
INFORMATICA, 1997, Vol. 8, No. 1,23-42

COMPLEXITY ANALYSIS OF LINK NAVIGATION
IN DEXTER BASED HYPERMEDIA

DATABASE SYSTEMS

Gunther SPECHT

Technische Universitat Munchen, Department of Computer Science
Orleansstr. 34, 0-81667 Munchen
Email: specht@informatik.tu-muenchen.de

Abstract. Today's multimedia and hypermedia systems include such a huge amount
of data and links, that they should be stored and maintained by a database system. Then
a powerful and efficient database schema is needed. The Dexter hypertext reference
model offers a widely accepted, powerful modelling technique for nodes and links.
We present its stepwise conversion into a relational multimedia database schema. In

the obtained hypermedia engine the most important and most time critical operation
is the link navigation. We analyze its complexity in detail and optimize it by schema
improvements. Finally we present an efficient implementation of the presented ideas:
the System MultiMAP, developed at the TU Munich.

Key words: hypermedia, database systems, Dexter reference model, relational model,
link navigation, complexity analysis.

1. Introduction. Today, a lot of hypertext and hypermedia systems refer to

the Dexter hypertext reference model (Halasz and Schwartz, 1994). This is a

widely accepted proposal for modeling hypermedia links. Initially the proposal

was set up for file based systems. The main advantage of the Dexter model is

its powerful link concept, including links as own entities, n : m links, typed

links, links on links, etc. This goes far beyond todays WWW techniques.

On the other side multimedia and hypermedia systems include such a huge

amount of data and links that they should be stored and maintained by a database

system. That offers additional benefits in opposite to file based systems as

referential integrity of links, efficient and index supported access structures,

transaction protected multi user access and recovery.

In this article we present the stepwise conversion of the Dexter model into a

24 Complexity analysis of link navigation

multimedia database system. Thus we like to combine the benefits of a powerful

link model with the efficiency and benefits of databases. Since the final system

has to be fast not only in data access but also in link navigation we give a

detailed complexity analysis for the complex operation of link navigation in

Dexter based hypermedia database systems.

Today two different database technologies are used for multimedia appli

cations: relational and object-oriented ones. A detailed comparison analysis

(Specht and Hofmann, 1996) pointed out, that in opposite to all benefits of

object-oriented database systems (as easier modelling and implementation, less

code, etc.), relational databases are still the more efficient ones according to

hypermedia applications. Thus we focus on relational databases in this article.
In order to apply the Dexter model to relational databases, we first have

to model the storage layer, which can be seen as the kernel of the Dexter

model, as an Entity-Relationship Diagram. Applying the common conversion
rules we get a relational database schema for hypermedia databases. Then link

navigation can be expressed as a SQL-query. Since its performance decides
about acceptability, our aim is to get universally valid complexity formulas for
link navigation in Dexter based relational databases. Therefore we have to

consider the internally processed query execution plan at the level of relational

algebra expressions in order to figure out which joins and operations are most

time consuming and which optimizations, even on the schema, can be applied.
This analysis is not only interesting in the theory of multimedia database

systems but also in practice. We have implemented MultiMAp, a Dexter based

multimedia database system, which is used in a series of applications, e.g., a
city information system, based on city maps, a medical system, maintaining

x-ray pictures, a multimedia library information system and others.

This article is organized as follows. Section 2 gives a brief recapitulation of

the relevant parts of the Dexter reference model, mainly the storage layer and the

representation of nodes and links there. Section 3 introduces the corresponding

Entity-Relationship Model and the resulting relation schema. Section 4 presents

the complexity analysis of the link navigation and Section 5 discusses optimiza

tions of it. Finally in Section 6 we present a practical implementation of all
these: our multimedia database system MultiMAP and some of its applications.

G. Specht .25

2. Representation of nodes and links in the Dexter reference model. The

Dexter hypertext reference model (Halasz and Schwartz, 1994) is one of the

most approved reference models for hypermedia systems. It has been developed

during two workshops; the first one took place in Dexter Inn, New Hampshire,

USA, thus the name. The overall goal was to specify a standard terminology

and a reference model for hypertext systems, in order to be able to compare

even quite different system implementations and notations to each other. The

results are extensible to hypermedia systems including continuous (time depen

dent) data like audio and video, as for instance the extension of the Amsterdam

hypermedia model (Hardmann et al., 1994) shows. Although the Dexter model

is a well-known standard today, only a few systems include all of its functional

ity. The main benefit of this model lays in the power of its link concept which

goes far beyond usual WWW-links: Not only 1 : 1, but arbitrary n : m links are

supported. This denotes an extension of classical hypertext structures, which

can only manage n : 1 links. Already at 1 : n links, an additional selection

component is necessary. In addition, links on links are definable, bidirectional

links are supported, composite components are included, span to span links and

typed links are contained, etc.

Run-time Layer

Storage Layer

Within-Component Layer

contains presentation tools,
user interaction, dynamic

contains the network of
nodes and links

contains data structure and
content of nodes

Fig. 1. The three layers of the Dexter model.

The Dexter reference model consists of three layers. The upper one is the

Runtime Layer. It manages the presentation tools, the user interactions and the

dynamics. Different sessions at a time - one per user - are administered. In

addition, for each used component several socalled instances have to be handled,

26 Complexity analysis of link navigation

which are the read/write copies of the components in the cache, since updates

are possible.

Beneath it there is the Storage Layer, which contains the hypermedia net

of nodes and links. It is the most important layer of the model and will be

described below in more detail.

The lowest layer is the Within-Component Layer. It describes the content

and structure of the components (nodes); e.g., the data structure for text, image,
animation, etc. This layer is system specific, so it is not defined in the Dexter
model in more detail (e.g., defined in aDA, IGES, etc.). The two interfaces

between the three layers are the presentation specification and the anchoring.

The representation of nodes and links is kept inside the storage layer. Since
this layer is the most important one for modelling power, storage and access
performance of any hypermedia net, we will discuss it in greater detail now.

The storable hypermedia objects are called components. There exist three types
of components:

- atoms,

-links,

- composite components.

Atoms are simple nodes. They can be treated as primitives. Composite
components are hierarchically structured nodes (particularly a directed acyclic
graph (DAG)). Links are specified by two or more anchors (= endpoints). More
precise, anchors are defined inside the components and included in links via

the concept of specifiers. Each specifier corresponds to exactly one anchor
including information on weather it is a source or a target anchor or both.
Anchors can address whole components or substructures of a component. Thus
we get the power of "span to span links".

For identification, each component has a "global unique identifier" (DID).

Anchors are defined locally in the component header. They consist of an "an
chor identifier" (AID), which is locally unique within a component, and an
"anchor value", that specifies a location inside the component. Only the AID

is visible from outside the component. Thus a globally unique link anchor
consists of the tuple (DID, AID).

A sidenote. Since, according to the definition, links are components, it is
possible to define links whose endpoints are other links or even parts of links
(for instance a link on a link description or type or direction of another link).

G. Specht 27

Inside a link definition, specifiers contain besides the presentation specifi

cation (e.g., colour mark of the link anchors) also the direction, which may

have the values 'from', 'to', 'bidirect' and 'none'. Thus, it is not only possible

to define unidirectional and bidirectional links, but also 1 : n links and n : m

links, because a link may contain several source and target specifiers. Fig. 2

shows a resulting image for atoms and links, seen at the level of the storage

layer.

UID '123 __ ID

II
DitaC1lon FROM

Prcamt.~ -SpodIIor

UID 112541 __ ID

IS

DiRICliaa TO

Prcxntatton_S

SpedfIno

Fig. 2. Overall organization of the storage layer (adapted from Halasz

and Schwartz (1994».

Summing up, the Dexter model is a more powerful model than the models

that are usually used in hypermedia systems. It includes:

- 1 : n-links and even n : m-links,

- links to links (which are hard to implement),

- complex components,

- bidirectional links,

- a very powerful resolver function, which we have not mentioned by now.

3. Conversion of the Dexter model into the relational DB-model. Initially,

the Dexter model has been developed for file systems. But facin~ the huge

amounts of nodes and links in today's applications, a direct conversion to a

database system would be of great advantage. In addition, transaction protected

processing and referential integrity of links would also become possible. Both

of these are missing in the file based WWW.

28 Complexity analysis of link navigation

Two database technologies are eligible for today's multimedia systems: re

lational and object-oriented database systems. We have converted the Dexter

model into both: a relational database schema, which we used as a basis for
our multimedia database system MultiMAP and an object-oriented database

schema, which we extended to a multimedia database system implemented· on

top of a commercial OO-DBS. We used for the relational variant the Entity

Relationship Model, and for the object-oriented system the Object Modelling

Technique (OMn (Rumbaugh, 1991) as intermediate modelling stages. Due to

its greater efficiency, we focus in this article on the relational conversion.

Although the Dexter model has not been developed for databases, the storage

layer can easily be transformed into an Entity-Relationship diagram. See Fig. 3.

presentation_spec presentation_spec

Fig. 3. ER-diagram of the storage layer.

Atom, link and composite are components, thus there is a isa relationship to
components, via which all attributes of component, especially the key attribute

DID, are inherited. One composite (-component) can consist of n (sub-) com

ponents. More interesting is the right side of the diagram. Components include

anchors. Since anchors can not exist by themselves, only inside of components,

they are connected to components via an existential dependency, denoted by

G. Specht 29

a double rhombus. Anchors are weak entities, denoted by a double rectangle,

since they can not be defined unambiguously by their own attributes, but only

by their relationship to other entities, here the component. By the way, weak

entities are always existentially dependent from others. Here the key attributes

of anchors are the local key attribute AID together with the global key attribute

DID, inherited via the existential dependency.

One link is specified by n anchors whereas 1 anchor can occur in m dif

ferent links. Thus anchor and link are connected via an n : m relationship,

containing additional information about the direction and presentation (under

lined, highlighted, blinking, etc.) of that anchor. This relationship maps exactly

to the specifiers, since it gets the key attributes from the corresponding entities

(AID and DID from anchor and Link_DID from link) in addition to its own
attributes like direction (containing the values 'from', 'to', 'bidirect' or 'none').

Now the usual conversion rules from entity-types and relationship-types into

relations can be applied. Let's recapitulate them for short:

1. Mapping entity-types to relations:

An entity type E with k attributes Ai from domains Di, (1 ~ i ~ k)

is mapped into a k-ary relation E(Al : Dl,A2 : D 2 , ••• ,Ak : Dk). If
there also exists Eisa F or if E is a weak entity type, existentially

dependent on F, we also include all the key attributes of F.

2. Mapping relationship-types to relations:

2.1. n : m-relationships and all 3ary, 4ary, ... , etc. relationships.

A relationship R between entity types E 1 , ••• , En is mapped into the
relation R. The attributes of this relations are the primary keys of all

E;. Equal attribute names have to be renamed in the relation R, in

order to be unique. If R has attributes of its own, these will be added.

2.2. 1 : n relationship between only 2 entity types E and F.

No relation R is generated from the relationship. We append the

primary keys of E as foreign keys in the relation F instead. If the

relationship R has own attributes, they have to be added to F.

2.3. 1 : 1 relationship between only 2 entity types E and F.

No relation R is generated from the relationship. We append the

primary keys of E as foreign keys in the relation F or the primary

keys of F as foreign keys in the relation E.

2.4. is-a relationship and existential dependencies.

30 Complexity analysis of link navigation

Eisa F and existential dependencies are not mapped into relations,

because that would lead to redundant tuples like isa(133, 133).

Applying these rules to the above entity-relationship diagram results in the

following relations:

Atom (UID : integer,

presentation_spec : string,

content: BLOB) 1* here simplified as BLOB, in detail: IMAGE,

STRING, AUDIO etc.) *1

Anchor (UID : integer,

AID : integer,

value: string)

Link (UID : integer,

type: string) 1* optional *1

Specifier (link UID : integer,

anchor UID : integer,

anchor AID : integer,

direction : string,

presentation_spec : string)

Composite (!llQ : integer,

presentation_spec : string,

content: BLOB)

Composite_consists_of (UID father: integer,

UID child: integer)

We omitted the relation component, since it is useless afterwards. Only

its instances atom, link and composite are furthermore needed. Additional

attributes normally included in the relations are, e.g., author, creation __ date,

access_rights, etc. Primary keys are underlined. As usual in relational systems,

in the following we will assume that there is an index on primary keys for faster

access, a prefix-B*-tree to be exact.

A sidenote. Extending the Dexter hypertext (!) model to hypermedia, in

cluding, e.g., images, implies that the anchor value becomes more complicated.

While for texts, audios and videos (if anchors address only single images in

it) an anchor value of type string or integer is still sufficient, marking arbitrary

G. Specht 31

surrounded objects within pictures as anchors need a further relation. Then we

extend the relation anchor by attributes for the bounding box of the objects, in

order to get a fast preselection while clicking in the picture and introduce an

additional relation containing the precise polygone coordinates.

4. Complexity analysis of link navigation. Link navigation is the most

common operation in a hypermedia database. In the following, we will analyze

and optimize the complexity of link navigation. What happens if we click on

a link source on the screen? In essence the following steps take place:

• in the runtime layer:
- determination of the component instance, that has been clicked on,

- selection of the link-marker (= the instance of the link),
- mapping instance (cache) to component: instanceID --+ UID,

- mapping link-marker (cache) to anchor: link-marker --+ AID;

• in the storage layer:
- search for the link source AID in the relation specifier to determine

the link_UID,

- search for all corresponding link target specifiers (= self join over
link_UID),

- join with the relation anchor to get the anchor value (= exact link

target specification),

- get the component that contains the link target (selection on atom or
composite or link);

• in the runtime layer:
- create an instance for the target component (UID --+ instanceID),

- create an instance for the link target marker (AID --+ link marker),

- representation on the screen (e.g., blinking).

Let's take a closer look at the events in the storage layer, since those are

the ones with database access. The above access sequence within the storage

layer can be expressed in SQL according to the above presented relations:

SELECT a.UID, a.AID, s2.presentation_spec

FROM Specifier s1, Specifier s2, Anchor a

WHERE sl.anchor_UID = <$input>

AND sl.anchor_AID = <$input>
AND

AND
s1.direction IN ('from', 'bidirect')

sl.link_UID = s2.link_UID

1* Selection *1

1* Self join *1

32

AND
AND

AND

AND

Complexity analysis of link navigation

s2.direction IN ('to', 'bidirect')

(s1.anchocVID f:. s2.anchof_VID 1* Postselection *1

OR s1.anchocAID f:. s2.anchor_AID)

s2.anchocVID = aVID 1* 2nd Join *1
s2.anchocAID = a.AID;

Followed by a selection of the component of the found UID. Let, e.g., VID

E Atom VIDs:

SELECT * FROM Atom WHERE Atom.UID = <found UID(s»

Analysis. We get two selection operations and two joins (maybe even three,

if the attributes of the relation link are relevant (e.g., link type)) in the first SQL

query. For an exact analysis, the structure of the internal query execution plan

(QEP) on the level of relational algebra operations is important. See Fig. 4.

This QEP is highly optimized, provided that the lines marked as post selec

tions in the SQL-query above will be translated to selections and not to joins.

An integration of the postselection into the last join would be worse, since then

no index support could be used, and nested loop joins are more expensive than

index joins. We marked the most costly and interesting operations within the

QEP. All others can be executed "on the fly" (like in a pipe), thus their costs

are at most linear and do not give a significant factor to the end result.

1. Selection.

s1.anchocUID = <$input>,

s1.anchocAID = <$input>.

This is a selection on non-key attributes, therefore if no optimization

takes place, a relation scan of the order O(/specifierl) will be necessary.

But introducing secondary indexes, the complexity can be reduced to:

O(logk(/specifierl)), with k beeing the branching factor of the B-tree

index (mostly k ::::J 100).

2. Selfjoin.

specifier l><JUnLUID=linLUID specifier.

Link_ UID is a primary index, thus an index join can be used. Its com

plexity is:

O(n * logk(n)), with n = /specifiers/.

Precise: That's an upper bound, usually the first n is less than the second

n due to above preselection.

G. Specht 33

l PROJ 1
[A. UID, A.AID, S2.PRE]

l INDEX-JOIN ON (UID, AID)

[PROJ J [S2.A_UID, S2.A_AID]

I
SELECT

S2;DlRECTiONIN ('TO', 'BI')
AND (SLA_UID <>S2.,A_UID

ORSl.A.-AID<>S'2.A~ID)

C INDEX~J01N ONL_UID

[PRO] 1
[L_UID, A_UID, AjID]

I
SELECT DIRECTION]

IN (,FROM', 'BI')
INDEX I IN DEX

INDEX~SELECT

A .. UID=[<INPUT> 1 [RELATION] l RELATION J
A_AID=I <INPUT>]

SPECIFIER ANCHOR

I INDEX

[RELATION J
SPECIFIER

Fig. 4. Query execution plan for a link navigation query.

3. Postselection.
s1.(anchocUID, anchor_AID) ;;/; s2.(anchocUID, anchocAID).

The inequality test can never be executed index supported, so the com

plexity will always be linear; O(s) with s= lresult tuple of the selfjoinl.
4. Join with anchor.

selfjoin I><lA_UID=UID anchor.
A-AID=AID

Since the join attributes are primary key in anchor, an index join can be
used again, resulting in the complexity O(lselfjoinl * log(lanchorl)).

So far, we did not discuss the selection on direction with linear complexity

O(lspecifieri) and the projections. A special unique node for duplicate elimi-

34 Complexity analysis of link navigation

nation is not necessary (refer Fig. 4), since all projections include primary key

attributes in the output. In advanced implementations the projection can be in

cluded in the previous selection as output projection. Thus they are done on the

fly and cost almost nothing. In all other implementations projections (without

duplicate elimination as in SQL) are of linear complexity by the number of

input tuples. Even if we assume the last variant, we get as an upper bound the

following resulting complexity:

let n = I specifier I and s = Iresult tuple of the selfjoinl,

O(log n + 2n + n * log n + s + s + s * log(lanchor!) + I answer_tuples!).
A closer look on the joins even shows that the incoming m of the used

m * log(n) joins (m is always on the left side of the joins in Fig. 4) is always

very small! For the first join m would be rather 1, since the first selection is

on the source anchor, and usually only one source anchor is used in one link,

although n : m links are supported by the model. For the second join the
incoming m is in average about 1.8, since mostly 1 : 1 link."! are used and if

1 : k links are used, the k is small (in avg. < 10) again. Thus, what is the
average complexity of link navigation?

O(log n + 1 * log n + s + l.8 * log(lanchorl) + l.8)

= 0(2 log n + s + 10g(lanchor!)).

Since the intermediate results are always very small, and the corresponding
join relation usually fits in the main memory, and is already index supported,

link navigation based on a Dexter model can be very efficiently implemented
within relational multimedia database, systems.

But there are still some more optimizations and modelling variants which
are worth to think about.

5. Optimization and modelling variants

5.1. Local or global Anchor_IDs? In the Dexter model, anchocIDs (AIDs

for short) are unique only within a component. I.e., a unique address is denoted

by the AID together with the UID for the component. Hence some SQL queries

seem to be more complicated as with globally unique AIDs. The reason for

local AIDs in the Dexter model is simply that in non database systems the

authors do not know which AIDs are currently created by others. (I.e., without

a transaction concept, there are access conflicts and inconsistency). Therefore
it is safer to implement local AIDs inside the components which can be easily
overlooked by the authors.

G. Specht 35

As an opposite, in database systems global AnchoCIDs (gAlD) are easy to

implement, because each new allocation takes place within a transaction. Thus
no double assignments are possible. Global AIDs have some advantages: first
of all, less SQL code is needed for link navigation, and second memory can
be saved by one column in the relation Specifier (only). Runtime savings 'are
minimal, because multiattribute-joins and multiattribute-selections are available,
even index-supported.

Result. Shorter SQL-code, "thinner" relation specifier, for the rest the
advantages are small.

S.2. Discussion n : m-Jinks versus n * 1 : m-Hnks. The Dexter model offers

the possibility to define n : m-links as entities, because it is possible to con

figurate several specifiers within a link with the same direction (e.g., 3 'from'

anchors and 4 'to' anchors). We have adopted this functionality for our rela

tions. On the other hand, it is also possible to decompose n : m-links in n

1 : m-links.

Fig. 5. n : m-link or MSMD-link (multi source multi destination) with
several source and target anchors.

The experience gained with MuitiMAP applications l , in which we have put

at disposal the full n : m functionality based on the Dexter model, taught us
that on the one hand, application developers rarely define n : m links and, on

the other hand, queries on link source siblings are very rare. But this additional

query possibility is the only advantage of n : m links over the implementation

as n 1 : m links. Thus it is worth to think about interesting optimization

1 The applications of the MultiMAP system are presented in Section 6.2.

36 Complexity analysis of link navigation

-~:~
I

Fig.6. 1 : n-link, from one source, several link targets are reached.

possibilities, which are obtained, if all the links are internally represented as

1 : n links.
For 1 : m links, there is one distinguished source-specifier2 per link. This

makes it possible to combine the relations Specifier and Link to one relation.

The new relation "Li~" contains the link source anchor, followed by one of

the destination specifiers and optional general link informations. We will get

an own tuple entry for each destination anchor within the 1 : m relationship.

Thus for real n : m links a bit less than n times more storage is needed. If we

still want to handle n : m links, the sequence link_UID, source_AnchorID3 ,

desCAnchorID becomes primary key, or if we want to give each 1 : m link

its own link_UID only the sequence link_UID, desCAnchorID or (equal) the

sequence source_AnchorID, desCAnchorID are primary key candidates. The

choice is easy. Since the incoming join always refers to source_AnchorID, there
should be an index support on this attribute. If we choose source_AnchorID
instead of link_UID as first part of the primary key, this index is automatically

supported as a primary index (i.e., no secondary index will be necessary on that

relation). Our new relation Links, being unified from the fonner relations Link

and Specifier looks like this:

Links (Link_ UID: integer,

global source AnchorID: integer,

1* otherwise: source_UID, source_AID *1
global dest AnchorID: integer,

2 This can be the 'from' specifier or one of the specifiers labelled with 'bidirect'. For

bidirectional links see Section 5.3.
3 We omit the prefix 'globaC' for readability reasons during this discussion.

direction: string,

presentation_spec: string,

[type: string,]

[date: date,]

[author: string])

G. Specht 37

1* still can be 'bidirect', see below *1

As an important result, every target anchor can be reached directly from its

source anchor and the indirect step via the self join over the relation specifier

becomes unnecessary.

Result. It is possible to omit the self join! Only for real n ; m links a bit

less than n times more storage is needed. But this occurs rarely.

5.3. Modelling bidirectional links. Our new relation Links still contains the

attribute direction. If we have a bidirectional link, then during link navigation
both have to be tested: either global_source_AnchorID can be the link source

and global_dest_AnchorID the target, or the other way round. Bidirectional

links modelled in this manner means minimal storage but more difficult SQL
querys for the link navigation. An alternative solution would be to store each
direction as an own tuple. Then we have to store a few more tuples (at most

twice as much), but get easier SQL-queries, since global_source_AnchorID is
the only referenced attribute for the incoming join. Summing up, we get two

possible variants:
a) Storing one tuple for both directions (as until now)

Link navigation in SQL:

SELECT a.UlD, a.AID, l.presentation_spec

FROM Links 1, Anchor a

WHERE (l.global_source_AnchorID = <$input>

AND l.global_desCAnchorID = a.global_AID)

OR (l.direction = 'bidirect'

AND l.global_dest_AnchorID = <input>

AND l.global_source_AnchorID = a.global_AID)

b) Storing one tuple for each direction in the link:

Link navigation in SQL:

SELECT aUlD, a.AID, l.presentation_spec

FROM Links 1, Anchor a

WHERE l.global_source_AnchorID = <$input>
AND l.global_desCAnchorID = a.global_AID

38 Complexity analysis of link navigation

Result.

Variant a. Attribute direction:

pro:

- compact storage of the link information in one tuple

contra:

- more complex SQL-query

- higher memory consumption for access structures, because a secondary

index is needed on globaCdesCAnchorID.

Variant b. One tuple per direction:

pro:

- simple query for link navigation

- less memory needed for access structures

contra:

- up to twice as much storage space for link data. But since that are only

some integers, that is not significant in comparison to the storage needed
for nodes, containing images, audios and videos.

Finally the complexity for link navigation can be reduced to

O(log(llinksl) + Ilinksl * 10g(lanchorsl))·

Final remark to Section 5. We have analyzed and discussed link navigation

and its optimization. It is the most frequent and therefore most important

operation in hypermedia database systems. Its efficiency is crucial for user

acceptance. We found a highly optimized solution. But still, the same cost
analysis has to be considered for

- creation of links,

- deletion of links,

- creation of components,

- deletion of components (includes possibly some link deletions)

in order to get an optimal, balanced system behaviour, depending on the appli

cation scenario.

6. The multimedia database system MultiMAP

6.1. The system. Based on the Dexter model we have developed the mul
timedia database system MultiMAP. In addition to the powerful link concept

of the Dexter model, MultiMAP also allows fulltext search as an entry to the

G. Specht 39

hypermedia net. Thus, the underlying relational schema is a bit larger and more

complex as presented above.

MultiMAP is an interactive, extensible hypermedia database system, in

which texts, images, arbitrary objects on the images, audios and videos can

be stored and connected by links. MultiMAP runs on Unix workstations (Sun4

Spare, Hp, etc.) using a client/server architecture, and the relational database

system TransBaseT M as backend for internal data management. The main focus

of MultiMAP is the support of fast and simple (mouse supported) creation of

applications, since today, not the set up of a system, but the input of all relevant

data and the long-term maintenance are the most costly factors in multimedia

applications. Due to its database functionality even deletion of nodes does not

touch the refemtial integrity of links. Thus always a consistent application is
presented. Further advantages of MultiMAP over file based systems are:

• integrated processing of big amounts of multimedia data. All multimedia

data is completely stored inside the database. There are no pointers to

the file system for BLOBs;

• optimized storage due to efficient access paths and index structures;

• multiple complex search possibilities;

• referential integrity of links;

• transaction protected multi user mode;

• full recovery capability.

The link concept of MultiMAP is an extension of the Dexter model. It goes

far beyond usual WWW-links:

1. Support of uni- and bidirectional links and arbitrary n : m links. That

includes the heavily used 1 : n links in our applications.

2. Extension of the hypertext concept on arbitrary graphical objects: link

source and target anchors can be arbitrarily outlined objects on images

(e.g., the course of a river or a plot of land on a map). In particular,

these do not need to be approximated by rectangles.

3. In addition to links, it is possible to execute full text search (even trun

cated and nested) on all text, image and object names of the database.

The full text search is integrated in the object recherche and behaves like

an additional dynamic link.

We have also implemented the complete system as an object-oriented data

base, using the object-oriented database system 02 as a backend. We did this in

40 Complexity analysis of link navigation

order to obtain comparisons regarding modelling, easy development, effective

ness and performance. A detailed examination (Specht and Hofmann, 1996)

showed that object-oriented databases do not show the desired performance

and user interactivity at huge amounts of data. Thus the relational variant of

MultiMAP is still the more efficient one.

6.2. Applications. MultiMAP is already used in a series of applications,

partially with large amounts of data and high user activity. We present only a

few of them:

1. The first field of application was the multimedia processing of maps

and city maps for urban information systems, mapping out biotopes, or

administrative domains for environmental planning. A Munich city guide

is already completed in most parts.

2. MultiMED. This application deals with multimedia processing of X-ray

images in medicine, including detail images and verbal or written medical
reports. A prototype has been developed in collaboration with the St.
Bemward hospital in Hildesheirn, Germany (Specht and Bauer, 1995).

3. MultiBHT. A third field of application lieS in linguistics, in multimedia
processing of results of language analysis, in order to construct correct

grammar and the development of text-critical editions. An application

for Old-Hebrew exists in the Institute for Assyriology and Hethitology
of the University of Munich.

4. MultiLIB is a multimedia guide through the university library of the

University of Munich and its branches. The purpose is to enable the

students to find books, their location and access rights, opening times

of the library, and to offer support in catalogue queries. Therefore the

system must be accessible from all the branches.

In its different applications, the system must prove to be worthwhile in very

variable user environments: MultiLIB is directed to the broad public, especially

to students, and most applications are read-only. MultiBHT is an application

in research. Here there are only a few users, but with intensive sessions, large

result sets and almost every access is also a write-access. Thus there are peak

loads in both directions. In addition, extraction of multimedia objects like

images, text, sound and blinking requires higher CPU and net usage as in

conventional databases. Current research is ongoing in setting up an efficient
WWW-interface on MultiMAP, with an client implementation in JAVA.

C. Specht 41

7. Conclusion. We have presented the Dexter reference model and its con

version into a relational database, using entity-relationship modelling as an in

termediate step. A complete Dexter hypermedia engine can run on the obtained

relational schema. The most important (the most frequent) operation is the link

navigation. Therefore we have undertaken a detailed analysis of its complexity

and have presented variants of optimization. The best result we reached for the

complexity for link navigation was O(log(llinksl) + I links I * log(lanchorsl)).

Finally we have shown the formation of the multimedia database MultiMAP

and its various applications. The system MultiMAP has been developed at the

University of Technology, Munich.

REFERENCES

Halasz, F., and M. Schwartz (1994). The dexter hypertext reference model. Commu
nications of the ACM, 37(2), 30-39.

Hardmann, L., et al. (1994). The Amsterdam hypermedia model. Communications
of the ACM, 37(2), 50-62.

Khoshafian, S., and A. Baker (1996). Multimedia and Imaging Databases. Morgan
Kaufmann Publishers.

Korkea-aho, M., and G. Specht (Eds.) (1996). Trends in Multimedia Database Systems.
Helsinki University of Technology Press, Otaniemi.

Rumbaugh, J. (1991). Object-Oriented Modelling and Design. Prentice Hall.
Specht, G. (1996). Foundations and Trends in Multimedia Database Systems. Lecture

Scriptum, Helsinki University of Technology.
Specht, G., and M. Bauer (1995). MultiMED - a multimedia databases system for

education and tutoring in diagnosing X-ray pictures in orthopedics. In Schoop, Witt
and Glowalla (Eds.), Hypermedia in der Aus- und Weiterbildung. UVK-Vedag,
Konstanz. pp. 209-210 (in German).

Specht, G., and M. Hofmann (1996). Migration evaluation of a multimedia information
system from a relational into an object-oriented database system. In Mayr (Ed.),
Behe"schung von Informationssystemen. Oldenbourg-Verlag. pp. 233-251 (in
German).

Received January 1997

42 Complexity analysis of link navigation

G. Specht is a member of the research staff of computer science at the

Technischc Universitat Munchen, Germany. His research interests include mul

timedia databases, deductive'databases, object-oriented programming systems

and natural language parsing. Dr. Gunther Specht received his Ph. D. in 1992.

Since 1993 he leads the multimedia database project MultiMAP, now founded

by the Germany Research Network (DFN Association). He teaches graduate

cources on multimedia database systems, deductive and object-oriented database

system. He is author of several international articles and two German books.

RYSIQ NAVIGACIJOS SUDETINGUMO ANALIZE

DEKSTERIO ETALONINIU MODELIU GRINDZIAMOSE

lllPERMEDIA DUOMENll SISTEMOSE

Giunteris SPECHTAS

Siandien multimedia ir hipennedia sistemose naudojama tiek daug duomenll ir ry~ill,
kadjuos tenka saugoti duomenll bazese, Tam reikalingos duomenll bazill valdymo siste
mos su efektyviai realizuojamomis dideles raiskos gebos schemomis. Vienu i~ pla~iausiai
pripa~intll hiperduomenll modeliavimobiidll yra Deksterio etaloninis hiperteksto mode
lis. Jame naudojama galinga mazgll ir ry~ill modeliavimo technika. Sis modelis yra
pla~iai pripa~intas. Straipsnyje pasiiilyta, kaip pa~ingsniui pertvarkyti toki modeli i re
liacinf< multimedia duomenll bazes schemll. Sitaip gautai hipennedia ma~inai svarbiausia
ir kritiskiausia laiko po~iiiriu yra rysill navigavino operacija. Straipsnyje detaliai anali
zuojamas tos operacijos sudetingumas ir siiiloma, kaip reikia patobulinti schemll, kad llt
operacijll optimizuoti. Straipsnio pabaigoje aprasyta Miuncheno technikos universitete
sukurta sistema MultiMAP, kurioje efektyviai igyvendintos straipsnyje siiilomos idejos.

