example.

EXAMPLE 2. If we consider the classes discussed in Example 1, the goal

given to the system could be: given an object w of the class prOM with computed

component Package. Classes, find an algorithm for computing its component

OM. Classes. This amounts to proving the inference (here the abbreviation of

1 . th . 1 w : prOM w: (P)(Cls)r
c ass names IS e same as m Examp e 1): .

w : (OM)(Cls)r
The derivation (based on the rules presented in (Uustalu, 1996) is the fol-

lowing:

e
(3) w : PTOM Wi: (OMC)r

w: [*](crOM :J ((Cl)r:J (OMC)r)) w : [*](CTOM:J

:J ((p}(Cls)r:J (OM)(Cls)r) ((Cl)r:J (OMc)r)) w: (P)(Cls)r

w : (OM)(Cls)r

Wi : (Cl)r Wi: crOMC
Here e stands for the proof (.

Wi: OMC)r
This amounts to proving the inference

Wi : (Cl}r Wi: crOMC

Wi : (OMC}(Name}r 1\ (OMC) (Attributes}r 1\ (OMC)(Operations}r'

because OMC has the components Name, Attributes and Operations.
Wi : (Cl}r Wi: crOMC . .

The proof of () () IS the followmg:
Wi: OMC Name r

(6) Wi: CrOMC

Wi: (Cl) (Name)r :J (OMC)(Name)r Wi: (Cl)(Name)r

Wi : (OMC)(Name)r

D. Sidarkeviciute 171

Here w' : (Cl) (Name)r follows from w' : (Cl)r, as Name is a component of
Cl.

In the same way {OMC)(Attributes)r from (Cl}(VarNames)r and
(OMC) (Operations)r from LCl}{RelNames)r are proved.

The proof is completed. End of Example 2.

Synthesised programs. If the proof succeeds, a program for computing the

requested component is synthesised.

Let us return to our example of an OMT-based visualiser, where the request

to compute Drawing is given. In the case when classes do not possess enough

information for the computability of Drawing, the unsolvable problem will be
reported. In the positive case, the program will also be synthesised.

Fig. 4 presents the results of the work of the synthesised visualiser. As input

program a visualiser's program was chosen.

FUe Edit 1IrT_ u-t.. ~ Options

Fig. 4. Part of the view constructed by an OMT-based visualiser from a

NUf program.

172 Program analysis and visualisation: towards a declarative approach

The advantages of a declarative approach. First, the user can easily modify

his viewer. For example, if one does not want aggregation links presented in the

OM view, it is sufficient just to take away AggregationLinks from the method

DrawOM in the class OM. By invoking inference procedures, the user can
check whether a modified specification still possesses the same component's
computability features as the old one. Second, let us consider the different

representations - one of the program model and another of the ~MT-based view.
The terminology used by programming language authors and OMT authors is

employed in each respective case. For example, the attributes of a class are
called Variables and Virtuals in the model of NUT programs (as in the NUT
language documentation); and they are called Attributes in the ~MT-based
view presentation (so are they called by OMT developers). This brings us
one step closer to naturalness and user-friendliness. Moreover it simplifies
the introduction of changes. Third, one can easily discover, that replacing the
~MT-based viewer with another viewer is not a complicated task. It involves
the development of the NUT language representations of a new view and a
mapping from a program model into this new view.

5. Concluding remarks. We discussed the tendency towards the declara­

tive approach in program analysis and visualisation. Declarative program anal­
ysis and visualisation tools considerably extend the functionality of traditional
PA&V tools. The main achievement is imprOVed modifiability and extensibility
of visualisers. This is due to the reason that explicit declarative specifications
are easier to understand and, consequently, to modify. New program models as
well as new analysers (for example, metrics tools or evaluators) can be added
by adding new specifications.

We also presented a case study: the research in program code analysis in

the NUT system. We argued that viewing a program code in several prede­

fined ways is not sufficient for program understanding. This was motivated by

discussing the results of applying a program visualisation toolkit in the NUT
system. We redeveloped our toolkit in a declarative manner. We used the NUT

declarative language for recording knowledge about PA&V. Provable realisabil­
ity was the main inferencing procedure.

An important issue which has not been thoroughly investigated, and which
forms the basis for future work, is the elaboration of a problem-oriented lan­
guage, e.g., a language for the specification of visualisers. As shown in the

D. SidarkeviciUte 173

paper, a declarative language is suitable to PA&V. But what additional fea­

tures (for example, what standard libraries or suitable language constructs) the

language should have - remains to be investigated.

REFERENCES

Biggerstaff, T. J., B.G. Mitbander, and D.E. Webster (1994). Program understanding

and the concept assignment problem. Communications of the ACM, 37(5), 72-82.

Brown, M.H. (1988). Exploring algorithms using Balsa-II. Computer; 21(5), 14-36.

Burnett, M., A. Goldberg and T. Lewis (Eds.) (1995). Visual Object-Oriented Pro­
gramming: Concepts and Environments. Manning Publications Co., Greenwich CT.

Chang, B.-W., D. Ungar and R. B.Smith (1995). Getting close to objects. In M. Burnett,
A. Goldberg and T. Lewis (Eds.), Visual Object-Oriented Programming: Concepts
and Environments, Manning Publications Co., Greenwich CT. pp. 185-190.

Chen, Y.-F., M.Y. Nishimoto and C. Ramamoorthy (1990). The C information abstrac­

tion system. IEEE Transactions on Software Engineering.

Citrin, W., M. Doherty and B. Zorn (1995). The design of a completely visual OOP
language. In M. Burnett, A. Goldberg and T. Lewis (Eds.), Visual Object-Oriented
Programming: Concepts and Environments. Manning Publications Co., Greenwich

CT, pp. 67-93.

Corbi, T.A. (1989). Program understanding: Challenge for the 1990s. IBM Systems
Journal, 28(2), 294-306.

Devanbu, P., B. Ballard, R. Brachman and P. Selfridge (1991). Lassie: a knowledge­

based software information system. In M. Lowry and R. McCartney (Eds.), Automat­
ing Software Design. AAAI PressfThe MIT Press, Menlo Park, CA. pp. 25-38.

Devanbu, P.T. (1992). Genoa - a customizable, language- and front-end independent code
analyzer. In Proceedings of the Fourteenth International Conference of Software
Engineering (ICSE'92). Melbourne pp. 307-319.

Grundy, J., J. Hosking, S. Fenwick and W. Mugridge (1995). Connecting the pieces. In

M. Burnett, A. Goldberg and T. Lewis (Eds.), Visual Object-Oriented Programming:
Concepts and Environments, Manning Publications Co., Greenwich CT pp. 229-

252.

Harandi, M.T., and J.Q. Ning (1990). Knowledge-based program analysis. IEEE Soft­
ware, 74-81.

Johnson, W. (1994). Knowledge-based software engineering. In A. Kent and J. G.

Williams (Eds.), Encyclopedia of Computer Science and Technology, Vol. 30. Marcel

Dekker, Inc., New York. pp. 173-225.

Koskinen, J., J. Paakki and A. Salminen (1994). Program text as hypertext: Using
program dependencies for transient linking. In Proc. of the 6th Int. Conference on

174 Program analysis and visualisation: towards a declarative approach

Software Engineering and Knowledge Engineering, SEKE'94.

Kotik, G., and L. Markosian (1992). Knowledge-based software reengineering tools.

In Proceedings of the Seventh Knowledge-based Software Engineering Conference.

IEEE Computer Society Press, Los Alamitos, CA.

Kozaczynski, W., J. Ning and T. Sarver (1992). Program concet recognition. In Pro­
ceedings of the Seventh Knowledge-based Software Engineering Conference. IEEE

Computer Society Presss, Los Alamitos, CA. pp. 216-225.

Kuusik, A., D. Sidarkevi~ifite and E. Tyugu (1996). Knowledge Level Software Vi­
sualisation. Technical Report TRITA-IT 96:09, Dept. of Teleinformatics, KTH,

Sweden.

Linos, P. K., and V. Courtois (1994). A tool for understanding object-oriented program

dependencies. In Proc. of the 3rd IEEE Workshop on Program Comprehension.

Murphy, G., D. Notkin and K. Sullivan (1995). Software reflexion models: Bridging

the gap between source and high-level models. In The Third ACM Symposium on
the Foundations of Software Engineering (FSE'95).

Price, B., R. Baecker and I. Small (1993). A principled taxonomy of sofware visualiza­

tion. Journal of Visual Languages and Computing, 4(3), 211-266.

Quilici, A. (1994). A memory-based approach to recognizing programming plans. Com­
munications of the ACM, 37(5), 84-93.

Roman, G.-C., K.C. Cox, C. Wilcox and J.Y. Plun (1992). Pavane: A system for

declarative visualization of concurrent computations. Journal of Visual Languages
and Computing, 3, 161-193.

Roman, G.-C., and K.C. Cox (1993). A taxonomy of program visualization systems.

IEEE Computer, 11-24.

Rumbaugh, J., M. Blaha, W. Premerlani, F. Eddy and W. Lorensen (1991). Object­
oriented Modeling and Design. Prentice Hall International, Inc.

Selfridge, P. G., and G.T. Heineman. (1994). Graphical support for code-level software

understanding. In The Ninth Knowledge-based Software Engineering Conference.
IEEE Computer Society Press. pp. 117-124.

Shu, N. (1988). Visual Programming. Van Nostrand Reinhold Company, New York.

Sidarkevi~itlte, D., M. Addibpour and E. Tyugu (1995). Experimental Software Analysis

in the NUT System. Technical Report TRITA-IT 95:16, Dept. of Teleinformatics,

KTH, Sweden.

Stasko, J.T. (1990). Tango: A framework and system for algorithm animation. Computer,
23(9), 27-39.

Tyugu, E. (1991). Three new generation software environments. Communications of the
ACM, 34(6), 46-59.

Uustalu, T. (1995). Aspects of Structural Synthesis of Programs. Lic. Thesis TRITA-IT
R 95:09, Dept. of Teleinformatics, KTH.

Uustalu, T. (1996). A Modal Justification for Structural Synthesis of Programs in NUT.
Technical Report TRITA-IT 96:06, Dept. of Teleinformatics, KTH, Sweden.

D. Sidarkeviciute 175

Uustalu, T., U. Kopra, V. Kotkas, M. Matskin and E. Tyugu (1994). The NUT language
report. Technical Report TRITA-IT R 94:14, Dept. of Teleinformatics, KTH.

Wilde, N., and R. Huitt (1992). Maintenance support for object-oriented programs. IEEE

Transactions on Software Engineering, 18(12), 1038-1044.

Wills, L.M. (1992). Automated Program Recognition by Graph Parsing. PhD thesis,
MIT.

Received December 1996

D. Sidarkeviciiite started her graduate studies at the Faculty of Mathemat­
ics, Vilnius University, Lithuania Currently she is a doctoral student at the
Department of Teleinformatics of the Royal Institute of Technology, Sweden.
Her research interests include declarative program analysis and visualisation.

PROGRAMQ ANALIZES IR VIZUALIZAVIMO REIKALAVIMQ
SPECnnKAVIMASDEKLARATY~AKALBA

Diana SIDARKEVICIlSff:

Naudojant programl.\ analizes ir vizualizavimo priemones, programos pavaizduo­
jamos grafiskai. Tai daroma, siekiant palengvinti jl.\ suvokimll. Programl.\ analizes ir
klasifikavimo priemones klasifikuojamos pagal tai, kaip yra aprasomi programos vizua­
lizavimo reikalavimai. Reikalavimai gali bUti suformuluoti is anksto ir realizuoti, ku­
riant vizualizavimo priemon~, formuluojami, anotuojant vizualizuojamll programll arba
formuluojami specialiai tam tikslui skirta deklaratyvi<tia kalba. Straipsnyje atlikta sil.\
metodl.\ lyginamoji analize. Ypatingas demesys skirtas deklaratyviajam vizualizavimo
reikalaviml.\ formulavimo metodui, pateikti konkretUs jo taikymo pavyz~iai.

