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Abstract. The problem is to discover knowledge in the correlation matrix of param­
eters (variables) about their groups. Results that deal with deterministic approaches of 
parameter clustering on the basis of their correlation matrix are reviewed and extended. 
The conclusions on both theoretical and experimental investigations of various deter­
ministic strategies in solving the problem of extremal parameter grouping are presented. 
TIle possibility of finding the optimal number of clusters is considered. The transfor­
mation of a general clustering problem into the clustering on the sphere and the relation 
between clustering of parameters on the basis of their correlation matrix and clustering 
of vectors (objects, cases) of an n-dimensional unit sphere are analysed. 
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1. Introduction. Any set of similar objects (cases, vectors) may be often 

characterized by common parameters (variables). The term "object" may cover, 

e.g., people, equipment, or produce of manufacturing. Any parameter may 

take some values. A combination of values of all parameters characterizes a 

concrete object from the whole set. The values obtained by any parameter 

depend on the values of other parameters, i.e., the parameters are correlated. 

There exist groups (clusters) of parameters characterizing different properties of 

the object. The correlation matrix of parameters may be calculated during the 

analysis of objects composing the set. The problem is to discover knowledge 
in the correlation matrix of the parameters about their groups. The methods 

investigated here are oriented to the analysis of correlation matrices and, III 

particular, to the clustering of parameters on the basis of correlations. 
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Examples of real correlation matrices: 

1. The matrix of 8 physical parameters measured on 305 schoolgirls [1,2]. 

2. The matrix of 11 parameters characterizing the development of agriculture 

in two Canadian provinces [5]. 

3. The matrix of 33 parameters of a tractor driver [13]. 

4. The matrix of 24 psychological tests on 145 pupils of the 7th and 8th 

forms in Chicago [1]. 

5. The matrix of 11 frequencies influencing human mentality [13, 26]. 

6. The matrix of 10 geological parameters [36]. 

The problem is to partition the parameters Xl,"" xn into a fixed number 

p of non-intersecting and homogeneous, in a certain sense, groups (clusters) 

A l , ... ,Ap by the correlation matrix R = {rx;Xj' i, j = 1, n} characterizing 

the connections among the parameters (rx;Xj is a correlation coefficient of 

parameters Xi and Xi)' A covariance matrix may be used instead of the matrix 

R. However, the parameters with a greater variance will be more significant in 

the analysis. There is no a priori information regarding the number and size 

of groups. 

Algorithms of parameter clustering are widely used to analyze the real data. 

There are two possibilities of such an analysis. The first one is to analyze the 

data matrix X = {Xij, i = 1, m, j = 1, n}, where m is the number of objects. 

The rows of X correspond to objects, and the columns of X correspond to 

parameters. The algorithms for clustering of objects are suitable here, because 

n columns of the matrix X may be clustered instead of m rows (see [4, 5]). 

Algorithms of such type for parameter clustering are included, for example, into 

the sublibrary of Fortran subroutines CLUS1ER, Fortran subprogram library 

IMSL [43], and the integrated statistical data analysis, graphics, and data base 

management systems STATISTICA [41] and SYSTAT [39,40]. The subroutines 

in CLUS1ER are described in [4] and are part of the NIST Core Mathematical 

Library CMLIB [38]. Programs of the NAG Fortran Library [42] may also be 

used for such clustering. However, sometimes m may be very large or only the 

correlation matrix of parameters is known. In this case, the analysis of a set of 

(n -1)· n/2 elements of the correlation matrix (or (n + 1). n/2 elements of the 

covariance matrix) may be made instead of m· n elements of the data matrix 

X, i.e., compressed information may be used. The modification of Harman's 

algorithm [1] based on the analysis of correlations is included in SAS [2, 37]. 
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The algorithms of such type are also presented, for example, in [5, 13]. 

We deal here with algorithms of extremal parameter grouping [5-12, 31] 

based on the analysis of correlations and maximizing the partitioning quality 

(1) 

where F L is a factor with a unit variance, corresponding to the group AL ; r X;FL 
is a correlation coefficient of the parameter Xi and the factor FL' The factors 

F L' L = !,p, are selected so that to maximize the sums 

(2) 

We review and extend here the results referring to the deterministic 
approaches of parameter clustering published in [6, 8, 9, 10,31]. Probabilistic 

approaches are also used to solve the problem above. The results are presented 

in [11, 12, 31]. 

2. A theoretical basis for extremal parameter grouping. In [5] it is proved 

that 

(3) 

(4) 

where af are components of the eigen-vector of the matrix RL = {rX;Xj' 
Xi, Xj E Ad, corresponding to the maximal eigen-value AL of RL • 

PROPOSITION 1 [8]. The following formulae are equivalent to (3) and 
(4): 

F L = E afxdA, 
x;EAL 

rX ' FL = 2: afrxix.lA, 
xiEAL 

(5) 
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where AL is the maximal eigen-value of the matrix RL = {rXiXj ' Xi, Xj E 

Ad, rtf are components of the normalized eigen-vector (i.e., a vector of 
unit length) of R L , corresponding to ).L' 

PROPOSITION 2 [8]. rX.FL = Art~ as Xs E AL · 

PROPOSITION 3 [8]. The following formula is equivalent to (1): 

From (3) and (5) we observe that the factors F L> L = G, are linear 

combinations of parameters from the corresponding groups AL , L = G. 'The 

coefficients of the linear combinations are selected so that to maximize the sums 

(2). The values of coefficients of the linear combination are proportional to the 

elements of the eigen-vector corresponding to the maximal eigen-value AL of 

Ru and AL = 2: r;iFL' In this manner the ideas of factor analysis [I, 36] 
xiEAL 

are applied to the formulation of the problem of parameter clustering. 

Definition 1 [5, 7]. By the local maximum of the functional h we call its 
value, corresponding to such a partition, where the squared correlation coeffi­

cient of any parameter with the factor, corresponding to the group including this 

parameter, is greater than or equal to that of the parameter with other factors, 

i.e., where for any parameter x, (let Xs E Ak) the following inequality holds: 

Such a definition is useful in creating a strategy for maximizing It. 

REMARK 1 [5]. Let a partition of parameters Xl, ... , Xn into a fixed num­

ber p of non-intersecting groups AI, ... ,Ap be given and factors Fl , ... , Fp 

be fixed. Consider a parameter Xs (let x. E Ak)' If we succeed in finding a 

factor F L , L =1= k, such that r2 F < r2 F ' then the transfer of Xs from the 
Xs k x. L 

group Ak into the group A L will increase the value of h. 

Let a partition of parameters Xl,"" xn into a fixed number p of non­

intersecting groups AI, ... ,Ap be given and a parameter X8 be in the group 

A k • Let, in this case: 
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- AL and AI; be the maximal eigen-values of matrices RL = {rXiXj ' 

Xi,Xj E Ad and Rk = {rXiXj ' Xi,Xj E Ak}, respectively; 

- X;;s be the maximal eigen-value of the matrix R,/ = {rXiXj ' Xi, Xj E 

A;S}, where the group A;s is obtained from the group Ak byelimi­
nating the parameter X s ; 

- At be the maximal eigen-value of the matrix Rt= {rXiXj ' Xi,Xj E 

At}, where the group At is obtained from the group A L (L =1= k) by 

adding the parameter X S • 

REMARK 2 [8, 9). Let a partition of parameters Xl, ... ,Xn into a fixed 

number p of non-intersecting groups A1 , .•. , Ap be given and a parameter 

Xs be in the group Ak' If we succeed in finding At (L =1= k) such that 

Ak - A;s < At- AV then the transfer of X. from the group Ak into the group 

A L will increase the value of h. 

REMARK 3 [8, 9). Let a partition of parameters Xl, ... , Xn into a fixed 

number p of non-intersecting groups A 1 , ••• ,Ap be given. If for any parameter 

Xs (let Xs E Ak) the following inequality holds: Ak - A;s ~ At - AL, 
L = G, L =1= k, then the partition of parameters corresponds to the local 
maximum of 11 , 

Remark 3 defines the partition when the transfer of any parameter from its 

group to another one does not increase the value of 11 , Remarks 2 and 3 make 

a basis for algorithms maximizing the functional 11 without computing separate 

factors F1, ... ,Fp and correlation coefficients between separate parameters and 

factors. Maximal eigen-values of the symmetric matrices should be computed 

only in this case. 

PROPOSITION 4 [8). Let a partition of parameters Xl, ... ,Xn into a 

fixed number p of non-intersecting groups A 1 , .•• , Ap be given and factors 

F1 , ... ,Fp be fixed. Consider a parameter Xs (let Xs E Ak)' If one can 

find two factors F L, and F L2 (Ll =1= L2 =1= k) such that 

then three opportunities are possible: 
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where Ifl and If2 are values of the functional h obtained after trans­

ferring the parameter X$ from the group Ak into the group ALlor AL2 , 

respecti vely. 

PROPOSITION 5 [8]. Let a partition of parameters Xl, ... , Xn into a 

fixed number p of non-intersecting groups A1, ... , Ap be given and factors 

F1' ... ' Fp be fixed. Consider a parameter X$ (let X$ E Ak). Let there 
be a factor FL (L =P k) such that r2 F = r2 F . After transferring the 

x. k z. L 

parameter X$ from the group Ak into the group AL, the value offunctional 

11 may be increased. 

PROPOSITION 6 [8]. Let a partition of parameters Xl, ••• , Xn into a 

fixed number p of non-intersecting groups A1, ... , Ap be given and factors 

Fl. ... ' Fp be fixed. Consider a parameter X$ (let X$ E Ak). Let there 
be a factor FL (L =P k) such that r2 F > r2 F . After transferring the 

z. Ie :c. L 

parameter X$ from the group Ak into the group AL, the value offunctional 
h may be increased. 

REMARK 4 [8]. Let a partition of parameters Xl, ••• , Xn into a fixed num­

ber p of non-intersecting groups A 1, ... , Ap be given and factors F1, ... , Fp 
be fixed. Consider a parameter X$ Oet X$ E Ak). It follows from Propositions 

4-6 that using the values of r",.FL' L = l,p, it is impossible to determine the 
group where the value of h increases most after transferring the parameter X $ • 

3. Detenninistic algorithms for maximizing 11. Deterministic algorithms 

[5-10] often find only the local maximum of 11 which is not global. All the 

algorithms start from some initial partition selected by some algorithm or by 

a certain knowledge about the problem. They are based on the analysis of 

parameters in consecutive order and on the search for a group of transferring 

a separate parameter with a view to increase the 11 value. They use different 

strategies to determine when the parameter must be transferred from its group 

to another. The algorithms stop when the transfer of any parameter by the 

chosen strategy does not increase the value of 11• 

Let us introduce two functions used in a formal description of algorithms: 

argmaxw(q) and argminw(q) return the least value of q which maximizes 
- q - q 

and minimizes the function w(q), respectively. 

When algorithm Al [8] considers the parameter X$ Oet X$ E Ak), it seeks 
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the greatest squared correlation coefficient r2 F among r2 F.' j = 1, p, j =1= k. 
Xs L ~. , 

If r2 F > r2 F ' then Al transfers x. into the group AL and recalculates the 
Xs L x, k 

factors Fk and FL' 

When algorithm A2 [8] considers the parameter x. (let x. E Ak), it seeks 

the group Av L =1= k, such that the value of functional It increases most after 

transferring x., i.e., A2100ks for L maximizing E = At+ A;;a - AL - Ak' If 
E > 0, then A2 transfers x. into the group AL and recalculates Ak and AL. 

REMARK 5 [8]. Algorithm A2 should yield a greater value of It as com­

pared with AI. Algorithm Al makes a decision where to transfer the parameter 

Xs on the basis of correlations among this parameter and factors F1 , •.. , Fp. 
Remark 4 implies that, in this manner, it is impossible to detennine the group 

where the value of h increases most after transferring the parameter x •. 
Algorithm A2 allows us to find such a group. 

Algorithm A2 is simpler than AI, because it does not calculate separate 

factors and the correlation between these factors and parameters. However, A2 

contains the calculations of maximal eigen-values of symmetric matrices. Such 

calculations are very computation-intensive and make algorithm A2 significantly 
slower than AI. 

Taking into account the result of Remark 4, one can construct an algorithm 

that is faster than AI, but yields similar results (values of It). Let us denote 

this algorithm by A3. When algorithm A3 [8] considers the parameter x. (let 

x. E Ak), it transfers x. into the first found group AL such that r;.FL > r;.Fk' 
and recalculates the factors Fk and FL' 

The algorithm proposed by Braverman and Muchnik in [5] (denote it by BM) 

considers all the n parameters Xl, ••• , xn at each step and for each parameter 

x. (let x. E Ak ) it determines the index L. = arg max r; F • Afterwards, the 
q=l,p • q 

algorithm transfers x s into the group A L.' S = 1, p, if L. =1= k. Sometimes 

some indices may be found for the parameter x. one of which is the same as 

k. There is no transfer in this case. 

Various combinations of the strategies above are possible, too. They allow 

us to economize the computing time (as compared with A2) and to find greater 

values of 11 (as compared with Al and A3). 

Algorithm BI [8]: 

1. Calculations by Al or A3. 
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2. Calculations by A2. 

Algorithm B2 [8]: 

1. Calculations by Al or A3. 

2. One iteration of A2 (one run-through all the n parameters in consecutive 

order). 

3. If the value of h has not been changed in Step 2, terminate the parti­

tioning process. 

4. Calculations by Al or A3. 
5. If the value of 11 has been changed in Step 4, go to Step 2; otherwise, 

terminate the partitioning process. 

Algorithms AI, A2, A3, BI, B2, and BM need the initial partition of 
parameters. Any arbitrarily selected partition may be used as the initial one. 

Therefore, to economize calculations of partitioning algorithms, it is convenient 

to .start from the partition obtained by some fast algorithm. 
Two algorithms HI and H2 are proposed in [8, 25] and presented below 

for the initial partitioning. They are grounded on finding the basic parameters 
(one parameter for each group), and filling up the groups by the remaining 

parameters. The basic parameters Xk 1 , ••• , Xkm satisfy the following system of 

ineqUalities: 

where d; is a mean correlation of the parameter Xi with other parameters [24]: 

1 n 

d; = n _ 1 L Ir xix.l· 
s=1 
s;ti 

Some sets of the basic parameters are possible for the same correlation 

matrix. If n > 2 and absolute values of all the elements of the correlation 

matrix are not equal to 1, then the number of the basic parameters satisfies 

2 ~ m < n. 
The number of groups can be fixed in advance or detected automatically. In 

the case of automatic detection of the number of groups, the search for a set of 

the basic parameters may be perfonned. The number of parameters in this set 
may be used as the optimal number of groups. 



G. Dzemyda 91 

Algorithm HI (partitioning into a fixed number p of groups) [25]: 

1. ko = 2, 

X8 E A l , Xk E A2 , (8, k) = arg min Jrx.x.J. 
-U;;",:t;;n. 1 J 

i-:#-i 

2. If p = ko, go to Step 6. 

3. Xs E Ako+l , 8 = argm.in I: JrX.A.J, (6) 
- I j=l • J 

where r X;Aj is a correlation of the parameter Xi with a parameter from the 

group Aj, i in (6) are numbers of parameters that do not belong to the groups 

Al , .•• , Ako ' 

4. ko = ko + 1-
5. If ko :/; p, go to Step 3. 

6. Insert parameters Xs ft A l , ..• , Ap into the groups according to the rule: 

where the factor Fq is calculated on the basis of correlation matrix of the 

parameters from the group Aq (note that X8 ft Aq). 

To partition parameters into the optimal number of groups 

- in Step 3, it is necessary to use i such that 

(7) 

where d A. is a mean correlation of the parameter of group Aj with other 
J 

parameters; 

- Step 2 looks like this: 

p = ko, go to Step 6, if in Step 3 we fail to find i satisfying (7). 

Algorithm H2 differs from HI only in the content of Step 6: insert param­

eters X 8 ft A 1, ... ,Ap into the groups according to the rule: 

where >.t' is the maximal eigen-value of the correlation matrix of parameters 

from the group At' (note that x, ft Aq during calculation of L). 
The algorithm for initial clustering of parameters is also proposed in [13]. 

Let us denote it by C1. 
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The assumptions on the efficiency of HI and HZ are analogous to those on 

Al and A2 made in Remark 5. The efficiency of CI was compared with that 

of Al and A2 experimentally in further sections, 

It is possible to combine a lot of-algorithms for extremal parameter grouping 

from the algorithms above. The following combinations were investigated: 

ACI = CI+AI 
ACZ = Cl+A2 
AC3 = Cl+A3 
AC4 = Cl+Bl 
AC5 = Cl+BZ 
AC6 = Cl+BM 
AC7 = HI+BM 
AC8 = HZ+BM 

AHl = Hl+AI 
AHZ = Hl+A2 
AH3 = HI+A3 
AH4 = Hl+BI 
AH5 = HI+BZ 
AH6= HZ+AI 
AH7 = HZ+AZ 
AH8 = HZ+A3 
AH9 = HZ+BI 

AHIO = HZ+BZ 

3.1. Experimental investigation of deterministic algorithms for maximiz­

ingIl 

3.1.1. Efficiency of the algorithms of initial partitioning. The first exper­

iment was carried out on the correlation matrix of II frequencies influencing 

human mentality [13, Z6]. The "ideal" partition is known: 

1. Xl, X2, X3 E Al are frequencies from the so-called 8-rhythm. 

Z. X4, Xs E A2 are low frequencies from the so-called a-rhythm. 

3. X6, X7 E A3 are high frequencies from the so-called a-rhythm. 

4. Xs, X9, XlO, Xu E A4 are frequencies from the so-called ,a-rhythm. 

The second experiment was carried out using the correlation matrix of 8 

physical parameters measured on 305 schoolgirls [1, Z]: height, arm span, 

length of forearm, length of lower leg, weight, bitrochanteric diameter, chest 

girth, chest width. Investigations of these classical test data divided the pa­

rameters into two groups: Al = {Xl, ... , X4} and A2 = {X5, ••. , xs}: the 
parameters of the first group characterize shapeliness, while the parameters of 

the second group characterize plumpness of girls. This is an "ideal" partition. 

Both the "ideal" partitions were obtained by algorithms HI and HZ of initial 

partitioning. It means that these two data sets have a good degree of structure 

and any fast algorithm may be successfully used for the analysis of such data. 
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An automatic detection of the number of groups indicated the right number. 
This shows a good sensitivity of the algorithm for selecting the number of 
groups. Partitions by algorithm Cl were far from "ideal". 

The third experiment was performed on the correlation matrix of 33 pa­
rameters of a tractor driver [13]. These parameters indicate various aspects of 

driver's working-capacity and health-state and may be grouped into six groups 

according their physical sense: 

1. Temperature (Xl, ... ,X7)' 
2. Blood pressure (X8,"" Xll)' 

3. Sensitivity of ear to various frequencies of sound (X12' .•. ,X2S)' 

4. Pulse (X26)' 

5. Reaction (X27)' 
6. Strength (X28, •.• , X33)' 

The authors in [13] suggest dividing the parameters of the last group into 

three subgroups: A~ = {X28, X29), A~ = {X30, X31}, A~ = {X32' X33} (see 
Table 2). 

An automatic detection of groups by algorithms HI and H2 indicated that 
there were six groups. In the case of 7 groups, initial partitioning by HI 
and H2 found the local maximum of It equal to 20.44, which has not been 
changed using AI, A2, A3, B 1, and B2. Such a number of groups was selected 
for comparison with the algorithm proposed in [13] which is similar to AI, 
maximizes 11 , is realized by the authors in [13] making some simplifications in 
the calculation of maximal eigen-values, and uses the initial partition obtained 

by C1. This algorithm found It = 18.52 (the result is taken from [13]) only. 

3.1.2. Emciency of the deterministic algorithms maximizing 11 , Ran­
dom correlation matrices (150) were generated: 50 matrices, the number of 

parameters being n = 10, 20 and 30. These matrices were analysed using 

the algorithms above. The number of groups was fixed beforehand: p = 3 as 

n = 10; p = 4 as n = 20; p = 5 as n = 30. The results of performance 
of the algorithms were averaged. The mean obtained value of It and mean 

relative expenses t of computer time (as compared with the fastest algorithm., 

i.e., Cl, as n = 10) for solving one problem are presented in Table 1 dependent 
on n (see also [8]). The maximal eigen-values of correlation matrices were 

calculated using the iterational gradual method [23]. 

The second experiment was performed on the correlation matrix of 33 pa-
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Table 1. Comparison of algorithms 

Algorithm n = 10 n = 20 n = 30 

t It t It t It 

Cl 1.00 4.29 2.67 6.87 4.33 9.44 
HI 1.50 4.51 5.00 7.53 10.00 10.60 
H2 4.33 4.55 16.00 7.68 33.17 10.85 

ACI 1.50 4.34 5.67 7.30 12.33 10.28 
AC2 24.50 4.58 105.00 7.80 226.17 11.08 
AC3 1.50 4.34 6.00 7.26 12.17 10.22 
AC4 23.83 4.58 97.83 7.80 224.67 11.07 
AC5 11.83 4.56 40.33 7.68 81.17 10.89 
AC6 1.50 4.34 6.17 7.27 14.17 10.23 
AC7 1.67 4.51 5.83 7.53 11.67 10.63 
AC8 5.00 4.55 19.17 7.68 36.50 10.86 
AHI 1.67 4.51 5.67 7.53 11.33 10.63 
AH2 18.50 4.56 77.50 7.78 185.00 11.06 
AH3 1.67 4.51 5.50 7.53 11.17 10.63 
AH4 17.67 4.56 79.00 7.78 186.67 11.06 
AH5 10.83 4.56 35.50 7.71 77.33 10.94 
AH6 5.00 4.55 18.17 7.68 36.00 10.86 
AH7 19.17 4.58 81.83 7.79 196.67 11.08 
AH8 4.83 4.55 17.67 7.68 36.00 10.86 
AH9 20.00 4.58 83.33 7.79 189.33 11.08 
AHI0 14.83 4.58 47.67 7.77 98.50 11.02 

rameters of a tractor driver [13]. The following algorithms were applied to 

analyse the data: 

1. The method of correlation sequences [13] (denote it by MI). 

2. The first heuristic algorithm in [13] (denote it by M2). 

3. The second heuristic algorithm in [13] (denote it by M3). 

4. The algorithm in [5, 13] (denote it by M4) which maximizes 
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Table 2. Clustering results 

Number AH2 
of "Ideal" "Ideal" Ml M2 M3 M4 M5 AlI6 

group [13] AH7 

1 1-7 1-7 1-7 1-7 1-7 1-7 1-4,6 1-7,27 
2 8-11 8-11 8,9 8,9 8,9 8-11 5,7, 8-11 

10,11 
3 12-25 12-25 10,11 10,11 10,11 12-17, 8,9, 12-26 

24,25 26,27 
4 26 26 12-21, 12-21, 12-21, 18-23 12-17, 28-33 

24 24,25 24,25 24,25 
5 27 27 22 22,23 22,23 28,29 18-23 
6 28-33 28,29 23 26 26,27 27, 28-29 

30,31 
7 30,31 25 27 28,29 26, 30-33 

32,33 
8 32,33 26 28,29 30,31 
9 27 30,31 32,33 
10 28,29 32,33 
11 30,31 
12 32,33 

where coefficients 6f are equal to -lor +1 and maximize l: 6f6fr XiXj· 

xi,xjEAL 

5. The algorithm in [5, 13] (denote it by M5) which maximizes It and is 

similar to BM. 

6. All the possible combinations of HI, H2, and Cl with Al and A2, i.e., 

algoriilims ACl, AC2, AlII, AlI2, AlI6, and AlI7. 

It was set in [5, 13] that the functional 11 was better to evaluate the parti­

tioning quality in comparison with 12 • 

The number of groups was selected so that the partition obtained be as 
similar to that discussed in Section 3.1.1 as possible. The results are given 

in Table 2. Algorithms that involved Al or A2 yielded the best results in the 

case of partitioning into four groups. The results of AlI2, AlI6, and AlI7 are 
presented in Table 2, because they found greater values of 11 than ACl, AC2, 
and AlII. The results of MI-M5 are taken from [13, 34]. 
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The difference of the results of algorithms AH2, AH6, and AH7 from the 

"ideal" partition is that they added 

• parameter "Pulse" (X26) to the group characterizing sensitivity of ear to 

various frequencies of sound; 

• parameter "Reaction" (X27) to the group characterizing temperature. 

Such adding is meaningful because the pulse strongly depends on the in­

tensity of noise, and the reaction depends on the health state a characteristic of 

which is temperature. 

The experiments confirmed the theoretical remarks on the efficiency of 

algorithms maximizing II. The following additional conclusions may be drawn: 

1. One can find greater values of II (and better partitions) by using algo­

rithms HI and H2 in comparison with CI. 

2. Algorithm Al is better than BM. 

3. If the value of h, corresponding to the initial partition, considerably 

differs from the global maximum of II, then it is reasonable to use algorithm 

A2 or other algorithms (e.g., B I or B2) containing the elements of A2 for 

further maximization. 

4. The values of II obtained by A2 and B2 have the least dependence on 

the initial partition of parameters. 

5. Algorithm H2 is more computation-intensive as compared with HI. 
Therefore, it may be used in the ca<;es where further optimization is performed 

by computation-intensive algorithms, too (e.g., A2, BI, B2). In such cases, 

the expenses of computing time for initial partitioning will be rather low as 

compared with the total ones. 

6. When selecting an algorithm among AHI-AHlO for solving a concrete 

problem, it is necessary to take into account two factors: optimization accuracy 

and recourses of computing time allocated for clustering. During the exper­

iments above, greater values of 11 are obtained by the algorithms which are 

more computation-intensive. This means that the fast algorithms are oriented to 

the problems of simple structure and the cases where a high partitioning quality 

is not required. Extremal situations are as follows: 

• the fastest algorithm is AH3; 

• the slowest algorithm is AH7; 

• the greatest values of h were obtained by AH7 and AH9; 

• the worst results of optimization were obtained by AHl and AH3. 
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4. Clustering on the sphere 

4.1. Formulation of the problem. Let there be given m vectors (objects, 

cases) Xl = (Xll, ... ,Xln), ... , Xm = (Xml, ... ,Xmn ) E sn eRn, where 

sn is a subset of an n-dimensional Euclidean space Rn containing vectors 

of unit length, i.e., sn is a unit sphere [14], IIXsil = 1, s = 1, m. The 

problem is to partition these vectors into a fixed number p of non-intersecting 

and homogeneous, in a certain sense, groups (clusters) AI, ... , Ap , defined on 

the basis of data, but not a priori. This problem is a special case of the classical 

clustering problem (e.g., see [3], [27], [33], [35]). 

The homogeneity of vectors X = (Xl, ... , xn) and Y = (Yl, ... , Yn) E sn 
may be characterized by various numerical values (see, e.g., [33]). We consider 

here two values: 

- Euclidean distance between the vectors X and Y, i.e., length of the 

vector X - Y: 
n 

p(X, Y) = L(Xj - Yj)2, (8) 
j=l 

- cosine of the angle between the vectors X and Y [14] (it is also their 

scalar product because X and Y E sn): 

n 

cos (X, Y) = L XjYj· 
j=l 

(9) 

Formulae (8) and (9) are uniquely related: p2(X, Y) = 2(1 - cos(X, Y». 

4.2. FunctionaIs characterizing the partitioning quality. The formulation 

of the problem of cluster analysis often contains a conception of the nmc­

tional (criterion) characterizing the partitioning quality. This functional is a 

quantitative measure allowing to compare different partitions. It is necessary to 

minimize (or maximize) this criterion during the search for the optimal partition 

of vectors into groups. 

One of the most widely used criteria is the sum of interior variances of 

clusters [33]: 
P 

Ql = L L p2(Xj, F L)' 
L=l XiEAL 



98 A comparative review of deterministic approaches 

where F L = (If, ... , if:) is the weight centre of the L-th cluster: 

nL is the number of vectors in the L-th cluster AL (nL ~ 1). It is necessary to 

minimize Q1' 

REMARK 6 [6]. The vector F L = (If, ... , if:) may be defined as follows: 

where 

'lTL(Y)= L l(Xj,Y). 
XiEAL 

In further formulae of Sections 4.2, 4.2.1, and 4.2.2, we will assume that 

Xa = (Xa1> ••. ,xan)E sn, s = 1, m, in case a special remark is not given. 

Denote ~L = L: E COS(Xk' X t ). 
XkEAL XtEAL 

REMARK 7 [6]. F L fJ. sn, if n L ;;;:: 2 and there are at least two non­

coincidental vectors among X a E A L' 

In the general case, IIF L II ~ 1. 
Taking into account that all the vectors to be clustered are located on the 

unit sphere (Xa E sn, s = 1, m), the next functional that characterizes the 

partitioning quality may be considered: 

P 

Q2 = L L l(Xj, P'z,.), 
L=1 XiEAL 

where 

Two following propositions show some properties of ~L and 'IT L(')' 

PROPOSITION 7 [6]. ~L = ° and IIFLII = 0, if and only if 

L Xij = 0, j = 1, n. 
XiEAL 
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In the general case, ~ L ~ O. Let us analyse a symmetric quadratic matrix 

GL = {COS(Xi,Xj), Xi,Xj E AL}, whose dimensions are (nL x nL). The 

matrix is positive definite, if all the vectors in A L are linearly independent, and 

it is positive semi-definite, if there are some linearly dependent vectors in AL • 

The determinant of G L is called Gram's determinant (see [14]). It is always 

non-negative. It means that the matrix G L has no negative eigen-values. 

EL may be expressed like this: ~L = Z LG LZ{, where Z L = (1, ... ,1) 
is a vector containing n L elements whose values are equal to 1. Z{ is a 

column vector corresponding to the row vector Z L. It follows from the formulae 

above that ~ L = 0 only if G L is a positive semi-definite matrix and the vector 

Z L = (1, ... ,1) is its eigen-vector corresponding to its least eigen-value. In 

this case, such an eigen-value is equal to o. 
~L is strongly positive (i.e., ~L > 0), if COS(Xi,Xj) ~ 0, Xi,Xj E AL. 

PROPOSITION 8 [6]. \}iL(Y)=2nLforanYYESn,if~L=0. 

PROPOSITION 9. L: COS(Xi' Y) = 0 for any Y E sn, if~L = O. 
XiEAL 

PROPOSITION 10 [6]. fIL = ~ L: Xij, j = 1, n, if~L > O. 
V~L XiEAL 

In case ~ L = 0, the vector ~* is not defined but the values of functional 

Q2 may be uniquely evaluated taking into account the results of Proposition 8: 

the L-th part of Q2 will be such: L: p2(Xi' Fn = 2nL. 
XiEAL 

4.2.1. Equivalent functionals. By equivalent functionals we call functionals 

such that have the same partition of vectors corresponding to the global ex­

tremum of these functionals. Two groups of equivalent functionals are given in 

Propositions 11 and 12. 'min' or 'max' in front of the functional mean that it 

is necessary to minimize or maximize this functional during the search for the 

optimal partition of vectors, respectively. 

PROPOSITION 11 [6]. The following functionals are equivalent to the 

functional Ql: 
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p 1 
minQi = L - L L p2(Xk,Xt), 

L=1 nL XkEAL XjEAL 

p 

maxQ~ = L nLIIFLI12. 
L=1 

PROPOSITION 12 [6]. The following functionals are equivalent to the 
functional Q2: 

p 

maxQ~=LA, 
L=1 

p 

maxQ~ = L L cos(Xi,F;), 
L=1 XiEAL 

p 

maxQ~ = L nLIlFLII· 
L=1 

We get from Propositions 11 and 12 two very simple functionals Qt and 

Q~ which are equivalent to Ql and Q2, respectively, but they are simpler than 

Q1 and Q2. New and more effective optimization strategies may be developed 

to optimize the equivalent functionals. These strategies should take account of 

the specific character of these functionals. 

4.2.2. Case COS(Xi,Xj)~O, i, ]=1, Tn. The following functional, character­

izing the quality of partition of the vectors Xs = (X S 1, ... , xsn) E sn, s = 
1, m, may be used in the case COS(Xi, Xj) ~ 0, i, j = 1, m: 

p 

maxli = L L cos2(Xj,FL), 
L=1 XiEAL 

where the vector F L = (7f, ... 7~) is selected from sn so that it maximizes 

This functional has some similarities to that used in extremal parameter 

grouping (see, e.g., [5, 7]). 
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- -L -L. . 
PROPOSITION 13 [6]. The vector F L = (f 1, ... , f n) 1S ca norma11zed 

eigen-vector corresponding tO,the maximal eigen-value AL of the matrix 

BL = {bt = L XkiXkj, i,j = 1,n}. 
XkEAL 

REMARK 8 [6]. The following functional is equivalent to the functional If: 
p 

maxIr = L AL · 

L=1 

It follows from Proposition 13 that the maximization of If or If requires to 

seek eigen-values and ei~en-vectors of the matrices B L' L = G. Sometimes 
the investigator does not know the vectors X. E sn, s = 1, m, but he knows 

only their interlocation defined by the matrix of cosines G ={ cos(Xj, Xj), 
i, j = 1, m}. In such a case, the interlocation of vectors from the L-th cluster 

is entirely defined by the matrix of cosines GL = {cos(Xj, Xj), Xi, Xj E Ad. 
- -L -L 

The next two propositions detennine how to evaluate F L = (f 1 , ... , f n), 
which is the normalized eigen-vector of the matrix B L corresponding to its 
maximal eigen-value, on the basis of GL • 

PROPOSITION 14 [6]. Matrices BL of dimensions (n X n) and GL of 

dimensions (nL X n L ) have the same eigen-values. In addition, the matrix 

of greater dimensions has In - ntl zero eigen-values. 

REMARK 9 [6]. Matrices BLand G L have the same maximal eigen-values. 

- -L -L 
PROPOSITION 15 [6]. The vector F L = (f 1 , ... , f n) may be trans-

formed into such a form: 

where AL is the maximal eigen-value of the matrix GL (and B L ), aLi are 

components of the normalized eigen-vector ofthe matrix GL corresponding 

to the maximal eigen-value AL of G L' 

The algorithms from Section 3 may be used to maximize the functionals 

If and If. The data for these algorithms is the matrix of cosines between the 

pairs of vectors X. E sn, s = 1, m. 
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The results of Propositions 13, 14, 15 and Remarks 8, 9 are valid for 

X s E Rn, s = 1, m, when scalar products of the vectors X s, S = 1, m, and 

FLare used instead of their cosines in the formulae of this section. 

4.3. Transformation of the general clustering problem into the clustering 

on the sphere. There are some ways of transforming the initial system of 

vectors to be clustered Ys = (YsI,"" Ysn) E Rn, s = 1, m, into the system 

Xs=(xsI, ... ,Xst)ESt , s=I,m. 
The authors in [3] and [33] propose several ways of such transformation. 

In both the cases, t = n. In the first case, any vector Y., is centred. Then 
the centred components are divided by the length of the centred vector. In the 

second case, the components of any vector Y. are divided by the length of this 

vector. However, the gain of such transformations is doubtful. 

Another way transforming the initial system of vectors is proposed in [6] 

and [10]. The authors in [6] and [10] propose a nonlinear transformation where 
an increase in the distance between two vectors of the initial system causes 
a nonlinear increase in the distance between the corresponding vectors in a 

new system. The gain of such transformation lies in this non-linearity. Let us 
describe such an approach more in detail. 

The main idea of the transformation is to convert the initial system of vectors 

to be clustered Ys = (YsI, ... , Ysn) E Rn, s = 1, m, into the system Xs = 
(XsI, ... , xsm) E sm, s = 1, m. It means that the dimension of a new space 
depends on the number of vectors to be clustered. Therefore, in the case of 

a large number of vectors, the dimension of space will also be large. But we 

suggest clustering the vectors Xs E sm, s = 1, m, on the basis of the matrix of 

their cosines. The strategy of clustering on the basis of the matrix of cosines of 

the vectors is investigated in the section above. The initial information contains 

n· m data units, and information after the transformation contains (m-I)· mj2 

data units (in fact, there are m· m data units, but m of them are equal to 1 and 

the remaining (m - 1)· m data units make up two identical groups because of 
symmetry of the cosine matrix). 

The aim is to find a function J( (Yi, Yj) that describes the similarity of 

vectors Yi and Yj, and bears the following properties: 

1. J( (Yi , Yj) = K (Yj , Yi), i, j = 1, m. 

2. 0 ~ K(Yi, Yj) ~ 1, i,j = 1, m. 

3. K(Yi, Yi) = 1, i = 1, m. 
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4. The matrix K = {K(Yi, Yj), i,j = 1, m} is non-negative definite. 

5. K(Yi, Yj) < K(Yk, Yi), if the distance between Yi and Yj is greater 

than the distance between Yk and Yi; K (Yi, Yj) = K (Yk, Yi), if the distances 

are equal. 

Items 1-4 define a new system of vectors Xs = (X s 1, ... , xsm) E sm, s = 
1, m, which is related with the initial one as follows: 

1. cos(Xi , Xj) = K(Yi, Yj). 

2. Xsk = AUsk, k = 1, m, (10) 

where A. is the s-th eigen-value of the matrix K = {K (Yi, Yj), i, j = 1, m}, 
the vector (U s1, ... , usm) is a normalized eigen-vector corresponding to the 

eigen-value As. 
Equation (10) follows from the fact that any symmetric non-negative definite 

matrix K may be represented in such a form: K = U AU', where A is a diagonal 

matrix containing the eigen-values of K; U is an orthogonal matrix, whose 

columns contain the normalized eigen-vectors of K, the s-th column contains 

the eigen-vector corresponding to the s-th eigen-value; U' is a transposition of 

the matrix U. Therefore, 

m m 

K(Yi, Yj) = LAsu8iu.j = L (AU 8i) (Au8 j) . 
8=1 8=1 

It follows from (10) that it is necessary to solve the problem of all the eigen­

values and eigen-vectors of the matrix K = {K(Yi, Yj), i,j = 1, m}, if we 

want to determine the vectors X. = (X81' ••• ' X. m) E sm, s = 1, m. However, 

our approach is based on the clustering of the vectors X. E sm, s = 1, m, on 

the basis of the matrix of their cosines, i.e., on the basis of the matrix K. In 

this case, we don't have to know the coordinates of the vectors X., s = 1, m. 

The problem is to find an analytical form of the transformation K (Yi, Yj). 
The idea comes from the correlation functions of random processes [16]. 

PROPOSITION 16 [10]. Let there be given m vectors Y, = (y.1, ... , Y.n) 
ERn, s = 1, m. The matrix K = {K(Yi, Yj), i,j = 1, m} is non-negative 

definite, if 

K(Y; v.) _ e-ap2(Y;,Yj) 
I, ~J - . , (11) 

where a > 0, p(Yi, Yj) is a generalized Euclidean distance between the , 
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vectors Y; and Yj [4]: 

n 

p(Y;, Yj) = 2: rkl(Yik - Yjk)(Yil - Yjl), (12) 
k,I=1 

where R* = {rkl' k, 1= 1, n} is a non-negative definite symmetric matrix. 

Formula (12) is a generalization of distance functions wide used in the clus­

ter analysis. For example, if R* is a diagonal matrix, then p(. ) is the weighted 

Euclidean distance [18]; if R* is a diagonal matrix and ril = 1, 1= 1, n, then 
p(. ) is the Euclidean distance. Formula (12) envelops the Mahalanobis distance 

[18, 19, 33]. 

The function K(Y;, Yj) defined by (11) is a monotone and positive func­

tion of the distance p(Y;, Yj ). A greater distance between the vectors Y; 
and Yj produces a lower value of the function K(Y';, Yj). Therefore, the 

interlocation of the vectors Y., 5 = 1, m, is entirely defined by the matrix 

K = {K(Y;, Yj), i, j = 1, m}, which is, as shown above, a matrix of cosines 

of the vectors X. = (X'I"'" xsm) E sm, s = 1, m. 
The form of K(Y;, Yj) defined by (11) is not the only one possible. Using 

the criterion from [15] one can find more transformations K (Y;, Yj ). 

4.3.1. Clustering algorithm. Any algorithm maximizing II (see Section 3) 

may be used to analyse the matrix K = {K(Y;, Yj), i,j = 1, m}. 
The well-known K -means clustering algorithm (see its description, e.g., 

in [2] or [4]) may also be transformed so that to cluster the vectors X. = 
(xsl, ... , xsm) E sm, s = 1, m, according to the matrix of their cosines. It 

is easy to make a transformation and we don't discuss it here. However, this 

transformation was used in the experimental investigation the results of which 

are presented in the sequel. The K -means algorithm minimizes the functional 

Ql' 

The clustering algorithm proposed in [6, 10] has such a general structure: 

determination and analysis of the matrix K = {K (Y'; , Yj ) , i, j = 1, m}. Let 
us detail it: 

1. Compute the elements of matrix p = {p(Y;, Yj ), i, j = 1, m}, where the 
function p(. ) is defined by (12). 

2. Find the maximal element Pmax of the matrix p. 
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3. If the number of clusters is unknown and Pmax < 82 , set the number of 

clusters p equal to 1. Here the positive parameter 82 defines the threshold when 

the process of partitioning into different clusters starts. 

4. Compute the elements of matrix K = {K (Yi, Yj ), i, j = 1, m}, where 

the function K(. ) is defined by (11) and the value of parameter a is selected 

so that the minimal element of the matrix K not exceed some positive value 

81 (0 < 81 < 1), i.e., 81 = e-ap;'" and a = _1~81. 
Pmax 

5. Determine the number of clusters p (if it is unknown and not defined in 

Step 3) and partition initially the vectors Y1 , ... , Ym by using algorithms HI 
or HZ (see Section 3). 

6. Partition the vectors Y1 , ... , Y minto p clusters corresponding to the 
maximum of the functional If (or If) by using algorithms AI, A2, A3, Bl, 
B2, etc. (see Section 3). 

Let us denote the clustering algorithm above by HAl, if it contains HI and 

AI, and by HAZ if it contains H2 and AZ. These versions of the algorithm are 

examined experimentally in the next sections. Algorithm HAl is much faster 

than HA2 because HAl contains AI, and HAZ contains AZ. The computational 

efficiency of algorithms Al and AZ is shown in Section 3.1.2: AZ yields better 

partitions as compared with Al but requires more computer time. It means 

that, in the general case, HAZ will yield better results as compared with HAL 

We can vary the values of 81 and 152 , The parameter 81 influences the 

form of the function K(· ), and the clustering results depend on the value of 

151 , The results of clustering also significantly depend on the matrix R* = 
{rkl' k, I = 1, n} in the formula describing the distance p(.). The simplest 

(and, maybe, most often used) form of p(. ) is the Euclidean distance. However, 

sometimes it is possible to estimate the degrees of importance of various com­

ponents Y1, ... , Yn, e.g., from the point-of-view of measurement units of these 

component'> or the accuracy of their measurement. The generalized Euclidean 

distance may also be used (see, e.g., [4]) for the description of distance. 

5. The problem of parameter clustering as a problem of clustering of vec­

tors of sn. The physical meaning of the matrix X = {x k I, k = 1, m, I = 1, n} 
is the matrix of some experimental data or observations. The rows of the ma­

trix X correspond to different observed objects (cases, vectors) X 1, ... , X m E 

Rn. The columns of the matrix X correspond to the parameters (variables) 
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Xl, ••• , xn characterizing the state of objects. The previous section was 

devoted to the clustering of vectors. "This section deals with the clustering 

of parameters according to their correlation matrix R = {7'ij, i, j = r,n}: 7'ij 

is a correlation coefficient of parameters Xi and Xj' 

A specific character of the problem of parameter clustering lies in the fact 

that the parameters Xi and Xj are related more strongly if the value of the 

correlation coefficient hj I is greater, and less strongly if the value of hi I is 
lower (see [5]). The minimal relationship between the parameters is equal to 

O. The maximal relationship between the parameters is equal to 1 or -1. 

The goal of clustering is to partition the parameters Xl, ..• , X n into a fixed 

number p of non-intersecting and homogeneous, in a certain sense, groups 

A 1 , ••. , Ap by the correlation matrix R, characterizing the relations among the 
parameters (see Sections 2 and 3). The relations among the parameters from 

the same group must be close, and the relations among the parameters from 
different groups must by weak. The values of elements of the matrix R may 

be both positive and negative. 
The maximization of the functional It by using the algorithms discussed in 

Sections 2 and 3 is rather computation-intensive. Various attempts to simplify 

the functional, characterizing the partitioning quality, by involving the absolute 

or squared values of correlation coefficients have been made. For example, the 
algorithm proposed in [5] maximizes the following heuristic functional: 

where nle is the number of parameters in the group Ale; (lij is the absolute 
or squared value of the correlation coefficient 7'ij. The package IMSL [43] 

also gives opportinity to analyse the correlation matrix: subroutines CLINK 

and DCLINK perform a hierarchical cluster analysis of the given distance ma­

trix. The authors of CLINK and DCLINK suggest converting correlations to 

distances by taking the reciprocal of the absolute value of the correlation coef­

ficient. Clustering algorithms, realized in CLINK and DCLINK, do not "care" 

whether the distances that are "fed" to them are actual real distances. 

In [6] the application of matrices IRI = {Irijl, i,j = 1,n} and R2 = 
{7';j) i) j = 1) n} in clustering of parameters is investigated both theoretically 

and experimentally. 
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To apply functionals that describe the quality of vector clustering (see Sec­

tion 4.2.1) to the clustering of parameters, it is necessary to determine a sys­

tem of vectors Y1 , •.• , Yn E sn corresponding to the system of parameters 

Xl, •.. , Xn in such a manner: cos(Y;, Yj) = Irij I or cos(Y;, Yj) = rrj' 
Then the clustering of vectors Y1 , ... , Yn E sn should be performed. 

The system of vectors Y1 , .•• , Yn E sn exists, if the matrix of their scalar 

products is non-negative definite. 

PROPOSITION 17 [6]. The matrix R2 is non-negative definite. 

REMARK 10. The non-negative definiteness of the matrix IRI does not 

follow from the non-negative definiteness of the matrix R: the matrix IRI may 
not be non-negative definite. 

This fact is proved in [20] by examples. It is interesting that 148 matrices 

among 150 random ones used for the experiments in Section 5.1 remained 

non-negative definite after transforming into IRI. 

5.1. Application of the K-means algorithm to parameter clnstering on the 
basis of correliations. In this section, we show a possibility to maximize h 
via minimization of the functional Q1' This functional defines the partitioning 
quality in the J{ -means clustering algorithm. 

The problem is to analyse a system Y of vectors Y1 , .•• ,Yn E sn, corre­

sponding to the system of parameters Xl, ••• , X n, on the basis of the matrix of 
cosines between pairs of vectors from the system Y via minimization of the 

functional Q1 by using the J{ -means algorithm. 

The experiments were carried out on the modification of the J{ -means al­

gorithm presented in [33] (subroutine KMEANS). It is based on the analysis 

of vectors in consecutive order and on the search for a cluster of transferring a 

separate vector with a view to decrease the Ql value. When KMEANS con­

siders the vector Ys (let Ys E Ak), it seeks the cluster Au where the value of 

functional Q1 decreases most after transferring Ys ' 

The same 150 random correlation matrices R as in Section 3.1.2 were anal­

ysed. The results of performance of the algorithms were averaged. The mean 

obtained value of functional It and the mean relative expenses t of computer 

time for solving one problem are presented in Table 3 dependent on n. The 

values of 11 are computed on the basis of the matrix R. 
KMEANS analysed matrices IRI and R2. The matrix R2 is non-negative 
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Table 3. Clustering results 

Algorithm 
n = 10 n = 20 n = 30 

t h t h t 11 

R 

CI 1.00 4.29 2.67 6.87 4.33 9.44 

HI 1.50 4.51 5.00 7.53 10.00 10.60 

H2 4.33 4.55 16.00 7.68 33.17 10.85 

R+JRJ 

Cl+KMEANS 1.67 4.57 5.33 7.77 11.33 11.03 

Hl+KMEANS 2.00 4.57 7.33 7.79 15.83 11.05 

H2+KMEANS 4.67 4.58 17.83 7.79 37.33 11.08 

R+ JRJ+R 

H2+KMEANS+A2 16.17 4.59 57.83 7.79 130.83 11.09 

R+R2 

Cl+KMEANS 1.67 4.56 5.50 7.78 11.50 11.05 

Hl+KMEANS 2.00 4.56 7.50 7.78 16.50 11.04 

H2+KMEANS 4.83 4.57 17.83 7.78 37.83 11.06 

definite (see Proposition 17) and, in this case, the system of vectors Y1, . . . ,Yn E 

sn exists. It follows from Remark 10 that the matrix JRJ may not be non­

negative definite. The system of vectors Y1 , •.. , Yn E sn does not exist in 

such a case, and KMEANS analyses a matrix of fictitious cosines. 

The greatest values of functional 11 were obtained by H2+KMEANS during 

the analysis of the matrix JRJ. A further analysis of the obtained results using 

algorithm A2 on the basis of the matrix R improved them. However, the 

computation expenditure grew significantly. The following question arises: how 

often the partition of parameters, obtained by KMEANS, is a local maximum 

of II? To answer the question, the case CI+KMEANS (n = 30) was analysed 

more in detail. The analysis showed that all the partitions among 50 were locally 
optimal in the sense of Definition 1, and 31 partition was locally optimal in the 
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sense of Remark 3, when KMEANS used the matrix IRI. These numbers were 

equal to 49 and 14, respectively, in the case of matrix R2. 

The following conclusions may be drawn on the application of the J{ -means 

clustering algorithm in maximizing the functional II: 

1. The initial partition has a weak influence on the final result. 

2. The expenditure of computing time is significantly lower as compared 

with algorithms A2, BI, and B2 yielding similar values of II' 

3. The expenditure of computing time of the J{ -means algorithm is similar 

to that of Al and A3. 

4. There is no necessity to seek a local maximum of It in the sense of 

Definition 1 because, 

• in most cases, the partition obtained by the K -means algorithm corre­

sponds to the local maximum; 

• it is impossible to answer uniquely, which functional (II or QI) is better 

for clustering of parameters and better describes the partitioning quality. 

These conclusions indicate that the proposed application of the K -means 
algorithm for analysis of the matrices IRI and R2 is an effective strategy for 

the clustering of parameters. 

6. Experimental investigation of clustering algorithms. The aim of exper­

imental investigation is to estimate the efficiency of the algorithm proposed in 

Section 4.3.1 (versions HAl and HA2) in comparison with other well-known 

clustering algorithms. 

The values of functionals (criteria) If, Ql> and 

P 

Q3 = I: I: p2(X;, Xj), 
L=I Xi,XjEAL 

where p2(Xi, Xj) is the Euclidean distance between the vectors Xi and 

Xj E Rn , were evaluated for any obtained partition of the vectors Xs = 
( X .1, ... , x s n) E Rn, s = 1, m, in order to compare them. Thus, the efficiency 

of application of Ii as a criterion describing the partitioning quality was shown. 

The criteria Ql and Q3 are wide used in the comparison of cluster proce­

dures (see [18]). Lower values of QI and Q3 correspond to better partitions. In 

algorithms HAl and HA2, greater values of Ii correspond to better partitions. 

Naturally, not only these three criteria are possible (see, e.g., Section 4.2 or 
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[29]). But a review and comparison of all possible criteria is out of the scope 

of this work. 

The following algorithms were investigated experimentally: 

HAl, HA2 - two versions of the algorithm proposed in Section 4.3.1; 

MDC - the algorithm based on the method of dynamic condensa-

tions [21]; 
KCl, KC2 - two versions of the f{-means algorithm [2, 4]; 

MC - the centroid hierarchical cluster analysis [2]; 

MW - Ward's minimum variance hierarchical cluster analysis [2]; 

MCC - the average linkage hierarchical cluster analysis [2]. 

The method of dynamic condensations [21] is a generalization of the f{­

means algorithm. The results of MDC are taken from [21]. 

MC, MW, and MCC are hierarchical clustering algorithmc;. Extensive 

investigations in the field of cluster analysis showed that MW and MCC are 

the best algorithms of hierarchical clustering (see, e.g., [22]). The experiments 

were carried out on the realizations of MC, MW, and MCC included into the 

system of statistical analysis SAS [2, 37]. The Euclidean distance was used in 

the algorithms to define a neighbourhood of vectors. 

There is a lot of realizations of the f{ -means algorithm. Their differences 

are presented, for example, in [4]. KCl is taken from [4], and KC2 is taken 
from [2]. 

The partitions obtained by algorithms MC, MW, MCC, KCt, and KC2 have 

such main peculiarities: 

1. Any vector from the partition obtained by KCl and KC2 is located closer 

to the centre of its own cluster than to the centres of other clusters. 

2. Algorithms MC, MW, MCC, KCl, and KC2 find compact groups of 

vectors: any pair of groups may be divided by a hyperplane. 

The peculiarities of HAl and HA2: 

1. The Euclidean distance is used as the function p(. ). 
2. fh = 0.01. 

3. 02 = 0, i.e., the number of clusters is assumed to be larger than 1. 

4. Algorithm HAl contains HI and AI; algorithm HA2 contains H2 and A2. 

In [6, 10], the experiments were carried out on various test data sets located 

on a plane XIOX2 and one real data set (Fisher'S data on irises [2, 17]). We 
present here the results of analysis of three data sets, only. 
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Fisher's data on irises [2, 17] are wide used to demonstrate the discriminant 

and cluster analysis. 150 irises of three different sorts (50 irises of setosa, 

versicolor and virginica) were selected, and four parameters (in millimetres) 

of any iris were measured: length of sepal, width of sepal, length of petal, 

width of petal. It is useful to analyse these data because the "ideal" partition 

into clusters is known, and it is possible to estimate the efficiency of c1uster­

procedures by comparing the obtained and the "ideal" partition. An automatic 

detection of the number of clusters by HAl and HA2 indicated that p = 3. The 

results of partitioning into three clusters are presented in Table 4. The column 

'%' means the percent of misclassified irises. The values of functionals Qb 

Qa, and II indicate that the second partition is the worst. 'The values of Ql 
and II indicate that the first partition is the best. The last partition is the best 

from the standpoint of Qa. 

Table 4. Clustering the data on irises 

Algorithms % Ql Qa 11 1 

HAl, HA2, KC2 10.67 7884.68 826774 137.13 

MDC 9.33 11789.06 1248794 132.64 

MC 9.33 7944.16 851110 137.05 

MW 10.67 7929.27 852210 137.07 

MCC 10.00 7913.92 939198 137.09 

KC1 11.33 7885.03 816886 137.12 

The data set given in Fig. 1 has four visually evident clusters: Al = {Xl -

X 9 }, A2 = {Xlo - X18 }, Aa = {X19 - X 27}, A4 = {X28 - X36}. The 

experiments showed that this partition corresponds to the local maximum of 

II. The results of clustering are presented in Table 5. 

The data set given in Fig. 2 has two visually evident clusters which cannot be 

separated by a line: Al = {Xl - X 27 }, Al = {X28 - X36}. The experiments 

showed that this partition corresponds to the local maximum of II. It means that 

the algorithm proposed in Section 4.3.1 may yield a partition into clusters that, 
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in the general case, are not convex and cannot be separated by a hyperplane. 

Such a peculiarity of the algorithm arises from the non-linearity of the function 

K (. ) which describes the similarity of vectors. 

Table 5. Results of clustering the data set from Fig. 1 

Algorithms Al A2 A3 A4 Ql Q3 ]1 
1 

HAl, HAZ, 1-9 10-18 19-27 28-36 0.480 8.64 29.09 
KC2 

MC 1-10, 11-15, 16, 19, 0.552 10.44 28.45 
30 17, 18 20-27 28,29, 

31-36 

MW 1-4, 5, 19, 20, 0.552 10.44 28.45 
6-9, 10-18, 28,29, 22-27 

30 21 31-36 

MCC 1-4, 5, 16, 19, 0.551 9.92 28.47 
6-9, 10-15, 20-27 28,29, 
30 17, 18 31-36 

KCl 1,5-10, 2-4, 19, 20-22, 1.445 29.54 22.46 
14-18 11-13 23-28, 29-31 

32-36 

The results of investigation indicate that the proposed clustering algorithm 

may successfully compete with other well-known algorithms. Its efficiency 

depends on the following aspects: 

• the function K (. ) and its parameters, 

• the function p(- ) (when J<(- ) = K(p(- )), 
• the algorithm of initial partitioning, 

• the algorithm of maximization of a functional characterizing the parti­

tioning quality. 

One can to construct various versions of the clustering algorithm by varying 

the components above. Therefore, the problem remains to find the optimal 

configuration of the algorithm for specific classes of problems or for the general 
case. 
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The algorithms of initial partitioning HI and H2, which were included into 

HAl and HA2, may suggest the optimal, in their convenience, number of clus­

ters. However, the problem of reliability of the determined number of clusters 

in a data set remains (see [28, 30, 32] for more details on the investigations 

regarding the optimal number of clusters). 

The quality of partitioning may be increased by using some initial knowledge 

about the number of groups and the known vectors from different groups. The 

scheme of algorithms of initial partitioning HI and H2 allows us to take account 

of such information. 

The experiments showed that the functional If may be successfully used to 
determine the partitioning quality of data sets. The values of If have a small 

variance in the neighbourhood of sufficiently good solutions (see, e.g., data on 

irises, where five really different solutions have very similar values of If). 
A new way to economi7..e the computing time and to get very good solutions 

is the application of the K-means-type algorithm in the proposed clustering 
algorithm for the analysis of matrix J( instead of Al or A2. The results of 
Section 5.1 allow us to assume that, in this case, the obtained solutions will be 

similar to those obtained by HA2, and the computational expenditure will be 

similar to that of HAL 

7. Conclusions. Theoretical and experimental investigations of various de­
terministic strategies for solving the problem of extremal parameter grouping 

indicate that the problem of selection of an algorithm is a multiple criteria one: 

it is necessary to take into consideration two contradictory factors: optimization 

accuracy and recourses of computing time allocated for the grouping. During 

the experiment<; above, greater values of h are obtained by the algorithms 

which are more computation-intensive. The possibility of finding the optimal 

number of clusters is considered. In this case, one may search for some set 

of the basic parameters: the number of parameters in it may be used as the 

optimal number of groups. 

The transformation of a general clustering problem into the clustering on 

the sphere allows us to change the interlocation of points nonlinearly resulting 

in a better separation of clusters. The clustering algorithm proposed in [6, 

10] may successfully compete with other well-known algorithms. It may find 
clusters that, in the general case, are not convex and cannot be separated by a 
hyperplane. Such a peculiarity of the algorithm comes from a non-linearity of 
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the function which characterizes the similarity of vectors. The experiments of 

test data sets on a wide range showed that such transformation leads to better 

partitions of vectors into clusters. 

The relation, discovered in [6, 10], between the clustering of parameters on 

the basis of their correlation matrix and the clustering of vectors of the unit 

sphere enables us to use simpler functionals characterizing the partitioning qual­

ity. Modifications of considerably faster classical algorithms (e.g., l( -means) 

may be used to optimize these functionals. 
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PARAMETRl,! KLASTERIZAVIMAS KORELIACUOS PAGRINDU: 
LYGINAMOJI DETERMINISTINIQ STRATEGUQ APZVALGA 

Gintautas DZEMYDA 

Darbe nagrinejamos detenninistines parametrq klasterizavimo strategijos, kai pa­
rametrq sllveikll nusako tiktai jll koreliacine matrica. Ypatingas demesys skiriamas 
ekstremalinio parametrq grupavimo metodo realizacijoms. Parodyta optimalaus klasterill 
skai~iaus paidkos galimybe. Nustatytasis ry§ys tarp parametrq klasterizavimo ir daugia­
ma~ill vektorill klasterizavimo u~davinill yra naudojarnas klasterizavimo (ir parametrq, 
ir daugiama~ll vektorill) efektyvumo gerinimui. 


