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Abstract. The aim of program analysis and visualisation (PA& V) is to help the program­
mer understand a program by means of graphical presentations of different aspects of the 
program. Program analysis and visualisation systems can be classified according to the 
specification method of visualisation, e.g., in what way can the user of the system specify 
his own visualisers. In the article three specification methods (predefinition, annotation 
and declaration) are discussed and some example systems are presented. Particular 
attention is paid to the declarative specification method, thus, in addition, knowledge­
based program analysers are discussed. Increased understandability and modifiability 
are argued to be the main advantages of declarative PA&V systems. 

The general discussion is continued by a short presentation of a case study, where 
the declarative and synthesisable visualisation in the NUT system is discussed. 
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1. Introduction 

Program analysis and understanding. The aim of program code analysis 

is to help the programmer understand the functionality of a program. What is 

then program understanding? The definition of program understanding consti­

tutes itself a research topic. We agree with the informal definition provided 

in the paper Biggerstaff et al. (1994): "a person understands a program when 

able to explain the program, its structure, its behaviour, its effects on its oper­

ational context, and its relationships to its application domain in terms that are 

qualitatively different from the tokens used to construct the source code of the 

programs" . 

Program understanding has been called a challenge of the 90's (Corbi, 1989). 

This statement is in no need of justification. A huge amount of legacy code is in 
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use which is difficult to maintain, difficult to change and even more difficult, or 

even impossible, to discard. Documentation is usually out-of-date, inconsistent 

or incomplete. Working in such conditions "programmers have become part 
historian, part detective, and part clairvoyant" (Corbi, 1989). It follows that 

any tool, which facilitates program analysis and understanding is valuable. 

In software engineering research, program understanding is, according to 

Johnson (1994), understood in two different ways: "some use it to refer to 

automated techniques that determine the intended function of a software system 
from source code. Others use it to refer to tools that help people understand 
the design of a piece of software but may not be capable of analyzing the code 

themsel ves". 

We assume that only intensive research and experimentation can transform 
the current assistant-tools into fully automated "decision-makers". Conse­

quently we shall only discuss the tools and techniques of program analysis 
aimed at helping the programmer with program understanding. 

Program visualisation. Traditionally in software engineering tools, pro­
gram understanding has been enhanced by means of graphical presentations 
illustrating divers aspects of a program. The construction of a graphical pre­
sentation of a program is called pro gram visualisation. The term software 

visualisation is also used instead of program visualisation, although we argue 
that software visualisation covers much more. In addition to program visualisa­
tion it may also include visualisations of requirement specifications, information 
of configurations, history of corrections and similar. 

Program visualisation, as discussed in (Shu, 1988), covers pretty-printing of 
source programs, visualisation through diagrams, multiple views of a program 

and its execution states, algorithm animation. It is interesting to observe that 
most program visualisation systems introduce their own graphical notations as 

well as methods for the presentation of the textual code. It is rather difficult 
to distill a common notation or technique. This is, of course, in part due to 
the fact that the systems have quite different goals. But it also indicates that 

program visualisation is still in the experimental stage. 

The distinction between program analysis and program visualisation tools 
is not clear-cut. On one hand, program visualisation tools usually work with a 
fixed program model (for example, an abstract syntax tree) and place the main 
emphasis on efficient and appropriate graphical presentations of the information 
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from the model; whereas program analysis tools offer alternative, advanced 

program models (such as, for example, connectionist models). On the other 

hand, every program visualisation tool contains at least one analysis feature, 
and program analysis tools usually include graphical presentations of program 

models. As the distinction is highly subjective and, in many cases, cannot 

be deduced from articles, we will henceforward refer to program analysis and 

program visualisation tools as: program analysis and visualisation tools .. 

Program analysis and visualisation. Program analysis and visualisation 

(PA& V) research investigates the ways of combining the features of program 
analysis and program visualisation tools. Ideally, PA&V tools should offer 
the possibility to specify different program models and to present these models 
graphically in different (also specifiable) ways. Neither of the systems presented 

in the paper fully satisfy these requirements. In practice, PA&V tools do not 
cover such a wide range of features and either program analysis or program 
visualisation is limited. 

The organisation of the paper. The paper discusses current trends in the 
development of tools for program analysis and visualisation. These trends are 
revealed in an overview of a set of existing PA&V tools (Part 2) where the 
systems are classified according to the specification method of visualisation. 
Three common methods are discussed: predefinition, annotation and declara­
tion. For each of these methods, a description, example systems and notes on 
limitations and advantages are given. The overview of PA&V tools is contin­
ued (Part 3) by a presentation of knowledge-based program analysers. Then 
the general discussion is "mapped" to a case study (Part 4). In partiCUlar, we 

discuss the development and usage of declarative and synthesisable program 
visualisers in the NUT system (the NUT system itself and the language are 
also briefly presented in the article). An illustration of the construction of a 

declarative visualiser as well as its work are provided informally, through an 

example. 

2. Specification methods of PA&V tools. Researchers contributing to the 
PA&V field offer different classifications of systems being developed. Price 

et al. (1993) use such classification criteria like scope, form, content, method, 

interaction and effectiveness, whereas Roman and Cox (1993) consider scope, 

abstraction, interface, presentation and specification method. In this article 
we adopt the last criteria mentioned - specification method. Thus, we ask the 
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question: Can the user of a particular PA& V system specify his own visualisers? 

If yes, then how? As in the taxonomy of Roman and Cox (1993), we distinguish 

three main specification methods: predefinition, annotation and declaration. 

2.1. Predefinition 

2.1.1. Method description. Tools with a predefined method for PA&V hide 

inside a "black box" all knowledge employed in the visualisation process. The 

user can neither construct his own views nor modify them and is obliged to 

employ the predefined graphical notation. 

2.1.2. Examples: code viewers. The most common PA&V tools are code 

viewers - tools, which offer the user a fixed set of graphical presentations of an 

input program. In a series of articles (Koskinen et aI., 1994; Linos and Courtois, 

1994; Wilde and Huitt, 1992) on object-oriented program maintenance, a book 

on visual object-oriented programming (Burnett et aI., 1995) (articles (Citrin 

et aI., 1995; Chang et ai., 1995; Grundy et aI., 1995) in particular) a rich set 

of views is offered. These include the following (the list could definitely be 

lengthened by consulting more articles and books): 

• control flow graphs; 

• data flow graphs; 

• backward and forward slicers (showing the minimal subset of the code 
that affects a set of variables and showing the minimal subset of the 

code affected by a set of variables); 

• dicers (showing the subset of the code that can be executed when a given 
assertion is true); 

• definition/usage graphs of program variables; 

• call graphs; 

• module dependence graphs; 

• class hierarchies (inheritance, containment) in 00 programs; 

• tracing chains of polymorphic functions; 

• symbols' (program tokens) lookups; 

• deadcode views; 

• program layers; 

• results of simple queries; 

• domain-specific execution visualisers. 

The construction of some views is also a feature in many CASE tools which 
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support reengineering. For example, in Rational Rose (a product of Rational 
Software Corp.) inheritance and aggregation hierarchies can be shown from the 

user's C++ program. Similarly, but more configurable, the Graphical Designer 
(a product of Advanced Software Technologies, Inc.) constructs a variety of 
views of C and C++ programs. 

Why are there so many and so different views? The existence of code views 

is based on the idea of program dependencies. A program dependency can 

be described as a triple {Point lIn Code , Point2InCode, Link}. (An exam­
ple could be (Class!, Class2, Inheritance}.) On the other hand, during the 
development of the area of software engineering, various graph-based presen­
tations of software were offered, beginning with simple program block-charts 
and continuing to the present day object-oriented diagrams. The graphs are 

also described by a triple {N odel, N ode2, Link}. Combining various program 
dependencies and views of graphs has caused the emergence of quite a varied 
set of program views. In essence, the process of viewing a program as a graph 
includes the extraction of instances of a program dependency, the storage of 
these instances, and the retrieval (for a query) or mapping to a graph (for a 
graphical view). Chen et al. (1990) point to the need of having a concise 
conceptual model (for example, the entity-relationship model), which defines 
the software objects and relationships at a selected level of abstraction. But in 
many of the aforementioned articles this need is not addressed. 

2.1.3. Method advantages and limitations. The main advantage of the 
above mentioned systems is performance. A<; the construction of views is 
predefined, then specialised, optimised algorithms can be applied. Very often 
program visualisation is but one feature among others, nicely integrated with 

other subsystems (like forward and reverse engineering features are integrated 
in many CASE tools). 

Users of these systems face different kinds of problems. First, they are 

often offered a narrow set of views in one system. Users may have their own, 
highly individual "mental maps" of programs. The potential user of program 

visualisation tools is, most probably, a programmer himself and capable of 

specifying his own visualisers. It could be argued that the user should be 
provided with the option to specify his own visualisers, considering that PA&V 
is still a hot research topic and that researchers are still far from having defined 
the complete set of program views. 
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Second, the semantics of graphical symbols used are described in a very 

informal way. If we can assume that a program dependency can be explained 

informally or understood intuitively (which is not always true), then we cannot 

rely on an informal description of the mapping from a program dependency 

to a graphical view. Suppose, for example, that two classes in a graph are 

joined with a line presenting link "uses". Do we take into account calling a 

class from an implementation of a method of another class or not? This and 

similar points might not be clear. Evidently, the user would like to open the 

"black box" or, in other words, he needs access to internal representations of 

visualisers. 

2.2. Annotation 

2.2.1. Method description. The annotation method is mainly applied in 

algorithm animation. Here, the user develops animation procedures and marks 

(or annotates) an input program text with calls to these procedures. Procedures' 

parameters are used for data passing. 

2.2.2. Examples: program animators. In the Balsa-II system (Brown, 

1988), the animation of an algorithm involves three steps. First, the program is 

split into three components: the algorithm itself, various input generators that 
provide data for the algorithm and different views. Second, the components 

are implemented. Components have parameters through which the data is ex­

changed. The implementation of new views or input generators involves the 

reuse of existing components from the library. Third, views and input gener­

ators which can be used with each algorithm are identified and named. The 

main effort of a Balsa-II programmer is spent in annotating the algorithm being 

animated. This is quite understandable, as the identification of the essential 

operations in the algorithm is by no means a trivial task itself. To the eager 

reader we suggest to take a look at the article (Brown, 1988), where the differ­

ent steps in the construction of the animation are presented (as well as attractive 

snapshots of animations). 

The Tango system (Stasko, 1990) is based on a framework which includes 

three components. To produce an animation, the user must 1) annotate the 

program with algorithm operations (or calls to animation procedures - as named 

above), 2) write animation actions and 3) specify the mapping from algorithm 

operations to animation scenes. Keeping mapping and animation procedures 
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separated gives a significant advantage in flexibility tenns as the user can change 
the animation simply by editing the mapping file. 

2.2.3. Method advantages and limitations. The key advantage of the 

annotation method is that the user is permitted to provide his own definition 

of what should be animated and how. The user can himself define appropriate 

events in program execution as well as the way these events should be presented 

graphically. 

The possibility to write your own animation procedures can be considered 
a disadvantage as well, because it consumes additional work. Here, libraries 
of animation procedures facilitate the process and ea.<;e the workload. But then 

instead, libraries must be well understood themselves, which is not a trivial task 
in imperative programming. One more disadvantage of the annotation method 
is the need to modify the program code. 

2.3. Declaration 

2.3.1. Method description. PA&V tools which apply declarative ap­
proaches differ as significanHy from each other as different are the methods 
which can be typed declarative. Typically, the user is provided with an en­
vironment in wich he can specify his own visualisers in a given declarative 
language. As shown in Fig. 1, the process of writing your own visualiser 
includes, essentially, the specification of program and view models and of a 
mapping between these models. The extraction of a program model from an 
input program and the presentation of the view graphically can also be specified 
by the user or else done automatically by the system. Additional models (like 

a user model or similar) can easily be added in the same way as, for example, 
a new view model. 

2.3.2. Examples: declarative visualisers. The usage of the declarative 

approach in PA&V systems ranges from the introduction of simple declarative 

mappings to the employment of declarative languages tailored to the specifics 

ofPA&V. 

Declarative mappings. In the aforementioned TANGO system the control 

file serves as storage place for the declarative specifications. Here the names of 

algorithm operations and animation scenes and mappings between them can be 
listed. The mappings have simple form: algorithm operations ---+ animation 

scenes. 
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Fig. I. The general architecture of a declarative PA&V toolkit. 

In the reflexion model approach (Murthy et aI., 1995) for software analysis, 

a reflexion model is introduced in addition to a source model, a high-level model 

and a mapping. Although the authors do not purport to follow a declarative 

approach, they actually use a declarative language for the specification of maps. 

(Selfridge and Heineman, 1994) Interactive Code Understanding Environ­

ment (ICUB) takes the infonnation about a C program stored in a database 

and provides the user with a graphical query-formation facility as well as the 
environment for manipulating object graphs (the graphical representations of 

the results of queries). 

Declarative languages. In the Pavane system (Roman et al., 1992) the 

underlying visualisation model is declarative in the sense that visualisation is 

treated as a mapping from program states to a three-dimensional world of ge­

ometric objects. All mappings are represented by rules. Rules can be added, 

deleted or modified during visualisation. The specification of the visualisation 

in Pavane requires the user to formally specify the state of programs. This 

forces the user to work more on the conceptualisation of program behaviour, 

which although being a time-consuming requirement also gives a fundamen­

tal benefit - a deeper understanding of the nature of computations and their 

graphical representations. 
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In the SPElCemo system (Grundy et al., 1995), users are free to choose 

both the contents and layout of views. The construction of new display ab­

stractions involves specialising and creating new abstractor classes (written in 
Snart), while new display visualisations can be developed using the icon layout 

language. Both Snart (an object-oriented extension to PROLOG) and the icon 
layout language are declarative. 

The key technological idea in the (Kotik and Markosian, 1992) approach is 

code representation as an annotated abstract syntax tree in an object-oriented 
database. This approach differs essentially from code viewers (discussed above) 

as it also provides a high-level language, the Refine language, which allows 
the user to operate on the abstract syntax tree. For example, one can define 
one's own analysis functions. The same language is used for the specification 
of graphical views of the results of analysis functions. This is implemented 
in Refine Language Tools (a product of Rea~oning Systems, Inc.), where the 
initial set of graphical views can be extended with views written by the user in 
the Refine language. 

In the SoftSpy system (discussed in more detail in Part 4), the user is given 
full liberty to specify his own visualisers in the NUT language. A specification, 

as well a~ a request for computation, are translated into logical language, a 
proof is performed and, if successful, a visualiser is synthesised. The user 
is also provided with an environment, which has facilities for NUT language 

processing, graphics management and other. 

2.3.3. Method advantages and limitations. In the declarative approach 
the user has to abstract (or conceptualise) the construction of a program's view 
and to record the abstraction (or a conceptual model) in a given declarative 

language. The conceptualisation is always time and effort-consuming work. 

But this conceptualisation is in any case performed by the user when trying to 

understand a program. And so, the main role of a declarative PA&V system 
is to provide an environment, where the user can operate with the conceptual 

models he produced: to record, reuse or modify them. 

An explicit representation is particularly important in the process of PA&V, 

as in this case, at least two distinct conceptual models are involved: a model 

of the program and another of its view. The mapping between different models 
is declarative by nature, and, can thus, more naturally be represented in a 

declarative language. 
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In addition to being more understandable, visualisers written in a declarative 

language are easier to modify. Easy addition, deletion or change of atomic 

units of knowledge (like rules, definitions of domain entities etc.) is a feature 

inherited from knowledge-based systems (knowledge-based systems are chosen 

as implementation environments for many declarative visualisers). 

The main disadvantage (which declarative PA&V systems inherited from 

knowledge-based systems) is a low speed of execution. The good side of 

the coin is that speed measures of many knowledge-based methods have been 

extensively investigated and optimisations are known. In addition, the language 

used is usually adapted to the visualisation problem and simplified. 

3. Knowledge-based program analysers. Kozaczynski et al. (1992); John­

son (1994) discuss the general organisation of typical knowledge-based program 
analysers. This organisation usually includes the parsing of a code, typically 

generating an abstract syntax tree representation, stored in a knowledge base. 
The knowledge base also includes representations of programming knowledge 
or, more precisely, common programming patterns and techniques, variously 

called design schemas, programming cliches and programming plans. The anal­
yser matches the programming patterns with the code to infer that higher-level 

specification concepts are present in the code. The user of a knowledge-based 
code analyser is provided with the possibility to modify the knowledge-base 

(programming patterns) as well as to use inferential services by asking ques­

tions. 

Various representations of programming knowledge and system models a<; 

well as inferential features influenced the development of different knowledge­
based software analysers: 

• Wills (1992) studies a graph parsing approach to automating program 

recognition in which programs are represented as attributed dataflow 

graphs and a library of cliches is encoded as an attributed grammar. A 

graph parsing algorithm is used to recognise cliches in the code . 

• Quilici (1994) represents programming plans as data structures contain­

ing two parts: a plan definition, which lists the attributes of the plan that 

are filled in when instances of the plan are created, and a plan recog­

nition rule, which lists the components of a plan and the constraints 
on those components. An instance of the plan is recognised when all 

its components have been recognised without violating the constraints. 
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In addition, each programming plan also includes indices, specialisation 

constraints, and a list of implied plans. The algorithm employed makes 

use of indices in order to suggest general candidate plans to match top­

down against the code, specialisations to refine these general plans once 

they are recognised, and implications to recognise other, related plans 

without doing further matching. 

• the LaSSIE system (Devanbu et al., 1991) provides two types of infer­

ence: sUbsumption and rules. The knowledge base has descriptions of 

the objects and operations in the domain, the processes, layers and mes­

sages in the architecture, and the functions, variables and files a.<;sociated 

with the code. 

• GEN++ (Devanbu et al., 1992), a code analysis tool generator for C++, 
is implemented by attaching the portable parse tree querying mechanism 

to the Cfront compiler. GENOA is an applications' generator that pro­

duces arbitrary analysers from specifications. The GENOA language has 

special iteration operators that are tuned for expressing simple, polyno­
mial time analysis programs. The GENOA specification language uses 

the vocabulary of abstract syntax trees. 

• Kozaczynski et al. (1992); Harandi and Ning (1990) use an object­
oriented environment to implement the concept recognition system. All 

language and abstract concepts are represented internally as objects of 

a knowledge base. Plans are also objects and have methods associated 

with them for recognising concept instances. These instances are found 

by pattern matching, which is a unification of abstract syntax trees of 

the attribute values. 

• In the DESIRE system (Biggerstaff et al., 1994), a domain model know­

ledge-base is built as a semantic/connectionist hybrid network and a 

connectionist-based inference engine is employed. 

The section below is devoted to a case study. We discuss the results in the 

development of toolkits for program analysis in the NUT system. In particular, 

we point out both merits and deficiencies of a toolkit (for the presentation of 

predefined graphical views of a code). We then reason about the considerable 

improvements of this toolkit when shifting to a declarative approach. 
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4. PA&V in the NUT system 

4.1. A general introduction to the NUT system. NUT is a system of object­

oriented programming with features of automatic program synthesis (Tyugy, 

1991). The NUT programming language rests on two paradigms: procedural 

object-oriented programming and the automatic synthesis of programs from 

declarative specifications. The latter is a technique for automatic construction 

of programs for unprogrammed procedures out of their specifications and of 

the programs and specifications of programmed procedures. Here a procedure's 

specification embodies its external view (states the names of its input and output 

parameters). The automatic synthesis of programs, as practised in NUT, is based 

on proof search in intuitionistic propositional logic (a more detailed description 

of the NUT system and the NUT language can be found in (Uustalu et al., 
1994». 

The feature of the NUT language of being both an <?bject-oriented program­

ming language and a declarative language, lead us to the idea of carrying out 

various PA&V experiments. That is, starting with the development of code 

viewers for object-oriented programs we then moved on to the investigation 

of declarative analysis of the same code. The NUT system is well suited to 

this purpose as there is no need to change language and environment when 

switching to a new (declarative) technique. 

In the following two subsections, we discuss the results of our experimen­

tation in PA&V in the NUT system: predefined and declarative approaches. 

The predefined approach presents a toolkit for creating graphical views of NUT 

programs. Discussion on the declarative approach includes informal and brief 

introduction to the problem-oriented language, logical language, proof or in­

ferencing issues as well as an example - once again the toolkit for creating 

graphical views of NUT programs. The programs selected for analysis were 

written in the NUT language. 

4.2. A toolldt for creating OMT-based views of a program with the pre­

defined spedflcaUon method. A toolkit (SidarkeviCiiire et al., 1995) for the 

automatic visualisation of object-oriented software modules (or packa~es as 

they are called in the NUT system) was developed. The OMT (Rumbaugh 

et al., 1991) graphical notation was selected, because it includes notations for 

the representation of static, dynamic and functional aspects of a system. OMT 

, graphical icons are simple to draw, adapt and modify. In addition, many pro-
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grammers possess knowledge about OMT. 

For the presentation of the static structure, three graphical symbols from the 

OMT Object Model were borrowed and adapted. First, the class icon shows 

the name, attributes and methods of a particular class. Inherited attributes 

and methods are also shown. Second, the class hierarchy is visualised in a 

vertical tree (as it is in the OMT Object Model). Third, the aggregation tree is 

illustrated with a horizontal tree by using the icon for aggregation association 

of OMT OM. Other associations are not shown. The dynamic aspect" of a 

code are displayed through the visualisation of a synthesised algorithm. For 

the visualisation of functional dependencies and dataflow, the OMT Functional 

Model was chosen and slightly modified. The NUT system provides program 

synthesis on higher-order functional constraint., networks (HOFCN) - which 

have their own graphical notation. The graphical notation of HOFCN and the 

modified graphical notation of the OMT Functional Model were combined. 

Thus, in the functional model the data flow between the methods of a class is 

shown. Class methods (including equivalences and equations) are considered 

to be processes of the OMT Functional Model. 

Some snapshots of the views constructed by the toolkit can be found on 

www on the address: 

http://wwv.it.kth.se/edu/gru/KBPVT/projects/softspy.html. 

A number of experiments were carried out. The purpose of the experiments 

was to estimate how much the suggested visualisation can help in understanding 

the program and evaluating the design. Observations were made like follows. 

Inheritance trees help in acquiring a general view of the static structure of a 

package: how many classes are employed and how many attributes and methods 

are used in their definitions, whether the names chosen are self-explanatory, etc. 

We are able to detect empty or too big classes. Aggregation trees provide a 

clue for discovering the "main" actors of a package. These are the classes 

which usually have more aggregated classes and are normally the most general 

classes of the design of a given problem. One can go further from this point 

by investigating functional models of these "actors". A functional model of a 

class helps the user to trace the computation of class attributes. 

Some deficiencies were also detected when using this toolkit. First, the 

correspondence between parts of the program and graphical symbols was de­

scribed very informally, and so a considerable amount of time had to be spent 
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Problem-oriented language 

L Logical language 

L Proof 

L Synthesised program 

Fig. 2. The relation between languages, proof and program in the NUT 

system. 

in order to get the meaning of pictures ("What does this symbol stand for in 

the code?"). Second, a very narrow set of views was offered (''Why can I not 

create my own view?"). For example if the user is interested only in coupling 

between classes or, more simple, to have just elMS names in inheritance trees, 

he can not in a flexible way specify the view he wishes to have. 

The exploration of the declarative features of the NUT language seemed to 

deal with both problems: it would allow the user to explicitly specify any kind 

of internal representations and mappings involved while the structual synthesis 

of programs would deal with assembling the visualiser from the specifications. 

Thus we switched to the declarative approach in order to further extend the 

functionality of the code analysis toolkit. 

4.3. A declarative approach. The key idea behind our declarative approach 

discussed is the usage of the NUT language for the representation of knowledge 

about a program and its various views. As shown in Fig. 2, the user starts by 
specifying his visualiser in a problem-oriented language (the NUT language). 

Then this specification is automatically mapped into a logical language in which 

a proof for the request is perfonned. If the proof succeeds, the program (or a 

visualiser) is synthesised. The rest of this section will be devoted to illustrating 

each of the steps in the process of constructing a visualiser. In order not 

to burden the reader with theoretical and technical details, the illustration is 

provided informally, with the help of an example. 
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An example: an OMT-based visualiser. As in Section 4.2 we again discuss 

an OMT-based graphical presentation of a NUT program. We redevelop our 

toolkit in the declarative manner as discussed just above and presented in Fig. 1. 

We get three system-subparts: a representation of a program model, a repre­

sentation of OM (Object Model of OMT) and a representation of the mapping 

of a model to OM. Fig. 3 gives a snapshot of these subparts. The representation 

of the model includes the classes Package, Class, Object (two classes are shown 

on the left side of Fig. 3). Each of the classes has a method Extract... which 

defines how particular attributes of the class could be computed in the particular 

package. The representation of OM consists of the classes OM, OMClass, OM­

InhLink, OMAggrLink (two classes are shown on the right side of Fig. 3). The 

classes describe OM diagrams in the NUT language and may contain methods 

Draw ... for the construction of a drawing. The mapping between Package and 

OM is represented by two classes: PackageToOM and ClassToOMClass (shown 

in the middle of Fig. 3). In the class PackageToOM, the specification of the 

method Compute Classes declares that if in the class ClassToOMClass from 

Class, OMClass can be computed then, from Package. Classes, OM. Classes 

can be computed. The class ClassToOMClass explicitly defines the mapping 

between the class in the program model and the class in OM. 

The synthesis of a visualiser can be requested by the goal obj.compute 

(Drawing) -- here obj is any object of a class OM. 

Problem-oriented language. Classes in the NUT language are used as the 

main entities of model representation. Classes act as computational frames as 

they are enriched with computability axioms (marked with 1 in Fig. 3), which 

contain information about the computability of class components. A class can 

also have an image (for example, an image of a OMClass is a rectangle with 

one input and one output ports and a parameter for a name). 

The NUT language is tailored to PA&V problem, by extending the stan­

dard function libraries with three new libraries: a library for the extraction of 

information from a program, another for the graphical layout and a third for 

passing data to visualisation in MatLab (a product of the MathWorks, Inc.). 

The libraries are linked dynamically. 

The extraction of information from the program is supported by a set of 

reflective functions (marked with 3 in Fig. 3), such as get classes, getvar, getrel, 

etc. The set of available functions covers the extraction of all entities and 
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Fig. 3. Parts of the specification of an ~MT-based visualiser in the NUT 

language: 1) specification of the ~MT-based view; 2) explicit in­

vocation of inference; 3) extraction of information directly from 

the program code; 4) passing of information for graphical layout. 

relations according to the ontology (or model) of the program. If the user 

analyses a non-NUT program, he can write extraction functions in the NUT 

language or invoke programs written in other languages. The existence of 

reflective functions in NUT facilitates our program analysis task considerably. 

The program model is easy to build in terms of these functions. 

The functions of an independent graphical layout generate a drawing from 

simple graph specifications. We solved the task of automatic layout of the 

diagrams as an instance of the general graph drawing problem (Kuusik et al., 
1996). We adapted algorithms addressing directed acyclic graphs, which per­

form, first, a level assignment of nodes by tracing their connections, and then 
apply some heuristics to reduce edge crossings and bends. The layout algorithm 

is encapsulated in a separate, self-contained graph layout subsystem under NUT. 

Functions of this subsystem (marked with 4 in Fig. 3) allow one to construct a 
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graph in a declarative way by adding edges and nodes to the graph, to request a 

layout calculation on the constructed graph, and finally, to store the layout as a 

scheme (diagram representation) of some existing class. The user can view the 

automatically generated diagram by requesting the NUT graphics subsystem to 

show the scheme of that class. 

Visualisation of data in the MatLab is performed by the use of ready made 

classes such as Matrix, MatlabLow, MatlabAnim. The link to the Matlab is 

transparent for the user, e.g., the user specifies in the NUT language the visu­

alisation in the MatLab. 

Logical language. A logical justification for the NUT declarative language 

and the main reasoning procedure - the structural synthesis of programs - is 
provided in (Uustalu, 1996). The explanation is given in terms of a simple 

intuitionistic normal modal logic as the observation is made that "classification 

and computability statements are object-relative in object-oriented synthesis in 

the same way as propositions are world-relative in normal modal logics - objects 
and worlds are implicit in the language of each". Thus, objects are treated 

as worlds and component relations between objects as accessibility relations 

between worlds. 

EXAMPLE 1. The classes PackageToOM and ClassToOMClass definitions 
given in Fig. 3 are translated into the following axioms (we shorten ClassTo­

OMClass to CTOMC, PackageToOM to PTOM, OMClass to OMC, Package to P, 
Classes to Cls and Class to Cl): 

PTOM :J (p}p (1) 

PTOM :J (OM}OM (2) 

PTOM:J H(CTOMC:J ((Cl}r:J (OMC}r))(P) (Cls}r :J (OM}(Cls}r (3) 

CTOMC :J (Cl}Cl (4) 

CTOMC :J (OMC}OMC (5) 

CTOMC:J ((Cl) (Name}r :J (OMC}(Name}r) (6) 

CTOMC:J ((Cl}(VarNames}r:J (OMC}(Attributes}r) (7) 

CTOMC:J ((Cl) (RelNames}r :J (OMC}(Operations}r) (8) 

Here r stands for computability, (ClassComponentName) and [*] denote 
accessibility relations. For example, axiom (6) is interpreted as follows: the 



170 Program analysis and visualisation: towards a declarative approach 

world (or object) w of the class crOMC implies that if there exists such a world 

Wi, which is accessible from w via relations Cl and Name and is computable, 

then there exists such a world wI!, which is accessible from w via relations OMC 

and Name and is computable. End of Example 1. 

Proof. The inferencing carried out by the NUT system is called provable 

realizability (Uustalu, 1995). Its main goal is to prove the computability or oon­

computability of an object or its component. If computability can be proven, 

then an algorithm (or a program) for its computation is synthesised. A logical 

justification of the computability inferencing is also provided in (Uustalu, 1996) 

and not discussed here. Rather, an informal illustration of the inferencing 

procedure is provided by an example. 

EXAMPLE 2. If we consider the classes discussed in Example 1, the goal 

given to the system could be: given an object w of the class prOM with computed 

component Package. Classes, find an algorithm for computing its component 

OM. Classes. This amounts to proving the inference (here the abbreviation of 

1 . th . 1 w : prOM w: (P)(Cls)r 
c ass names IS e same as m Examp e 1): . 

w : (OM)(Cls)r 
The derivation (based on the rules presented in (Uustalu, 1996) is the fol-

lowing: 

e 
(3) w : PTOM Wi: (OMC)r 

w: [*](crOM :J ((Cl)r:J (OMC)r)) w : [*](CTOM:J 

:J ((p}(Cls)r:J (OM)(Cls)r) ((Cl)r:J (OMc)r)) w: (P)(Cls)r 

w : (OM)(Cls)r 

Wi : (Cl)r Wi: crOMC 
Here e stands for the proof ( . 

Wi: OMC)r 
This amounts to proving the inference 

Wi : (Cl}r Wi: crOMC 

Wi : (OMC}(Name}r 1\ (OMC) (Attributes}r 1\ (OMC)(Operations}r' 

because OMC has the components Name, Attributes and Operations. 
Wi : (Cl}r Wi: crOMC . . 

The proof of () ( ) IS the followmg: 
Wi: OMC Name r 

(6) Wi: CrOMC 

Wi: (Cl) (Name)r :J (OMC)(Name)r Wi: (Cl)(Name)r 

Wi : (OMC)(Name)r 
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Here w' : (Cl) (Name)r follows from w' : (Cl)r, as Name is a component of 
Cl. 

In the same way {OMC)(Attributes)r from (Cl}(VarNames)r and 
(OMC) (Operations)r from LCl}{RelNames)r are proved. 

The proof is completed. End of Example 2. 

Synthesised programs. If the proof succeeds, a program for computing the 

requested component is synthesised. 

Let us return to our example of an OMT-based visualiser, where the request 

to compute Drawing is given. In the case when classes do not possess enough 

information for the computability of Drawing, the unsolvable problem will be 
reported. In the positive case, the program will also be synthesised. 

Fig. 4 presents the results of the work of the synthesised visualiser. As input 

program a visualiser's program was chosen. 

FUe Edit 1IrT_ u-t.. ~ Options 

Fig. 4. Part of the view constructed by an OMT-based visualiser from a 

NUf program. 
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The advantages of a declarative approach. First, the user can easily modify 

his viewer. For example, if one does not want aggregation links presented in the 

OM view, it is sufficient just to take away AggregationLinks from the method 

DrawOM in the class OM. By invoking inference procedures, the user can 
check whether a modified specification still possesses the same component's 
computability features as the old one. Second, let us consider the different 

representations - one of the program model and another of the ~MT-based view. 
The terminology used by programming language authors and OMT authors is 

employed in each respective case. For example, the attributes of a class are 
called Variables and Virtuals in the model of NUT programs (as in the NUT 
language documentation); and they are called Attributes in the ~MT-based 
view presentation (so are they called by OMT developers). This brings us 
one step closer to naturalness and user-friendliness. Moreover it simplifies 
the introduction of changes. Third, one can easily discover, that replacing the 
~MT-based viewer with another viewer is not a complicated task. It involves 
the development of the NUT language representations of a new view and a 
mapping from a program model into this new view. 

5. Concluding remarks. We discussed the tendency towards the declara­

tive approach in program analysis and visualisation. Declarative program anal­
ysis and visualisation tools considerably extend the functionality of traditional 
PA&V tools. The main achievement is imprOVed modifiability and extensibility 
of visualisers. This is due to the reason that explicit declarative specifications 
are easier to understand and, consequently, to modify. New program models as 
well as new analysers (for example, metrics tools or evaluators) can be added 
by adding new specifications. 

We also presented a case study: the research in program code analysis in 

the NUT system. We argued that viewing a program code in several prede­

fined ways is not sufficient for program understanding. This was motivated by 

discussing the results of applying a program visualisation toolkit in the NUT 
system. We redeveloped our toolkit in a declarative manner. We used the NUT 

declarative language for recording knowledge about PA&V. Provable realisabil­
ity was the main inferencing procedure. 

An important issue which has not been thoroughly investigated, and which 
forms the basis for future work, is the elaboration of a problem-oriented lan­
guage, e.g., a language for the specification of visualisers. As shown in the 
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paper, a declarative language is suitable to PA&V. But what additional fea­

tures (for example, what standard libraries or suitable language constructs) the 

language should have - remains to be investigated. 
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PROGRAMQ ANALIZES IR VIZUALIZAVIMO REIKALAVIMQ 
SPECnnKAVIMASDEKLARATY~AKALBA 

Diana SIDARKEVICIlSff: 

Naudojant programl.\ analizes ir vizualizavimo priemones, programos pavaizduo­
jamos grafiskai. Tai daroma, siekiant palengvinti jl.\ suvokimll. Programl.\ analizes ir 
klasifikavimo priemones klasifikuojamos pagal tai, kaip yra aprasomi programos vizua­
lizavimo reikalavimai. Reikalavimai gali bUti suformuluoti is anksto ir realizuoti, ku­
riant vizualizavimo priemon~, formuluojami, anotuojant vizualizuojamll programll arba 
formuluojami specialiai tam tikslui skirta deklaratyvi<tia kalba. Straipsnyje atlikta sil.\ 
metodl.\ lyginamoji analize. Ypatingas demesys skirtas deklaratyviajam vizualizavimo 
reikalaviml.\ formulavimo metodui, pateikti konkretUs jo taikymo pavyz~iai. 


