
INFORMATICA, 1997, Vol. 8, No.1, 119-138 

NOTES ON SOFTWARE AGENTS AND 
THE MOBILITY ISSUE 

Matin ADDIBPOUR 

Royal Institute of Technology, Department of Teleinformatics 
Electrum 204, 164 40 Kista, Sweden 
E-mail: mattin@iLkth.se 

Abstract. An overview and comparison of mobile agent systems are presented. The 
rapidly evolving area of software agents is briefly overviewed. The notion of mobility 
is analyzed in the context of mobile code languages, and its relation to distributed 
computing (e.g., client-server model), as well as its possible application areas are studied. 
Finally the need for a combination of mobility with other features is discussed. 

Key words: agent, software agents, mobile agents, distributed computing, client
server model, AI, DAI, KQML. 

1. Introduction. Different notions of software agents have been employed 

in subfields of the emerging agent research community, mainly focusing on 
separate and unrelated contexts. Mobility is one of the feasible attributes as
signed to an agent. Mobility refers to an agent's ability to roam in the network, 

this notion has been exploited mainly in the distributed computing community. 

Although mobility is not a necessary attribute for realizing an agent in gen

eral, it offers many practical advantages for realizing an agent-based computing 

environment. 

Distributed computing by means of mobile agents has been popularized in 

recent years. In this field agent-based computing has been considered an ex

tension to remote execution of script programs giving special consideration to 

the security issue. The goal is to advance the classical client-server computing 

into mobile agent-based computing. In'an agent-based framework applications 

(executable programs) are sent across the network instead of data. In order 

to extend this scenario one can consider mobile agents as autonomous agents 

roaming between agent servers or Agent Execution Environments (AEE) ac
complishing their user's goals. 



120 Notes on software agents and the mobility issue 

This paper is organized as follows. First a short overview of the rapidly 

evolving area of software agents is given in Section 2. In Section 3, the main 

common issues regarding the concepts used in the existing mobile agent systems 

are discussed. Finally a possible combination of mobility with other aspects of 

agents is briefly discussed in Section 4. 

2. Software agents. What is an agent? How is it different from a "computer 

program", a "node" in a network, or from an "actor"? There have been several 

attempts to give a definition of "agent". The question of "what is an agent", 

seems to be as difficult as the question of "what is intelligence". Compare the 

four following definitions of an agent: 

'i1.n agent is anything that can be viewed as perceiving its environment 

through sensors and acting upon that environment through effectors." 

AI agents (Russell and Norvig, 1995). 

'i1.n entity is an agent iff it communicates correctly in an Agent Communi

cation Language (ACL)." 

Heterogeneous agents (Genesereth and Ketchpel, 1994). 

'i1.n agent is a computer program that employs AI techniques in order to 
provide assistance to a user dealing with a particular application." 

Interface agents (Maes, 1994). 

'i1.n agent is a process that may migrate through computer network in order 

to satisfy request made by its client." 

Mobile agents (Johansen et al., 1995). 

It seems' that there is no cross-field consensus about what "agent as a 
metaphor" refers to. The meaning of the word "agent" is determined by the 

context in which it is used. In the following three papers, the issue of defin

ing an agent is studied, they all try to solve the problem by using different 

classifications. 

Wooldridge and Jennings (1995) divide an agent's notions into weak and 

strong ones. Weak notion of agency includes: Autonomy, a system is au

tonomous to the extend that its behavior is determined by its own experience. 

Social ability, interaction with other agents (and possibly humans) via some 

kind of Agent Communication Language (ACL). Reactivity, response in a timely 

fashion to the changes that occur in the environment. Pro-activness, exhibiting 

goal-directed behavior by taking the initiative. Strong notion refers to an agent 

in the context of AI. In addition to the weak notions, an agent is considered to 



M. Addibpour 121 

have mentalistic notions. By assigning a mental state to agents, they can be con

sidered as intentional systems. An intentional system has two important kinds 

of attributes: information attitudes, which inform the agent about the world, 

e.g., knowledge and belief, and pro-attitudes which guide the agent's actions, 

e.g., desire, intention, obligation and commitment. An agent should have at 

least one attribute from each category, other notions are mobility, rationality, 

believability and so forth. 

Frankling and Graesse (1996) give a natural kinds taxonomy for autonomous 

agents and the collection of agent's features is used as a farther classification. 

After discussiI;J.g eleven different definitions of agency, they propose the follow
ing definition: "An agent is a system situated within and part of an environment 

that senses and acts on it, over time, in pursuit of its own agenda and so as to 

affect what it senses in the future". 

Nwana (1996) classifies agents based on a typology of them. He argues that 
no research community owns the term "agent" in the same way that for instance 

the term "fuzzy logic" is owned by logicians! AI researchers. The word "agent" 

has become an umbrella term covering a heterogeneous body of research and 
development. 

These classifications and definitions express some common notions of an 

agent, but they fail to indicate an unified definition. The main difficulties with 
an unified definition are the following: 1) there are many meaningful choices, 
some of them are inherently contradictory; 2) a unification would restrict the 

use of the agent metaphor; 3) the metaphor will be mory ambiguous in the 

future (Burkhard, 1995). 

A set of software agents studied and developed in different fields is briefly 

overviewed in the following subsections (see Fig. 1). Dashed lines in the 
figure suggest that agent research in some fields are mutually stimulating. The 

classification given here is related to the field in which the agents are studied. 

This classification is neither strict nor complete. It is not strict in the meaning 

that there exist overlaps between the agent's functionality and concepts, and 

it is not complete because there are certainly other types of agents (Interface 

Agents, Information Agents and so on) which are not presented here. Mobile 

agents, which are the main concern of this paper, will be discussed in a separate 

section. 



122 Notes 011 software agellts alld the mobility issue 

Mobile Agents 

AI Agents /} " •..•.•. -~ DAI Agents 
~:\\~ ~ ......... : 

..-:~., SoftWare Agents...- : 

~ .. :: .... \i~: , . .... . -------,..; 

OBCP gents \ .. -::-.. ::< ........... A:gent-Oriented Prog. 

Heterogeneous Agents 

Fig. I. Software agents discussed in this paper. Dushed lines indi

cate that some fields are mutualy stimulating the development 

of agents. 

2.1. Agents in AL The metaphor has its root in the early history of AI. 
Intelligent computer agents are both the original and the ultimate goal of AI 
research (Hayes-Roth, 1995). Surprisingly, the issue of agent synthesis has 

been relatively little considered until a decade ago. Since the construction of 

an intelligent computer agent is a hard task, the AI community started to attack 

the problem by a "divide and conquer" strategy. Different subfields of AI 
studied different parts of the agent, mostly without having any forecast about 

the final goal, i.e., an integration of the developed methods and concepts into an 

agent. The diverged development of the agent's components, caused a painful 

integration and is still a real challenge in AI. In a recent book on AI (Russell 

and Norvig, 1995), the authors attempt to place almost every research effort 

in AI in the context of constructing an AI agent. Fig. 2 shows a simplified 

view of an AI agent, it can be defined as anything that can be viewed as 

perceiving its environment through sensors and acting upon that environment 

through effectors (Russell and Norvig, 1995). Sin& the environment can be 
even a software environment, this view is correct for a software agent situated 

in a software environment (e.g., Internet). 

Architectures. Several architectures for constructing the cognition part of 

a single agent have been studied. Three types which fall in the frame of AI 
agents can be mentioned, namely: 



M. Addibpour 123 

actions 

+-~\-action commands 

environment 

perceptions 
"""'--,-.;i-sensors data 

Fig. 2. A simplified view of an AI agent. 

• Deliberative agents, which contain an explicitly represented, symbolic 

level of the world, where decisions are made via logical reasoning. The 

underlying assumption is that cognition functionality can be modular

ized. Deliberative agents can have the ability to reason about the new 

situations and other agents' behavior. The limitations are the computa

tional complexity of symbol manipUlation in general and slow response 

time. 

• Reactive agents are based on a collection of simple behavior schemes 

(stimulus-response behavior) which react to changes in the environment. 

The agent should continuously refer to its sensors instead of to an internal 

world model. There is no symbolic model of the world represented 

internally. The subsumption architecture (Brooks, 1991) and situated 

automata (Rosenschein, 1989) fall into this group. The problems are 

the agent's hard-wired behavior and .the lack of ability to learn, adapt 

and predict. 

• Hybrid agents get benefit of both architectures, combining the high-level 

reasoning with low-level reactive capabilities. The reactive components 

serve the time critical actions, the deliberative part guides the behavior 

of the reactive part, for instance by changing the set of the situation rules 

of the reactive part. 

These were architectures of an single agent. In the case of a set of agents, 

new consideration must be taken into account when building a multi-agent 

environment. Studying the behavior of a collection of interacting agents is the 

concern of Distributed Artificial Intelligence (DAI). 



124 Notes on software agents and the mobility issue 

2.2. Agents in DAI. Distributed Artificial Intelligence (DAI) is a subfield 

of AI which focuses on studying systems where a collection of agents are 

interacting. DAI is divided 'into two parts, Distributed Problem Solving (DPS) 

and Multi-Agent System (MAS). DPS considers task allocation in view of 
a common goal, the problem is assignment of a global task to a set of co

operative agents. Each agent has a goal of maximizing a global utility function. 

MAS, on the other hand, refers to several autonomous agents, equipped with 
their own knowledge, local goals and abilities, sharing a common environment. 

Agents are concentrating on solving local tasks and maximizing the local utility 
function. Global situations may emerge, but agents may have competitive goals 
instead of shared ones. Moving from a single agent case to a society of agents, 
brings a set of new issues under consideration. DAI is therefore interested in 
co-ordination, communication, co-operation, negotiation and also in theories of 
intention and action (Bond and Gasser, 1988). 

2.3. Agents in object-based concurrent programming. The notion of an 
actor as proposed in the concurrent actor model fits to the concept of an agent. 
An actor is "a computational entity which has a mail address and a behavior, 
and can communicate by message passing and carry its actions concurrently" 
(Hewitt, 1977). In this context an agent can be seen as an extension to an ac

tor, which in its tum is a self-contained, interactive and concurrently-executing 
object. Object-Based Concurrent Programming (OBep) is in many respects 
the ancestor of agent languages. OBCP is based on the notion of active and 
autonomous objects which are computing concurrently and which interact by 
exchange of messages. DAI as discussed above is concerned with representa

tion, reasoning and co-ordination in collection of computational agents. There 
are good reasons for extending OBPC to provide a support to address DAI 
issues (Gasser and Briot, 1992). 

2.4. Heterogeneous agents. Heterogeneous agents refer to agents in the 

context of agent-based software engineering (Genesereth and Ketchpel, 1994). 

The main motivation for these agents are the increasing demand for the pro

grams working in isolation to become interoperable. The ability to effectively 
communicate and exchange knowledge between applications in a networked 
computing environment, can be realized by heterogeneous agents. An entity is 
an agent iff it communicates correctly in an Agent Communication Language 



M. Addibpour 125 

(ACL). The architecture of a heterogeneous agents system is studied by Knowl

edge Sharing Effort (KSE). The KSE three groups focus on how heterogeneous 

agents can be interoperable. Agents are heterogeneous if their implementation 

programming languages, knowledge representations and inference systems are 

not the same. To realize an agent, KSE defines: 

• Knowledge Query and Manipulation Language (KQML) as a common 

Agent Communication Language (ACL). KQML defines a high level 

protocol for the interaction and communication between agents, based 

on speech act theory. 

• Ontolingua as a set of tools, for maintenance of vocabularies, to en
sure that no confusion can arise when agents with different vocabularies 
exchange knowledge. 

• Knowledge Interchange Format (KIF) as a standard knowledge repre

sentation language for knowledge interchange between agents. 

Each KQML message consist'l of a communication type and one more KIF 

expression. Legacy software can be connected to the network of the heteroge
neous ACL speaking agents by an agentification of the original system, sup
porting interoperability between software by decoupling implementation from 

interface. The semantics of KQML has been recently specified with a farther 
extension of the language (Labrou, 1996). KQML is currently used in many 

other areas of agent research as a feasible ACL. 

2.5. Agent-o~iented programming. Agent-oriented programming (AOP) 

together with AGENTO a first prototype of an AOp, are proposed by Shoham 

(1991). The differences between an object and an agent are the following: an 

object can have arbitrary attributes, but the attributes of an agent are a fixed set 

of attributes which constitute the agent's mental state. On the other hand the 

inter-agent communication language has a predefined pattern and is constrained 

to a set of KQML-like messages in contrast to inter-object communication 

which is less constrained. The agent percepts the incoming messages, updates 

its mental state and infers the actions (e.g., outgoing messages) to be taken. New 

AOP languages based on AGENTO or the AOP paradigm have been develoPed. 

3. Mobile agents. Mobility in the context of mobile agents means the ability 

to pick itself up, transfer itself to another location while maintaining the internal 
order and continue its execution. Generally speaking, a mobile agent refers to 



126 Notes on software agents and the mobility issue 

a computer program which is able to migrate from a computer to a remote host 

and resume its execution. 

Technically, a mobile agent can be seen as (Baumann et.al., 1996): "an 

object consisting of code, data and execution state that may go beyond protec

tions domains" or "a component containing at least one thread of execution, 

which is able to autonomously migrate to a different site. A site is a component 

execution environment inside which inter-component communication is less ex

pensive than communication among components residing on different sites". 

More practically, a mobile agent is "a program: 1) that a person or organiza

tion vests with its authority; 2) that can run unattendedfor a long time (e.g., a 

week); 3) that can meet and interact with other agents; 4) and that can execute 

on different computer systems at different times of its life" (White 1996). 

Mobile agents are implemented as mobile programs. The underlying pro

gramming languages supporting mobility of programs are named Mobile Code 
Languages. In Subsection 3.1, mobile code languages are studied. In 3.2, mo

bile code paradigms are considered in the framework of distributed computing. 

Finally mobile agent systems are overviewed in 3.3. 

3.1. Mobile code languages. There are several ways of providing code 

mobility. Mobile code languages can be divided into those supporting strong 

or weak mobility (Carzaniga et ai., 1996). Strong mobility, means that both the 

code and the execution state of a program are moving to a new host. Execution 

of a program is suspended, transmitted to the destination host and resumed there. 

Weak mobility, refers to the ability of a progr~ to be bound dynamically to 

code coming from a different site, either by downloading from the network (as 

in Java (Sun, 1995)) or by receiving it from another remote program. Telescript 

(White, 1994) and Agent Tcl (Gray, 1995) belong to the strong group. Java 

supports weak code mobility by its class loader which enables downloading of 

a class from the network, and TACOMA (Johansen, 1995) allows sending both 

code and data for remote execution. 

3.2. Mobile code paradigms. Code mobility can be used in order to achieve 

different ways of implementation of distributed applications (see Fig. 3). To

day, the well-known and widely used client-server (CS) paradigm is used for 

realizing distributed applications. In the CS model there is no need for code 

mobility: 



M. AddibpoUT 127 

Client Server 

data 

1. Client-Server 2. Remote Evaluation 

code request agent 

Client Server Client Server 

code agent 

3. Code on Demand 4. Mobile Agent 

Fig. 3. Four approaches to distributed computing. 

• Client-server. In the client-server model, a server exports a fixed and 

non customizable set of services, the client can use services by using a 

RPC-based communication. The code, required resources and processor 

are all on the server side. 

In this context, three other paradigms using the mobile code approach can 
be mentioned (Carzaniga, 1996): 

• Remote evaluation. Assume that the server exports an "execute-code" 
service which takes as its argument, a code to be run on the server. The 

client can now send a code and customize server resources. The client 

can use server resources and computational power in a more llexible way. 

The code is on the client side, resources and the computational power 

are on the server side. As an example rsh command in the UNIX world, 

allows a user to execute script code on a remote host. 

• Code on demand. If the client has the resources and the computational 

power, but needs the necessarily code for customization of services, the 

code can be fetched from the server. In many upcoming Internet ap
plications this paradigm is used. The Network: Computers use basically 
this approach. 

• Mobile agent. In this approach the code is acutely executed in the 
local host, but at some point the execution is halted and the executing 



128 Notes on software agents and the mobility issue 

program (code plus state) will migrate to a remote host, which may have 

the resources needed for continuing execution. Note that in the mobile 

agent paradigm the computation is started before the code migration and 

is continued afterwards, versus in the two previous approaches, the code 

is first moved and then executed. 

Advantages of these alternative paradigms in comparison with the CS model 

are: 

• Peifonnance improvement, to carry out a computation in the CS model, 
often several network messages will be transferred between the client 

and server. Sending the code will reduce the frequency of interaction 

and thus communication. Moving the code near to the data provides the 

computation to be performed locally and not remotely. 

• Flexibility, the type of services which the client can obtain are not re
stricted to the server interface. Sending/receiving code to/from the server 

offers a service that is programmable with a computationally complete 
language. 

• Simpler interface on the server side, since the server does not need to 
deal with complex interfaces to optimize for low bandwidth connections 
or many complex procedures for providing extensive functionality. 

• Simpler failure semantics, local failure recovery provides a more con

sistent model, since the difficult scenarios where both the client and the 
server have to roll-back do not occur. 

• Simpler application programming, once the mechanisms for mobility 
are solved, since the communication is reduced to a local site issue, the 

application programmer does not need to deal with complex networking 
syntax and failure semantics. 

• Semantic routing, in the case of a mobile agent, it can get informa
tion from one server about another server where the mobile agent can 

accomplish its task. 

• A more intuitive model, co-locating the service provider and the service 

requester is a real life metaphor. 

Disadvantages of these models are: 

• Security problem on server/client side, since the server/client has to offer 
an execution environment for an external code, there exists a risk for a 

malicious code. 



M. Addibpour 129 

• Limitation of computational power, there must exist mechanisms for re

stricting the incoming code from exhausting the computational resources 

on the server/client. 

• Network bandwidth, sending the agent does not always mean less com

munication overhead, it depends on the size of the agent. Sending a 

large agent can acutely consume more bandwidth than a couple of data 

interactions between server and client. 

These advantages and disadvantages show that alternative approaches are 

not generally a better approach than RPC-based CS interaction. It depends on 

the patterns of interaction between the client and the server and the size of the 
code. There are certainly cases and applications where the classical model is 

more adequate. This concludes that the mentioned paradigms should be seen 
as complementary (Magedanz, 1996). 

33. Mobile agent systems. The discussed mobile agent model can be ex

tended to what will, in continuation, be called mobile agent systems. Mobile 

agent systems refer to a more general environment for the execution of agents. 

In mobile agent systems agents are operating on Agent Execution Environments 
(AEE) through out the network. They are able to migrate toward the problem 
to cooperate with other agents. The mobile agent systems are not only an al
ternative to a more traditional approach (e.g., CS), but they also have practical 

value in supporting limited local resources, asynchronous computing, a more 

natural development environment (e.g., for realizing electronic marketplace), 

and a more flexible distributed computing architecture. 

Today, there exist environments for realizing mobile agent systems, both 

commercial (e.g., Telescript (White, 1994) and Aglet (Lange and Chang, 1996)) 

and research prototypes (e.g., TACOMA (Johansen et al., 1995) and MOLE 

(Strasser et al., 1996)). Most of them are based on a set of common concepts. 

The concepts and design space for a hypothetical mobile agent system, i.e., a 

distributed system which enables and supports execution of mobile agents will 

be discussed here. This hypothetical mobile agent system is based on an analyze 

of the current approaches in re~izing the mobile agent systems, by observing 

a set of concepts which are shared among these systems and the mobile agents 

running on them. 

3.3.1. The mobile agent. The mobile agent can be build from procedural 

components or from classes and objects. Agents are preferably implemented 



130 Notes on software agents and the mobility issue 

in interpreted languages. Although there is a performance penalty for this, it 

has many advantages in comparison to the machine languages. Interpretable 

code can more easily operate on heterogeneous platforms, they can contain 

references which exist in the destination and not in the current host of the agent 

(late binding) and security is easier to maintain, since language developers can 

explicitly exclude the access point to the crucial system resources. A mobile 

agent can consist of: 

• the program code (program state), 

• the content of the instance variables (data state), 

• the stack (execution state). 

A simple mobile agent can contain a program code in the form of a script, 

with data state presented as assignments in the program. For the sake of effi

ciency, parts of code can also be dynamically fetched on demand. 

Mobility. What happens when an agent decides to move? Two scenarios 
can occur. Agent A can create another agent B for sending to the remote host, 

after performing the computation in the remote host, B will either return or 
send back the final results. A can suspend while B is away, or can continue 
execution at the local host. On the other hand, agent A can stop execution in 

a point, move to another host and continue execution from the point where it 
stopped, much alike process migration in Operating System (OS). Usually the 

language supports a command like jump, go, move or migrate. The semantics of 
these commands are different in different languages, but all cause the program 

to move to a remote host. 

Autonomy. A mobile agent decides to migrate and move to another host by 

his own choice. In mobile agents autonomy means that the agent's migration is 

a self-desired migration, and this is not forced by an external entity (e.g., OS). 

The migrating processes, can not be seen as mobile agents since they are forced 

to migrate by as, in respect to better load balancing and improving parallelism. 

3.3.2. The agent execution environment. A mobile agent system, pro

vides a set of distributed Agent Execution Environments (AEE). A network of 
AEEs can be build up by run-time invocation of AEE. AEEs can be seen as 

computational environments, interconnected by some communication medium, 
supporting execution of mobile agents. It has also been called Agent Meeting 

Point (AMP) (Chess et al., 1995), since it is a common place for agents to meet 
and interact. An AEE contains at least one execution engine. An engine sup-



M. Addibpour 131 

ports computational resources needed for agents execution (e.g., an interpreter 
or compiler). 

AEE defines a set of locations (places (White, 1994)) where agents can run. 

In the simplest case the location and the engine are the same. But locations may 

be abstract places which are transparent from the physical location of the engine. 

This means that severallocations can exist in the same execution engine or one 

location can be distributed between many engines. Locations themselves may 

also move between the engines. A set of services is often related to a location. 

Agents move between locations. Agents' mobility is supported by starting, 

stopping, and suspending the execution of agents in preparation for moving 
from one location to another (may be to another engine). An agent migrates toa 

location in order to get a specific service or to meet another mobile or stationary 

agents. Stationary agents can represent services, an operating system, a data
ba<;e interface, and so forth. Representing all the entities in an AEE as agents 

has the advantage of having agents as the basic and only parties of interaction. 

Interagent communication mechanisms are needed for interaction between 
mobile agents meeting in a location as well as between the static and mobile 

ones. Mobility can not be fully exploited without a reasonable inter-agent com
munication mechanism. Much like OS supporting inter-process communication, 

AEE must provide some sort of inter-agent communication. Communication 
can be: 

• synchronous vs. asynchronous, depending on weather communication 
primitives are blocking or not, 

• based on message passing or shared memory model, 

• local (agents are on the same platform) vs. remote (agents are on dif

ferent locations), 

• direct (the sender has to know the address of the receiver) vs. indirect. 

Beside the inter-agent communication mechanisms, the need for an Agent 

Communication Language (ACL) (e.g., KQML) is important in today's open 

network. It provides interoperability between different mobile agent systems 

and other agent systems. All the applications which are connected to the AEE 

can have an agentified interface, at least at the level of handling ACL messages. 

This gives a uniform interaction pattern for the whole system. KQML-like 

ACLs are usually asynchronous, based on message passing, for remote com
munication and direct. A Linda-like approach, as proposed in (Lingnau and 



132 Notes on software agents and the mobility issue 

Drobnik, 1996), can be synchronous, based on shared memory model, local 

and indirect. 

Communication requires names for entities in a mobile agent system, in

eluding AEEs, agents, locations, services and so forth. Naming and addressing 

can be provided by name servers (e.g., traders). In addition they may support 

run-time discovery and querying of agents by name, by their characteristics, 

or by their capabilities. Run-time generated random keys (e.g., in MOLE) and 

prefixing some global name space (e.g., Internet, like in Lingnau and Drobnik 

(1996)) are two examples of generating namespaces. 

Security is an important requirement for a mobile agent system, since the 

mobile agents have to be evaluated in an open and execution safe environment. 

Two cases regarding the security issue in a mobile agent system can be pointed 

out, AEE security and agents privacy and integrity. 

• AEE security can be treathened by a malicious agent. AEE must pro

tect its resources. AEE security can be accomplished in several layers. 

The basic layer of security check is at the level of the implementa

tion programming language of the agent. The code can be verified and 

checked in respect to the security issues, examples are Java bytecode ver

ifier (Sun, 1995), and Safe-Tel (Gray, 1995). In Safe-Tel, the interpreter 

keeps the unauthorized agents away from accessing the Tel normal inter

preter which can handle tools for reading and writing files and process 

control and memory reconfiguration. The Safe-Tel can call the inter

preter through procedural calls. At the higher levels the agent can be 

authenticated and identified, by a security manager (Aglet (Lange and 

Chang, 1996)) or a firewall agent (TACOMA (Johansen et al., 1995)), 

for authenticated access to AEE resources. 

• Agents privacy and integrity: there may exist mechanisms to protect 

agents from a malicious AEE which tries to violate the mobile agent's 

privacy and integrity, or deny services or execution. The AEE can ex

amine the content of the agent's code and data in order to discover the 

intentions of the agent. For instance, in the case of a electronic market, 

AEE can discover the intention of the agent to buy something for X$ 

and then it can change the offer on the basis of the obtained information. 

Violation of privacy and integrity is directly connected with controlling 

read and write access to code and data. Mechanisms for protecting the 



M. Addibpour 133 

agent can be obtained by using cryptography with digital signatures, 
encryption, and authentication. 

A user can communicate with AEE and track her mobile agent through 

an User inteiface agent, which can be a stationary agent executing on the 
local host. Some other issues a mobile agent system may address include 

resource consumption control (there must be some mechanism to stop an agent 

to exhaust the resources in the AEE), trading, accounting, semantic routing, 

orphan detection, agent termination, group semantics of agents and yellow 

page services. 

Standardization efforts are going on by the Object Management Group 
(OMG) under the name Mobile Agent Facilities (MAF) (OMG, 1995). Al
though OMG's MAF does not cover all the issues mentioned above, it has 
an intention to enhance the current distributed object technologies (based on 
distributed stationary agents, interacting through synchronous message passing) 
with active mobile objects interacting through asynchronous message passing. 

3.3.4. Examples of mobile agent systems. Some examples of current mobile 
agent systems are mentioned in this part. 

Telescript (White, 1995) is the first commercial mobile agent programming 
language. It was initiated originally by Apple for designing electronic market
places. It is a pure object oriented language, and runs in a Telescript engine. 
The basic class in Telescript is a process running in a node, two important 
subclasses are 

• places: provide meeting locations for agents, 

• agents: is a process which can migrate between places. 
Telescript was the first language which supported agent-based programming 

for a Personal Digital Assistant (PDA), it was meant to operate on the AT&T 
personal link, later on it offered even an Internet solution. 

Agent Tel (Gray, 1995) is a transportable agent system. The agents migrate 

from machine to machine using the jump command. In addition to migration 

Agent-Tcl supports 

• message passing and direct communication between agents, 

• stationary agents can be written in C/C++. 

Mobile agents are encrypted and authenticated using PGP. Safe-Tcl enforces 
the access restriction to the normal Tcl interpreter. 

TACOMA (Johansen, 1995) provides support for agent-based computing. It 



134 Notes on software agents and the mobility issue 

is written in C and based on UNIX and TCP. TACOMA uses abstractions like 

briefcase, folder; meet. An agent can pack everything it needs in a briefcase in 

preparation to move. Each briefcase contains a set of folders for keeping data 

and programs. Each briefcase contains at least the following folders: 

• HOST: where to meet the other agents, 

• CODE: filled with the code to be executed in the remote host, 

• CONTACT: a compiler agent executing the CODE. 

A Scheme compiler agent (CONTACT) in a Sun station (HOST) can execute 

a Scheme code send from a DEC station. Executing "meet B with be" by an 

agent will cause the be to be transferred to a remote host specified in the be, the 

proper compiler will be contacted and after compiling the code, it is possible 

to interact with agent B. A firewall agent has the responsibility to check the 

security when a briefcase arrives. TACOMA supports agents written in C, Tel, 

Perl, Python, Scheme. 

MOLE (Strasser et al., 1996) is an agent system based on the Java language. 

It consists of a set of agent servers. In each server there is an engine ba'led 
on the top of the Java-interpreter which manages locations executed on an 

agent system. Each location provides a meeting place for agents. Agents 

are divided into service agents (static agents) and user agents (mobile agents). 

Only low level communication facilities and some kind of yellow page service 

is supported. 

Aglet (Lange and Chang, 1996) consists of the aglet (an agile little agent 

written in the Java progr~ng language), the Java Aglet API (JAAPI) and 

the Agent Transfer Protocol (ATP) that make the aglet secure and mobile on the 

Internet. It is a visual environment for building network-ba'led applications that 

use mobile agents to search for, access and manage corporate data, and other 

information. The ATP and API form one of the proposals to OMG's MAE 

A HTTP-based mobile agent system (Lingnau and Drobnik, 1996) focuses 

on communication issues in the mobile agent framework and uses Linda-based 

communication for agent interaction. The Linda tuples constitute an information 

space where agents can share information and communicate. 

3.3.5. Application areas. At the end of this section, some application areas 

for Mobile agent systems are mentioned: 

• Network management, mobile agents representing management scripts 

enable both temporal and spatial distribution of management activities 



M. Addibpour 135 

in distributed network management. 

• Intelligent Network (IN) services, can be realized by enhancing the ex
isting Service Control Points and exchanges by AEE in order to enable 
a more rapid and more customized provision of IN-based services, im

plemented as mobile agents (Magedanz, 1996). 

• Information retrieval, can be much more efficiently supported if an agent 
representing a query can move to a server for accomplishing non antic

ipated queries. 

• Smart networks, as proposed and discussed in Harrison (1994), offer 
new services which are tuned to the subscribers preferences. Services 
are personalized and this can be achieved by using mobile agents as a 
component in the agentified structure of a smart network. 

• Electronic commerce, agents roaming in a network of electronic market
places, representing desires of their users, negotiating and offering the 
cheapest price. This application can be highly exploited if the legal and 
security aspects of Internet would be solved. 

• Mobile computing, mobile agents are often mentioned in conjunction 
with mobile computing devices, like PDAs. These devices have their 
main limitation in memory and computing capacities and are used most 
of the time "off-line". Mobile agent<; are therefor a good solution for 
enhancing the function of these devices since the agent can represent 
the user in the network and can accomplish tasks while the device is not 
connected to the network. 

• CSCW, mobile agents can be used as migratory applications, which take 
their user interface and application contexts with them and continue from 
where they left off, building a good base for cooperative work. They 
can act as a natural media for people to interact and cooperate. 

Almost all of these applications can be handled by stationary programs and 

traditional techniques and methods like the RPC method. Aside the better per
formance which mobile agents can offer, they associate a real life metaphor 

and give a more flexible system for realizing an agent-based computing envi-. . 
ronment where legacy systems, stationary and mobile agents can communicate 

and cooperate. 

4. Is mobility sufficient for mobile agent<;? It can be argued that at the 
technical level, a mobile agent has almost no conceptual attachment with agents 



136 Notes on software agents and the mobility issue 

in other fields. However, talking about the applications of the technology, leads 

us to recognize common features and conjunctions with agents in other fields. 

The platform for mobile agents is often an open distributed environment 

(e.g., Internet). The network has become a single vast environment. Mobile 

agents must survive and compete in this dynamic and uncertain environment. 

They should be able to adapt and reason about the unpredictable scenarios. This 

requires that self-awareness and adaptation must be added to the functionality 

of mobile agents. Adding reflective behavior (Tyugu and Addibpour, 1996) 

is a possible solution to maintain the needed intelligence in mobile agents. 

Reflective agenl<; have been studied in both DAI and OBCP. Mobile agent 

should be able to migrate even between heterogeneous borders of distributed 

systems. This suggesl<; an integration of mobile and heterogeneous agents. 

REFERENCES 

Baumann, J., C. Tschudin and J. Vitek (1996). In Proceeding of the 2nd ECOOP 

Workshop on Mobile Object Systems. 

Bond, A., and L. Gasser (1988). Readings in Distributed Artificial Intelligence. Morgon 
Kaufmann, Los Angeles, CA. 

Brooks, R. (1991). Intelligence without representation. Artificial Intelligence, 47, 139-

159. 

Burkhard, H.D. (1995). Agent-oriented programming in open systems. In Michael 

Wooldridge and Nicholas R. Jennings (Eds.), Intelligent Agents, Theories, Archi
tectures, and Languages, Vol. 890. Springer-Verlag Lecture Notes in AI. 

Carzaniga, A., G.P. Picco and G. Vigna (1996). Designing Distributed Applications 

with Mobile Code Paradigms. Technical report, Politecnico di Milano. 

Chess, D., et al. (1995). Itinerant Agents for Mobile Computing. ffiM Research Report. 

Franklin, S., and A. Graesse (1996). Is it an Agent, or just a Program? A Taxonomy 

for Autonomous Agents. In M. Wooldridge and N.R. Jennings (Eds.), Proceeding 
of the 3rd. ECAlT96 Workshop 'on "Intelligent Agents, Theories, Architectures, and 
Languages". 

Gasser, L., and J.P. Briot (1992). Object-based concurrent programming and DAI. In 

Distributed AI: Theory and Praxis, Kluwer Academic Publishers, Boston, MA. pp. 

81-108. 



M. Addibpour 137 

Genesereth, M.R., and S. P. Ketchpel (1994). Software agents. Communication of the 
ACM, 37(7), 48-53. 

Gray, R.S. (1995). Agent Tel: A transportable agent system. In Proceedings of the 
CIKMT95 Workshop on Intelligent Information Agent. 

Harrison, C.G. et al. (1994). Mobile Agents: Are they a Good Idea? IBM Research 
Report, RC 19887. 

Hayes-Roth, B. (1995). Agents on stage: Advancing the state of AI. In Proceeding of 
IJCAl'95, Vol. 1. Montreal. pp. 967-971. 

Hewitt, C. (1977). Viewing control structures as pattern of passing messages. Artificial 
Intelligence, 8(3), 323-'-364. 

Johansen, D., R. van Renesse and F. B. Schneider (1995). Operating system support 
for mobile agents. In Proceedings of the 5th IEEE Workshop on Hot Topics in 
Operating Systems, Orcas Island, Wa, USA. 

Labrou, Y. (1996). Semantics for an Agent Communication Language. Ph.D. thesis, 
CSEE, Univ. of Maryland Graduate School, Baltimore, Maryland. 

Lange, D.B., and D. T. Chang (1996). IBM Aglets Workbench. IBM White Paper, IBM 
Corporation. 

Lingnau, A., and O. Drobnik (1996). Making mobile agents communicate: a flexible 
approach. In Proceeding of the 1st Annual Conference on Emerging Technologies 
and Applications in Communication. Portland, Oregon. 

Maes, P. (1994). Social interface agents: acquiring competence by learning from users 
and other agents. In Working Notes of the I994AAAI Spring Symposium on Software 
Agents. AAAI Press, Stanford. 

Magedanz, T., et al. (1996). Intelligent agents: an emerging technology for next gen
eration telecommunication. In IEEE INFOCOM. San Francisco, California, USA. 

Nwana, H.S. (1996). ~oftware agents: an overview. The Knowledge Engineering Re
view, 11(3), 1-40. 

OMG (1995). Mobile Agent Facilities. In OMG Common Facilities, Object Management 
Group. 

Rosenschein, S. (1989). Synthesizing information-tracking automata from environment 
descriptions. In Proc. of the KR Conf. Toronto, Canada. 

Russell, S., and P. Norvig (1995). Anificiaiintelligence: a Modern Approach. Prentice 
Hall. 

Shoham, Y. (1991). AGENTO: A simple agent language and its interpreter. In Proceed
ings of t~e Ninth National Conference on Artificial Intelligence. Anaheim. p~. 

704-709. 

Strasser, M., J. Baumann and F. Hohl (1996). MOLE-A Java based mobile agent 
system. In Baumann et al. (Eds.), Proceeding of the 2nd ECOOP Workshop on 
Mobile Object Systems. 

Sun (1995). The Java Language Specification. Sun Microsystems. 



138 Notes on software agents and the mobility issue 

Tyugu, E., and M. Addibpour (1996). Declarative reflection tools for agent shells. Fu
ture Generation Computer Systems (Special issue on Reflection and Metalevel Al 

Architectures), 12(2&3), 203-215. 
White, J.E. (1994). Telescript Technology: The Foundation for the Electronic Market

place. General Magic Inc., White Paper Vol. 1,2,3. Mountain View, CA. 
White, J.E. (1996). A common agent platform, submitted to the joint. In W3C10MG 

Workshop on Distributed Objects and Mobile Code., 

Wooldridge, M., and N. R. Jennings (1995). Intelligent agents: Theory and practice. The 
Knowledge Engineering Review, 10(2), 115-152. 

Received November, 1996 

M. Addibpour graduated from the Royal Institute of Technology in Sweden 

in 1995 with a M.Sc. in Computer Systems Engineering from the School 

of Electrical Engineering. He joined the Software Engineering Lab. at the 
Department of Teleinformatics in 1994, where he is currently a Ph.D. student. 

His research interests include reflection and mobility in software agents. 

PASTABOS APIE PROGRAMINES IRANGOS 

AGENTUS IR MOBILUMJ\ 

Matin ADDIBPOUR 

Straipsnyje trumpai ap~velgta spar~iai vystoma programines jrangos agent\! tematika 
ir pateikta mobili\! agent\! sistem\! lyginamoji analize. Mobilumo sllvoka analizuojama 
mobilaus kodo ir jo ry~ht su isskirstytais skai~iavimais kontekste, nagrinejamos po
tencialiai galimos sios Sllvokos taikymo sritys. Pabaigoje aptariamas poreikis derinti 
mobilumq su kitomis sisteml.l savybemis. 


