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Abstract. In this paper we deal with the problem of extremal 
parameter grouping.The problem formulation, the algorithms of 
parameter grouping and the fields of implementation are present­
ed. The deterministic algorithms of extremal parameter grouping 
often find the local maximum of the functional, characterizing the 
quality of a partition. The problem has been formulated as a prob­
lem of combinatorial optimization and attempted to be solved using 
the simulated annealing strategy. The algorithms, realizing such a 
strategy and devoted to the solving of the problem concerned, are 

proposed and investigated. 
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1. The problem. Structural methods for empirical data 
processing are used widely in systems analysis. The method of 
extremal parameter grouping (Braverlnan, 1970; Braverman 
and MuC'hnik, 1983; Dzemyda, 1987a, 1987b, 1988) belongs 
to this class of methods. It is devoted to the partition of the 
parameters Xl, ... ,Xn into a fixed number p of the uninter­
secting and homogeneous in a sense groups AI, ... ,Ap by the 
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correlation matrix R = {r XiXj , i,j = 1,n} characterizing the 
connections among the parameters ( r XiXj is the correlation 
coefficient of parameters Xi and x j). The covariance matrix 
may be used instead of the matrix R. However, the param­
eters with a greater dispersion will have more significance in 
the analysis. There is no a priori information regarding the 
number and size of groups. 

There is a variety of different algorithms for parameter 
grouping of such a type. The modification of algorithms pro­
posed by Harman (1976) is included in SAS (1982). The al­
gorithms of such a type are also presented, for example, by 
Anderberg (1973), Hartigan (1976), Braverman and Much­
nik (1983). Dzemyda (1990) has proposed a new approach 
to solve the problem concerned. The partitioning quality of 
constructed algorithms is like that of the best algorithms of ex­
tremal parameter grouping proposed by Dzemyda (1987a), but 
the new algorithms require significantly less computational ex­
penditures. All these algorithms will not be considered in our 
paper. 

The problem of extremal parameter grouping includes 
maximization of t.he functional 

2 
r XiFL ' 

where FL is the factor with a unit dispersion corresponding 
to the group A L; rXiFL is the correlation coefficient of the pa­
rameter Xi and the factor FL. The factors FL , L = 1,p , are 
selected so as to maximize the sums 

Dzemyda (1987a) proved, that 
1. FL = I: o:fxdv'>.L' rX.FL = I: o:frXiX./v'>.L. 

xiEAL xiEAL 
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where AL is the greatest eigenvalue of the matrix RL = {r XiXj , 

Xi,Xj E AL}, af are the components of the normalized eigen­
vector of the matrix RL corresponding to >"L 

2. rX.FL = ../\La~ as Xs E AL. 
p 

3. 11 = I: AL· 
L=1 

4. Let some partition of the parameters into the groups 
AI, . .. , Ap be given and let the factors F 1 , ••• , Fp be fixeq.. 
Let us analyze some parameter Xs E Ak. By using the values 
of rX.FL' L = 1,p, it is impossible to determine the group, 
where the value of the functional 11 increases at most after 
transferring the parameter x s. 

2. The deterministic algorithms of 11 maximiza­
tion. The deterministic algorithms, proposed by Braverman 
and Muchnik (1983), Dzemyda (1987a, 1987b, 1988), are gro­
unded on the analysis of parameters in consecutive order and 
on the search of a group to transfer the individual parame­
ter with a purpose to increase 11 value. There is a variety of 
strategies for such a search. The algorithms stop when the 
transferrings of any parameter by the chosen strategy do not 
increase 11 value. The factors can be recalculated after every 
transferring of the parameter ( Dzemyda, 1987a, 1987b, 1988) 
or after finding new groups for all parameters (Braverman and 
Muchnik, 1983). 

Note 1. Let some partition of the parameters into the 
groups AI, ... , Ap be given and let the factors F1 , ••• , Fp be 
fixed. Let us analyze some parameter Xs E Ak. The value of 
the functional 11 will increase after transferring the parameter 
x s from the group Ak to the group A L , if we succeed in finding 
such a factor FL (L =I- k) that 

(Braverman and Muchnik, 1983). 
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Definition 1. By the local maximum of the functional 
11 we shall call its value, corresponding to such a partition, 
where the correlation coefficient of any parameter with the 
factor, corresponding to the group including this parameter, 
is greater or equal to that of this parameter with' another 
factors. 

A number of partitioning algorithms based on Note 1 
for maximization of the functional 11 is proposed (Braverman 
and Muchnik, 1983; Dzemyda, 1987a, 1987b, 1988). They are 
grounded on calculJtting the correlation coefficients of param­
eters with the factors and transferring the parameters from 
one group to another one depending on the values of these 
coefficients. Let us denote· the algorithms of such a type by 
Al. 

Denote: 
1) >'k s is the maximal eigenvalue of the matrix R,/ 

- {rx;Xj' Xi, X j E AkS}, where the group Aks is obtained 
from the group Ak by eliminating the parameter Xs (note that 

>'k s = ° as Aks = 0 ): 
2) >.ts is the maximal .eigenvalue of the matrix Rts = 

= {rx;Xj' Xi, Xj E AiS}, where the group At s is obtained from 
the group AL by adding the parameter XS' 

Note 2. >'k - >.;;s ~ 0, >.t s - >'L ~ 0, k = 1,p, 
L = 1,p, s = 1,n. 

Note 3. Let some partition of the parameters into the 
groups AI, . .. ,Ap be given. Let us analyze some parameter 
Xs E Ak • The value of the functional 11 will increase after 
transferring the parameter Xs from the group Ak to the group 
AL, if we succeed to find such a value >.tS(L #- k) that 

>'k - >'k s < >.t s ->'L· 

Note 4. Let some partition of the parameters into groups 
Al , ... ,Ap be given. The value of the functional 11 corre-
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sponding to the given partition is the local maximum in the 
case when for any parameter ·Xs (let Xs E A k ) 

is valid. 
Notes 2-4 make the basis fQr the other type of maximiza­

tion algorithms of the functional 11 . These algorithms do not 
calculate the correlation coefficients of indivi~ual parameters 
and factors. Their operation is grounded on the calculation 
and comparison of the maximal eigenvalues of submatrices of 
R.In this way it is possible to find the group for any param­
eter x s ( let Xs E Ak) , where the valu~ of the functional 11 
increases at most when transferring this parameter from the 
group Ak to this group. Such an algorithm is propose.d by 
Dzemyda (1987a). Let us denote it by A2. 

The algorithm A2 requires considerably more expendi­
tures of computation time in comparison with the algorithms 
of Al type. It results from the fact that A2 calculates the max­
imal eigenvalues of symmetrical matrices more often. How­
ever, A2 will be more effective than Al in the mean sense 
(greater Values of the functional 11 will be obtained ), be­
cause in Al the group for transferring of the parameter Xs 

is de~ermined by the values of the correlation coefficients of 
this parameter and the factors F}, ... , Fp. Dzemyda (I987a) 
proved that in this manner it is impossible to determine the 
·group, where the value of the functional 11 increases at most 
after transferring this parameter. Such a group is determined 
in A2. 

Dzemyda (1987a) proposed some algorithms with respect 
to the results of Notes 1-4 taken together. They give the 
advantage to save the computation time in comparison with 
A2, but yield A2 in efficiency. 

The initial partition of the parameters into p groups is 
necessary for the operation of Il).aximization algorithms of the 
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functional 11 • Dzemyda (1987a) proposed and investigated 
two algorithms of the initial partition. The number p of groups 
can be fixed preliminary or selected automatically. 

The computer programs, realizing the deterministic algo­
rithms of extremal parameter grouping, are written in FOR­
TRAN and can be used on any EC type computer. The prop­
erties of the algorithms were investigated by Dzemyda (1987a) 
on test and real data. 

Dzemyda and ValeviCiene (1988), Dzemyda (1990) have 
found that the algorithms of extremal parameter grouping 
may be used in the clustering of points (objects). In this 
case, elements of the matrix R were chosen as the values of 
some potential function , dependent on a distance between 
a pair of points (objects) to be clustered. The results of 
comparison of the clustering algorithms, based on extremal 
parameter grouping, with the well known algorithms of the 
cluster analysis were obtained by Dzemyda and Valeviciene 
(1988). ValeviCiene with coworkers (1988), Dzemyda, Tiesis 
and Valeviciene (1989) included these clustering algorithms 
into the software, combining the processes of minimization ~nd 
objective function calculation. This software is devoted to the 
solving of optimization problems, where the calculation of ob­
jective function values on some nodes of a rectangular lattice 
requires much less computation time than individual calcula­
tions of these values. Clustering is used in global search. 

3. Simulated annealing approach. The algorithms 
from chapter 2 often find the local maximum of 11 . A new way 
to solve the extremal parameter grouping problem is to for­
mulate it as the combinatorial optimization one and to search 
for the global maximum of 11 . 

The problem can be formulated as follows: 

(1) 
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subject to 

Xi E {I, ... ,p}, i = 1,n, (2) 

3i: Xi = 1, ... , 3i: Xi = p. (3) 

The function J(.) and the functional 11 are related in 
such a manner: 

where 

The function J(. ) is bounded, i.e., 0 < J(X) ~ n max Tii 
i=l,n 

for any X, satisfying (2) and (3) ( 0 < J(X) ~ n when the 
correlation matrix is analyzed). 

The algorithms from chapter 2 practically realize a single 
coordinate search: consequently, the values of individual vari­
ables from {~y 1 , ... , X n} run from 1 to p (the values of other 
variables are fixed) and there is searched for increasing of the 
objective function value. 

The problem (1)-(3) can be solved by using a simulated 
annealing ~trategy. There is a variety of algorithms of such a 
type (Gidas, 1985; Mitra, Romeo and Sangiovamii-Vincentelli, 
1986; Lundy and Mees, 1986; Bhanot, 1988; Chiang and 
Chow, 1988) which can be used for global optimization. 

The performance of optimization algorithms grounded on 
the simulated annealing can be generalized as follows: 

1. Selection of a new point Y m from the neighbours of 
the current point X m - 1 , the calculation of J(}'~) . 

2. Choosing of a new current point Xm such as X m- 1 or 
Ym with some probability depending on J(Xm - 1 ), J(Y~) and 
T m, where T m is the value of some annealing parameter. 

3. m = m + 1 , transition to step 1. 
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The algorithm presented below has some similarities with 
that proposed by Mitra, Romeo and Sangiovanni-Vincentelli 
(1986). 

The search for the glob~ maximum of f(X) (X = 
= (Xl, ... ,xn) E D = [A,B]n C Rn, A = (Al, ... ,An), 
B - (Bl Bn) Ai./ Xi ./ Bi . - -1 -. Xi Ai d Bi - , ... , , ::::::: ::::::: , z - , n, , an 
are integer numbers) can be performed in such a manner: the 
m-th step of the algorithm is as follows: 

X:n=X:n_l+ei , m=I,2, ... , i=l,n, (4) 

where ei , i = 1, n, are integer numbers taking the values with 
some probabilities: 

a) p{ek = -1} = Pie = 1} = ~, 

ei=o, i=I,2, ... ,k-l,k+1, ... ,n, (5a) 

b) e takes the values from 

with the same probabilities: 

(5b) 

ei = 0, i = 1,2, ... , k - 1, k + 1, ... , n. 

The point X m - 1 denotes the initial point for the m-th 
step and the current point of the algorithm after m-I steps. 
The relation of m and k must be determined specially (the 
example of such a relation see in chapter 3.1.) A k = 1, 
Bk = p, k = 1, n, in the case of a problem (1 )-(3). 

The probability of transition to the point Xm is deter­
mined by the formula: 
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1, as f(Xm) > f(Xm- 1 ) 

P{Xm} = exp{[f(Xm) - f(Xm-l)]/Tm}, (6) 

as f(Xm) ~ f(Xm-d 

i.e· l P{Xm} = 1 as f(Xm) > f(Xm-d and in the other case 
a random number 'lJ E [0,1] is generated: the pointXm will 
be the initial for a new step ((m + l)-st) of the algorithm 
and in the formula (4) it will take the place of X m - 1 as 'lJ < 
< exp ([f(Xm)- f(Xm-1)]/Tm}, and the point X m - l remains 
as the initial one for a new step, otherwise 

Tm = c/lg(l + mo + m), (7) 

m is the number of the step, c is some positive constant, mo 
is some constant from [1,00). 

We propose such a way to solve the problem of c selection 
for the algorithm. The formula (6) for the case f(Xm) ~ 
~ f(Xm-d can be transforrp.ed taking into account (7): 

P{Xm} = exp {0.43In(1: mo + m) [f(Xm) - f(Xm-I)]} = 

= (1 + mo + m) O.:3[!(Xm )-!(Xm _l)]. 

When we use some initial probability P{Xd - b as 
m = 1 , the constant· c can be expressed : 

c = 0.43 [f(X!) - f(Xo)] In(2 + mo)/ln 8 , 

where Xo and Xl are such, that f(Xo) > f(Xd. Then (6) 
will have such a form (for m = 2,3, ... ) : 
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{ 

1, as f(Xm) > f(Xm-d 

P{Xm } = I(Xm)-/(X m _ 1 ) In 6 

(1 + mO + m) I(Xll-/(Xo) In(2+mo), 

as f(Xm) :s;;; f(Xm- 1 ) 

(8) 

The problem of extremal parameter grouping belongs to 
the class of partitioning problems. The simulated annealing 
was used to solve the partitioning problems by Trzebiatowski 
(1985), namely, for the partitioning of networks. The imper­
fection of the algorithms proposed by Trzebiatowski, prevent­
ing to use them in a general case, is such: in each iteration a 
new partition is constructed by interchanging two (or more) 
elements from different groups (so the number of elements in 
any group remains the same doing the optimization). 

3.1. The algorithms SAl, SA2 and SA3. The 
algorithms SAl and SA2 are the concrete realizations of the 
algorithm proposed above. Their pec~liarities are the follow-
mg: 

1. The algorithm starts from the point X 0; the m-th 
step of algorithm is as follows (initially X 0 = X 0 , m = 1, 
P{Xm } = 1): 

(9) 

where ei , i = 1, n, are integer numbers taking the values by 
(5) (i.e. by 5(a) or (5b)). Xo = Xm as f(Xm) ~ f(Xm- 1 ). 

Xl = X m and further calculations are being performed by the 
formulae (5),(8) and (9) starting from the (m + l)-st step (var­
ious strategies for a further mo and m selection are presented 
in the sixth peculiarity) as f(Xm) < f(Xo). 

2. The relation of m and k.( the strategy of k changing) is 
the following: p-1 steps of the algorithm are being performed 
for every fixed value of k. Thus, k corresponds to the number 
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of the variable, the value of which is changed, when values 
of other variables are fixed. The totality of the calculations 
above,when the value of k runs from 1 to n, 'is called the 
iteration of the algorithm. One iteration requires no more 
'n(p - 1) calculations of the function f(· ) values. 

3. The restriction (3) is taken into account as follows. 
Let the new value of k be fixed and the parameter x k be the 
only one in its group. Then the algorithm passes to the next 
k value. 

4. Let the value of k be fixed. There may be some co­
incidental argument points among p - 1 points in which it is 
necessary to calculate the f(· ) value. Calls to the program 
realizing f(· ) are not reiterated in such a situation, but the 
number of calculated f(· ) values is increased. 

5. Only the necessary part of the function f(· ) is recal­
culating when it is necessary to compute the unknown f(· ) 
value. 

6. The referred below strategies for mo and m initial 
selection were investigated: 

a) mo = 1, m is equal to the number of function f (. ) 
values calculated, the calculation of f( X 0) value is also taken 
into account; 

b) mo = 1, m = 1; 
c) mo is the number of f(· ) calculations used to obtain 

the best value of f(Xo), m = 1. 
7. SAl uses (5a), SA2-(5b). 
8.Xi = Ai as Xi 1 = Bi and ti = 1 and Xi = Bi as m m- 1", m 

X:n-l = Ai and ,i = -1 are used when (5a) is used. 
The algorithms above use some probabilistic chOOSIng 

(des cri bed by (5a) or (5 b)) of a point for the next calcula­
tion of the objective function value. The algorithm below 
uses the deterministic choosing. Let us denote it by SA3. Its 
peculiarities are the following: 

1. This peculiarity differs from SAl and SA2 first one as 
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follows: in (9) e takes the values from Dk in a deterministic 
way and ~i = 0 (i = 1, n, i #- k) during calculations when k 
value is fixed. 

2. The strategy of k changing and e selection is the 
following: for every fixed value of k ,the value of e runs from 
Ak - X~_l to Bk - X~_l with the exception of e = 0 . The 
totality of the calculations above, when the value of k runs 
from 1 to n, is called the iteration of SA3. 

3. The third, fifth and sixth peculiarities of SAl and SA2 
remain the same for SA3. 

Some properties of the algorithms are presented below. 

Note 5. SA3 coincides with A2 (Dzemyda,1987a) as 
8 = O. 

Let us denote: 
1) X M = (XL, ... , X M) is the current point of the al­

gorithm after M iterations (XM uncertainly coincides with 
the point, where the f(· ) maximum is achieved after Al iter­
ations); 

n 

2) SI = U [{(XL, .. ·,X~I,l,XitI,,,,,XM),,,·, 
i=l 

(X l xi-l X i +I ,.-n )}\{X }]. M, ... , M' p, M' ... , .i\' M M, 

3) S is the subset of SI consisting of the points, which 
satisfy the restriction (3). 

Note 6. Let XM be the current point of SA3 after M 
iterations. If the current point remains the same after the 
(M + l)-st iteration (i.e.XM+l = XM), XM corresponds to 
the parameters partition conforming to the local maximum of 
functional 11 , i.e., the transferring of any parameter from its 
group to another one would not increase 11 value. 

Proof. The algorithm SA3 is constructed in such a man­
ner that the values of f(· ) will be calculated on all points of 
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S during the (M +l)-st iteration if XM+I = XM. The unoccu­
rance of transition to any point of S during the 
(M + l)-st iteration indicates that f(· ) values on the points of 
S are less than f(XM ). Thus, X M corresponds to the locally 
optimal partition and the Note is proved. 

No~e 1. Let XM be the current point of SA2 after 
M iterations. If it remains the same during consequent itera­
tions,the probability of calculation of f(· ) values on all points 
of S in consequent iterations grows to l. 

Proof. Let the condition of Note 7 be met. Let us 
examine any point from S. The algorithm SA2 is constructed 
in such a manner, that the probability of calculation of f(· ) 
value in this point during the (M + l)-st iteration is equal: 

PI=l- ~ , ( 2)P-I 
p-1 

and during M + 1, ... ,M + t iterations is equal (if the current 
point in these iterations remains as XM): 

Pt = 1 - (1 - PI) t . 

lim Pt - 1. 
t---+oo 

The probability of calculation of values on all points of 
S in consequent iterations grows to 1 because the probability 
of calculation of f(· ) value in any point of S grows to 1 by 
increasing of iteration number. The Note is proved. 

Note 8. Let XM be the current point of SA2 after 
M iterations. If it remains the same during some consequent 
iterations and if f(·) values are calculated on all· points of 
S during these iterations, X M corresponds to the parameters 
partition, conforming to the local maximum of functional [1' 



G.Dzemyda et al. 33 

Proof. From the conditions of Note 8 it follows,that 
f(· ) values on the points of S are less than f(XM). Thus, 
X M corresponds to the locally optimal partition and the Note 
is proved. 

3.2. Experimental investigation. Investigations 
were performed on the EC-1045 computer. The algorithms 
are written in FORTRAN. The presented results are obtained 
for the third mode of mo and m selection because the opti­
mal partitioning quality of all modes was found to be similar 
(only the optimal value of b differs). The termination condi­
tion of all investigated algorithms was the limited number of 
iterations (the more complex termination condition for prac­
tical problems may be selected). 20 random correlation ma­
trices were generated. n = 20, p = 4, the following initial 
parameter partition was chosen: Al = {Xl,"" xs}, A2 = 
= {X6,"" XIO}, A3 = {Xll, ... , XIS}, A4 = {XI6, ... , X20}. 

The averaged results of the maximization of f(· ) are presented 
in Fig.I, Fig.2 and Table 1. 

In Table I IT is the averaged number of iterations, where 
the maximum of f(·) was obtained, and NL is the number 
of performed iterations by the SA type algorithms. lE is the 
averaged number of calculations of maximal eigenvalues dur­
ing one iteration (calculations of such a type take the great 
part in computational expenditures of the algorithms investi­
gated). The results of SAl, SA2 and SA3 performance are pre-. 
sented in Table I for the found optimal b. The performance 
of the deterministic algorithms is illustrated on the basis of 
Al and A2 (Dzemyda,1987a). The presented IT values for Al 
and A2 lines mean the averaged number of performed run­
nings through all parameters. The last two lines of Table I 
correspond to the case when SAl and SA2 were used for the 
initial partition of parameters and then the result was made· 
more precise by AI. 

The results of SAl, SA2 and SA3 performance are 
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Fig.!. The dependence of SAl, SA2 and SA3 perfor­
mance on 6 
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Fig.2. The dependence of SAl, SA2 and SA3 perfor­
mance on iteration number 
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presented in Fig.1 (in dependence on b) and in Fig.2 for the 
found optimal values of b (in dependence on iteration number). 

Table 1. The averaged results of test problems solving 

Algorithm b NL IT lE f(.) 
SAl 0.08 20 7.2 55.4 17.09 
SA2 0.10 20· 6.5 61.9 17.29 
SA3 0.25 20 6.25 80.0 17.37 

A1 2.8 7.6 17.02 
A2 3.5 80.0 17.26 

SA1+A1 0.08 2 2.0 17.11 
SA2+A1 0.10 2 2.0 17.12 

4. Conclusions. The experimental investigation 
showed that by using simulated annealing it is possible to 
find the better partition of parameters in comparison with 
that found by the deterministic algorithms. We observed the 
tendency to a sigIl;ificant improvement of the partition during 
the initial iterations. Later the results were specified. Thus 
some iterations of simulated annealing algorithms also can be 
used for the initial partition of parameters. Then the deter­
ministic algorithms, which are faster but require a good initial 
partition, can be used. The practical use of SAl (not for the 
initial partition) is doubtful because its partitioning quality is 
similar to that of A1, but A1 requires considerably less com­
putational expenditures. The partitioning quality of SA3 is 
better than of SA2. The improvement of partition stops af­
ter the greater number of SA2 iterations in comparison with 
SA3. However, one iteration of SA3 performs more calcu­
lations of. the maximal eigenvalues of symmetrical matrices. 
The algorithms proposed can be modified for the solving of 
any clustering problem. 
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