
INFORMATICA, 1990, YoU, No.2,. 110-120

STRUCTURAL SYNTHESIS OF

DATA PROCESSING PROGRAMS

Justinas LAURINSKAS and Grazina TAUCAITE

Institute of Mathematics and Informatics,
Lithuanian Academy of Sciences,
232600 Vilnius, K.Pozelos St.54, Lithuania

Abstract. Data processing programs combine computations
with navigation in a data base. Methods of the structural syn
thesis of programs are oriented towards construction of computing
programs, and the methods of synthesis of relations are oriented
towards construction of (logical) navigation paths. An approach
to the integration of methods of the structural synthesis of pro
grams and methods of the synthesis of relations is proposed. This
approach is based on a computation model (a set of formulas), de
scribing both computations and navigation paths. The sound and
complete system of inference rules for the class of formulas, used
in such computation models, is given.

Key words: structural synthesis of programs, relational data
bases, synthesis of relations, inference rules.

Introduction. The structural synthesis of programs
(Tyugu and Harf, 1980; Dikovskij and Kanovich, 1985) is
based on a specification of computations called a computa
tion model. A computation model describes the relationships
among the initial program modules (operations) and is a set
of named initial dependencies among some variables (values).
A name of an initial dependency is a name of the program

J.Laurinskas and G. Taucaite 111

module which implements that dependency. The required pro
gram is specified with the help of two sets: the set of given data
(variables) and the set of desired data (variables), i.e. with the
help of unnamed dependency. The structural synthesis con
sists in the search for the corresponding named dependency,
which is logically implied by the initial dependencies. The
name of this derived dependency represents the plan of a pro
gram (in the form of a composition of initial modules), which
implements that dependency.

The synthesis of relations (Lozinskii, 1980; Honeyman,
1980) is based on a specification of a relational database called
a database scheme. A database scheme describes base rela
tions and is a pair of sets: the set of named dependencies,
representing the schemes of base relations, and the set of (un
named) dependencies, describing the properties of base rela
tions. A relation scheme is a set of attributes that define
the format of the relation. In addition, the relational opera
tions enabling to obtain new relations from the base ones are
defined. The required relation is specified with the help of
its scheme, i.e. with the help of unnamed dependency. The
synthesis of the relation consists in the search for the cor
responding derived dependecy, which is logically implied by
a database scheme and which name represents the relational
expression that defines the required relation in terms of base
relations.

The structural synthesis of programs does not take ~nto
account the possibilities of implementation of some initial de
pendencies by means of relatioI}s and does not consider possi
bilities of computation of relations by means of relational oper
ations. On the other hand, the synthesis of relations does not
consider possibilities of computation of relations by means of
arbitrary (unrelational) operations. In this paper an approach
to the integration of the structural synthesis of programs and
the synthesis of relations is proposed, i.e. an approach to the

112 Synthesis of programs

structural synthesis of data processing programs, which com
bine computations by means of arbitrary operations with the
computations by means of relational operations.

The usual method to describe a set of logically implied
dependencies is the method of formal theories. An inference
rule of a theory indicates how to derive dependency from other
dependencies. If the theory (the set of inference rules) is sound
and complete, then the conditions" a dependency is logically
implied from a set of dependencies" and "a dependency is
derived from a set of dependencies" are equivalent.

A computation model (the database scheme) is defined
over a universal set of variables (attributes) U and a set of
functionals G. Each variable is associated with the set called
its domain. A set of variables is some sJlbset of the set U.
The set G is the union of sets Go, G I , ... , where Gi is a set of
functionals of rank i. A functional of rank i corresponds to a
program module with i parameters-subprograms. The func
tionals witb zero rank are called functions. We assume that
the set of functions contains an empty (identity) function T.

Let us agree, for the union of sets of variables X and Y,
to use notation XY alongside with the usual notation, and for
the set of variables {AI, A2, ... ,Ak} notation Al A2 ... Ak.

To simplify discussion we do not consider conditional de
pendencies here.

Structural synthesis of programs. An expression
of the form X --+ Y is called functional dependency (F
dependency), and an expression of the form

is called operational dependency (O-dependency). Here X,
Y, Xi, Yi, and Z are sets of variables. The number k > 1
indicates the rank of an O-dependency (the rank of an F
dependency equals 0).

J.Laurinskas and G. Taucaite 113

A named dependency is an expression of the form P : d,
where P is a name of a dependency, and d is a dependency. A
name of a dependency is a functional or a program plan.

An initial dependency is a named dependency of the form
F : d, where F is a functional, which rank coincides with that
of the dependency d. The initial dependency F : X -+ Y
expresses the computability of Y from X by means of module
F. The initial dependency F : (Xl -+ YI)& ... &(Xk -+ Yk) -+

-+ Z expresses the computability of Z by means of module F
in the presence of computability of Yi from Xi, 1 ~ i ~ k.

A derived dependency is a named dependency of the form
P : d, where P is a program plan, and d is an F -dependency.
The derived dependency P : X -+ Y expresses the com
putability of Y from X by means of the program P. The
set of program plans is defined as follows: if F is a function,
then F is a program plan; if F is a functional of rank k > 1
and PI, ... , Pk are program plans, then F(PI, ... , Pk) is a pro
gram plan; if PI and P2 are program plans, then (PI; P2) is a
program plan (a composite sequential operator).

The model-theoretiC semantics of dependencies is based
on the notion of state as a mapping from U to {a, I}. If t is
a state, then the condition t[A] = 1 (t[A] denotes the value
of t on A E U) means that the value A is computable in t,
and the condition t[A] = ° means that the value A is not
computable in t. The state t satisfies: A E U if t[A] = 1;
X ~ U if t satisfies all A EX; X -+ Y if whenever t satisfies
X it also satisfies Y; (Xl -+ Yd& ... &(Xk -+ Yk) -+ Z if
whenever t satisfies all Xi -+ Yi it also satisfies Z.In a similar
way, by extending the notion of state as a mapping from U U G
to {a, I}, it is also possible to define the semantics of named
dependencies.

A task of the structural synthesis of programs is a triple
(D, X, V), where D is a set of initial dependencies and X and
Yare sets of variables. The solution of the task (D, X, Y) is

114 Synthesis of programs

the program plan P, such that the dependency P : X ~ Y is
logically implied by a set D.

The following set of inference rules is sound and complete
for the derivation of F-dependencies from a Bet of F- and 0-
dependencies:

S1. T : X -'-+ X.

S2. P : X ~ Y implies P : X ~ Z if Z ~ Y.

S3. PI : X ~ Y and P 2 : Y ~ Z imply (PI; P 2) : X ~ YZ.

S4. PI : WXI ~ YI , ... ,Pk: WXk ~ Ykand

F: (Xl ~ Yd& . .. &(Xk ~ Yk) ~ Z imply

F(PI , ••• ,Pk): W ~ Z.

Example 1. As an example, let us describe a fragment
of the salary computation model SALARY1 (the example is
taken from Dikovskij and K'anovich (1985»:

FI :EM P.Y EAR ~ REG,

F2 :EMP.YEAR.MONTH ~ SAL,

F3 :REG.A_SAL ~ T_SAL,

F4 :(YEAR.MONTH ~ SAL)&(~ YEAR) ~ A_SAL.

In this model EA1 P stands for employee name, REG for
record, SAL for month's salary, A_SAL for average month's
salary, and T -S A.L for "thirteenth" salary. In the model
SALARYl it is possible, for example, to formulate a task
T ASKl: "for employee EM P = e find the 13th salary ob
tained per year YEAR = y", i.e. the task (SA.LARY!,
EM P.Y EAR, T _SAL). This task is solvable: Fz and F4
imply F4 (F2) : EM P.Y EAR ~ A_5.4L; F} and IA imply
(F1 ;F3) : EMP.YEAR.A_SAL ~ T_SAL; F4 (F2) and
(FI ; F3) imply the named. dependency (F4 (F2); F I ; F3):

J.Laurinskas and G. Taucaite 115

EMP.YEAR -+ T_SAL. However, in the model SALARY1
it is impossible, for example, to formulate a task TA.5K2: "for
all employees whose work record in the year YEAR = y has
not exceeded the value REG = r find employee names and
their 13th salaries obtained per year YEAR = y". A problem
with the models of the given type is that they do not take into
account that some dependencies (dependencies Fl and F2 of
our example) are represented by their extentionals.

Relation synthesis. A tuple on set of attributes X is a
function t mapping each attribute A E X to an element in its
domain. If t is a tuple on X and Y is a subset of X, then try]
denotes a restriction of t on Y. A relation 8 with the scheme
S, 8(S), is a set of tuples on S.

A relation 8(S) satisfies the F-dependency X -+ Y if XY
'-rs a subset of S and for all tuples tl and t2 in s tl [X] = t2 [X]
implies tl [Y] = t2 [Y].

Given a relation 8(S) and a set of attributes X ~ S,
the projection of 8(S) onto X, denoted 7rX(8), is a relation
with the scheme X, containing all the tuples t[X] such that t
belongs to 8. The join of relations 81 (Sd and 82(S2), denoted
81 * 82, is a relation with the scheme S1S2, containing all the
tuples ton S1S2 such that t[SI] belongs to 81, and t[S2] to 82·

A database scheme is a pair (R, D), where R =
= {R1 : S1,"" Rn : Sn} is a set of named schemes of base
relations, such that S1." Sn = U, and D is a set of F
dependencies. A database state r is a set of base relations,
r = {rl (Sd, ... , rn(Sn)}.

A relation u(U) is called a universal relation for the data
base state r if u satisfies D and every ri is the projection of u

onto Si'

A relational expression over a database is a relational
expression, which operands are the names of base relation
schemes. If E is a relational expression over a database, then

116 Synthesis of program,s

E(r) denotes the value of E when each operand Ri of E is
replaced by r i .

We say expression of the form E : S is an entity depen
dency (E-dependency) if E is a relational expression over a
database and S is the scheme of E (the scheme of the resulting
relation). LetE1 : Sl and E2 : S2 be two E-dependencies.
We say E1 : Sl is a subdependency of E2 : S2 if E1 is a subex
pression of E2 . Let u be a universal relation for r. vVe say r
satisfies E-dependency E : S if E(r) = 7r s(u) and r satisfies
all subdependencies of E : S.

F-dependencies describe the properties of the database
state, and E-dependencies express the computability of rela
tions by means of relational operations.

A task of the relation synthesis is a pair (RUD, X), where
(R, D) is a database scheme and X is a set of attributes. The
solution of the task (R U D, X) is a relational expression E
such that the dependency E : X is logically implied by a set
RUn.

The following set of inference rules is sound and complete
for the derivation of E-dependencies from a set of E-and
F -dependencies:

Rl. X ---7 X.

R2. X ---7 Y impli(::; X ---7 Z if Z ~ }'".

R3. X ---7 Y and Y ---7 Z imply X ---7 Y Z .

.R4. E : S implies 7rx(E) : X if X ~ S.

R5. E1 : S1, E2 : S2, and Sl n S2 ---7 Sl or

Sl n S2 ---7 S2 imply (E1 * E2) : SlS2.

Example 2. Let us describe the database schel11.e
SALARY2 :

R1 :EM P.Y EAR. REG, EM P.Y EAR ---7 REe,

IJ.Laurinskas and G. Taucaite

R2 : EMP.YEAR.MONTH.SAL,
EMP.YEAR.MONTH ~ SAL,

R3: EMP.YEAR.A_SAL,EMP.YEAR -+ ASAL,
R4 : EMP.YEAR.T_SAL,EMP.YEAR -+ T_SAL.

117

In the database scheme SALARY2 there may be for
mulated and solved the relation synthesis task (SALARY2,
EMP.YEAR.REC.T_SAL) : R1 ,R4, and EMP.YEAR -+

~ T_SAL imply (RI * R4) : EMP.YEAR.REC.T_SAL. It
is obvious that the relation RI .* R4 . may be used when solv
ing the task TASK2 (see Example 1). However, the database
scheme S ALARY2 does not take into account that relations
R3 and ~ are not independent and that they are computed
on the basis of relations RI and R2 .

Structural synthesis of data processing programs.
A subset of a relation s(S), containing all the tuples with
identical restrictions on X, is called an X -cut of s(S), where
X~S.

Let us consider the O-dependency F : (X I -+ YI)& ...
... &(Xk ~ Yk) ~ Z and the relation s(S). Let XIYI ···
... XkYkZ is a subset of S and there exist k sets of attributes
Wi such that Wi n Yi = 0 whenever Xi =f. 0, 1 ~ i ~ k.
We say s(S) satisfies the O-dependency F if whenever s(S)
satisfies all WiXi ~ Yi it also satisfies W -+ Z and

7rWZ(s) = F(7rW1X1Y1(S), ... ,7rWkXkYk(S)),

where,W = WI ... Wk.
A database scheme with computations is a pair (R, D),

where R = {RI : S1, ... , Rn : Sn} is a set of named schemes of
base relations (a set of E~dependencies) such that S1 ... Sn is
a subset of U and D is a set of F -and named O-dependencies .

. Let us extend the concept of E -dependenc·y: as an E
dependency we shall comprehend an expression of the form

118 Synthesis of programs

P : 8, where P is the plan of a data processing program and 8
(as before J is the relation scheme. The set of plans of data pro
cessing programs is determined as follows: if E is a relational
expression over database, then E is the plan of a data pro-
cessing program; if F is a functional of rank k and PI ,_ ... , Pk

are the plans of data processing programs, then F(PI, ... , Pk)

is the plan of a data processing program.
F-dependencies describe the properties of the database

state, O-dependencies express the computability of relations
by means of unrelational operations, and E-dependencies ex
press the computability of relations by means of unrelational
and relational operations.

A pair (R U D, X) is a task of the structural synthesis
of data processing programs, where (R, D) is the database
scheme with computations and X is a set of attributes. A
solution of the task (R U D, X) is the plan of data processing
program P such that the dependency P : X is logically implied
by a set Ru D.

The following set of inference rules is sound and complete
for the derivation of E-dependencies from a set of F-, O-and
E-dependencies:

PI. X -+ X.

P2. X -+ Y implies X -+ Z if Z ~ Y

P3. X -+ Y and Y -+ Z imply X -+ YZ.

P4. W I X 1 -+ Y1 , ••• , WkXk -+ Yk,

and F : (Xl -+ Yd& ... &(Xk -+ Yk) -+ Z

imply WI ... Wk -+ Z if Wi n Yi = 0

whenever Xj =1= 0, 1 ~ i ~ k.

P5. E : S implies 7rx(E) : X if X ~ s.
P6. E1 ' SI, E2 : S2, and 8 1 n S2 -+ SI

or Sl n S2 -+ S2 imply (E1 * E2) : SlS2.

J.Laurinskas and G. Taucaite

P7. E1 : Sl, ... ,Ek: Sk,

W1XI --,4 YI , ... , WkXk --,4 Yk,

WIX1YI = SIl"" WkXkYk = Sk,
and F : (Xl --,4 Y1)& ... &(X k '--,4 Yk) --,4 Z imply

F(EI , ... , Ek) : WI.,. WkZ if Wi n Yi = 0

whenever Xi i= 0, 1 ~ i ~ k.

119

Example 3. Let us describe the database scheme with
computations S ALARY3 :

Rl : EM P.Y EAR.REG, EM P.Y EAR --,4 REG,

R2 : EMP.YEAR.MONTH.SAL,

EMP.YEAR.MONTH --,4 SAL,
FI : (--,4 REG)&(--,4 A_SAL) --,4 T _SAL,

F2 : (MONTH --,4 SAL) --,4 A_SAL.

The task (SALARY3, EMP.YEAR.REG.T_SAL) is
solved as follows: R2 , F2 , and EM P.Y EAR.MONT H --,4
--,4 SAL imply F2 (R2) EMP.YEAR.A-f3AL and
EMP.YEAR --,4 A_SAL"; F1 , F2 (R2), RI , EMP.YEAR--,4
--,4 A_SAL, and EM P.Y EAR --,4 REG imply FI(RI, F2 (R2)) :

EMP.YEAR.T_SAL and EMP.YEAR --,4 T_SAL; R1,
F1(R1,F2(R2)), and EMP.YEAR --,4 T_SAL imply (Rl *
*FI (RI ,F2 (R2))): EMP.YEAR.REG.T_SAL.

Conclusions
1. The methods of structural synthesis of programs do

not take into account the possibilities of implementation of
some initial dependencies by means of relations and do not
consider the possibilities of computation of relations by means
of relational operations.

2. The methods of relation synthesis do not consider a
possibility of computation of relations by means of arbitrary
(unrelational) operations.

120 Synthesis of programs

3. The proposed approach to the program synthesis is
based on a computation model (a database scheme with com
putations), describing computations by means of both unrela
tional and relational operations. A sound and complete sys
tem of inference rules for the class of dependencies, used in
such computation models, is given.

REFERENCES

Dikovskij, A.Ja., and M.I.Kanovich (1985). Computation models
with separable subtasks. Izv. AN SSSR. Tekhn. kibernetika, 5,
36-59 (in Russian).

Honeyman, P. (1980). Extension joins. In Proc. 6th Int. Conf. Very
Large Data Bases (Montreal,Canada, Oct. 1-3, 1980). ACM,
New York. pp. 239-244.

Lozinskii, E.L. (1980). Construction of relations in relational data
bases. ACM Trans. Database Syst., 5(2), 208-224.

Tyugu, E.H., and M.Ja.Harf (1980). Algorithms of the struc
tural synthesis of programs. Programirovanije, 4, pp. 3-13
(in Russian).

Received January 1990

J. Laurinskas received the Degree of Candidate of Tech
nical Sciences from the Kaunas Polytechnic Institute, Kaunas,
Lithuania, in 1976. He is a senior researcher at the Depart
ment of Mathematical Logic and Theory of Algorithms of the
Institute of Mathematics and Informatics of the Lithuanian
Acad. Sci. He is engaged in the problems of designing of
intellectual programming systems.

G. Taucaite is a researcher at the Department of Math
ematical Logic and Theory of Algorithms, Institute of Math
ematics and Informatics, Lithuanian Acad. Sci. Her inte
rests include the designing of intellectual programming sys
tems.

